Unified Theories of Programming

C.A.R. Hoare

July 21, 1994

Abstract

Professional practice in a mature engineering discipline is based on relevant scientific
theories, usually expressed in the language of mathematics. A mathematical theory
of programming aims to provide a similar basis for specification, design and imple-
mentation of computer programs. The theory can be presented in a variety of styles,

including

1. Denotational, relating a program to a specification of its observable properties
and behaviour.

2. Algebraic, providing equations and inequations for comparison, transformation
and optimisation of designs and programs.

3. Operational, describing individual steps of a possible mechanical implementa-
tion.

This paper presents simple theories of sequential non-deterministic programming in
each of these three styles; by deriving each presentation from its predecessor in a

cyclic fashion, mutual consistency is assured. There remains the challenge to extend

- the same approach to a wider range of computing phenomena; perhaps that will help

to clarify the inherent structure of the subject of Computing Science.

Contents

1 Introduction

2 Denotational Semantics

2.1 Correctness and implication . .
2.2 The programming language . .
2.3 Recursion
2.4 Preconditions and postconditions
2.5 Predicate transformers

3 The Algebra of Programs.

3.1 Assignment normal form
3.2 Non-determinism
3.3 Non-termination
34 Recursion
3.5 Computability
3.6 Completeness

4 Operational Semantics

4.1 Total correctness
4.2 Bisimulation

4.3 From operations to algebra . . e :

4.4 TFrom operations to observations

5 Conclusion

.....................

....................

.....................

.....................

.....................

.....................

.....................

.....................

11
13
19
21
25

27
29
30
31
31
35
36

39
42

44

48
49

55

Chapter 1
Introduction

A scientific theory is formalised as a mathematical description of some selected class
of processes in the physical world. Observable properties and behaviour of such a
process can then be predicted from the theory by mathematical deduction or cal-
culation. An engineer applies the theory in the reverse direction. A specification
describes the observable properties and behaviour of some system that does not yet
exist in the physical world; and the goal is to design and implement a product which
can be predicted by the theory to meet the specification.

This paper proposes a mathematical treatment of computer programming in the
simple non-deterministic programming language introduced by Dijkstra [1]. The the-
ory is well suited for use by engineers, since it supports both stepwise development of
designs from specifications and hierarchical decomposition of complex systems into
simpler components which can be designed and implemented separately. Further-
more, it permits derivation of a complete set of algebraic laws to help in transforma-
tion of designs and optimisation of programs. Finally, an operational semantics is
derived; this treats practical aspects of implementation and efficiency of execution.

The main goal of this monograph is to show simple ways in which the three pre-
sentations of the same language can be derived from each other by mathematical
definition, calculation and proof. The denotational theory consists just of a number
of separate mathematical definitions of the notations of the language as predicates
describing observable aspects of program execution. These definitions can be indi-
vidually formulated and understood in isolation from each other. :

The individual algebraic laws can then be derived from the denotational defini-
tions, without danger of inconsistency or other unexpected interactions. A normal
form theorem gives insight into the degree of completeness of the Ia.ws, and per-
mits additional laws to be proved without induction, An argument is given for the
computability of programs expressed in the language. _

An operational theory is equally easily derived from the algebraic. First an a.f—
gebraic definition is given for the basic step (transition relation) of an abstract im-
plementation; and then the individual transition rules can be proved separately and
individually as algebraic theorems, again with reduced risk of complex or unexpected
interactions. A concept of bisumulation then lifts the level of abstraction, to permit

5

6 CHAPTER 1. INTRODUCTION

derivation of a minimal collection of algebraic laws. An alternative abstraction tech-
nique derives the observational presentation from the operational, by proving all its
definitions as theorems.

This completes the circle: it means that any of the presentations can be accepted
as a primary definition of the meaning of the language, and the others can be derived
from it. Even better, different definitions can be safely and consistently used at dif-
ferent times and for different purposes. It is a characteristic of the most successful
theories, in mathematics as well as in natural science, that they can be presented in
several apparently independent ways, which are in a useful sense provably equiva-
lent. For example, topology can be based on a certain kind of family of sets, or on
neighbourhoods, or on a closure operator; and a theory of gravity can be based on
Newtonian forces acting at a distance, or on field theory, or on Einsteinian geodesics.
It is to be hoped that a multifaceted theory of programming can be developed to
deliver similar benefits in the practice of software engineering.

The technical material presented in this monograph serves primarily as an illus-
tration or proof of concept. If the concept is found attractive, there is plenty of scope
for future work. The most obvious direction is to extend the programming language,
for example by including local variables, procedures and parameters. Each extension
must be presented in all three semantic styles, with a preferably derivational proof of
consistency. An essential goal is to manage each newly introduced complexity by use
of as much as possible of the existing theory and algebra: starting again from scratch
is forbidden. Ideally, each new feature can be defined and introduced separately, in
a way that permits them to be combined without further complexities of interaction.
Mature mathematlcal theorles hke topology provide an excellent model of the kind
of structure needed.”

More ambitious extensions may also be of interest: perhaps timing, probability
and even a range of paradigms of parallel programming — shared-store, dataflow, and
communicating processes. The ultimate goal would be to cover all the interesting
paradigms of computing, both declarative and procedural, both in hardware and in
software. Again, the challenge is to reveal and profit from, their commonality, and so
to isolate and control their differences. The work involved is not likely to be easier
than fundamental research in any other branch of science; it can be motivated only
by the same intense curiosity to find the answer to fundamental questions. This must
be supported by the same intense belief in the ultimate simplicity of basic law, and
even the elegance of the reasoning on which it is based. The challenge is one that
will require the cooperative endeavour of a whole genera.tlon of theoretical computing
scientists. :

The 1ns:ghts described here were obtained by a study of communication and con-
currency in parallel processes, where the three semantic styles have been applied
individually by independent schools of research to the same class of phenomena.
The operational style was used first [2] to define the Calculus of Communicating
Systems (CCS); the algebraic style took precedence in the definition [3] of the Alge-
bra of Concurrent Processes (ACP), whereas the denotational style lies at the basis
of the mathematical theory [4} of Communicating Sequential Processes (CSP). Many

7

of the detailed differences between these three process theories originate from their
different styles of presentation. This monograph attempts a synthesis by presenting
the same programming language in all three styles. The choice of a simple sequential
language may defuse some of the controversy that has accompanied research into
process algebras.

Not a single idea in this paper is original. The concept of denotational sernan-
tics is due to Strachey and Scott [5], and the particular choice of ordering of non-
deterministic programs is due to Smyth [6]. The embedding of programs as predicates
is due to Hehner [7]. The language is essentially the same as that of Dijkstra [1].
The denotational theory is taken from Tarski’s calculus of relations [8]. The treat-
ment of recursion in specifications is given by Tarski’s fixed point theorem [8] and for
programs by Plotkin [9]. The algebraic treatment of the language has already been
fully covered in [10]. Even the idea of consistent and complementary definitions of
programming languages goes back at least to [11].

The intention of this monograph is to develop these familiar ideas in a smooth pro-
gression. Infact, the smoothness is the result of many laborious iterations, mercifully
concealed from the reader. Even more, it is due to witting or unwitting inspiration,
advice and assistance from many scientists, including E.W. Dijkstra, A.J.R.G. Mil-
ner, J.A. Bergstra, A.W. Roscoe, He Jifeng, G.D. Plotkin, J.W. de Bakker, J. Baeten,
M. Hennessy, W.P. de Roever, P. Gardiner, G. Lowe, S.A. Schneider, C.C. Morgan,
A. Sampaio, B. von Karger, F. Vaandrager, D.S. Scott, Joachim Parrow.

Acknowledgements

The research which is reported in this monograph was largely inspired and partially
supported by the European Community under ESPRIT basic research actions CON-
CUR and PROCOS.

Chapter 2

Denotational Semantics

When a physical system is described by a mathematical formula, the free variables
of the formula are understood to denote results of possible measurements of selected
parameters of the system. For example, in the description of a mechanical assembly,
it may be understood that = denotes the projection of a particular joint along the
x-axis, & stands for the rate of change of z, and ¢ denotes the time at which the mea-
surement is taken. A particular observatlon can be descrlbed by giving measured
values to each of these variables, for example:

'z = ldmm A a:-"7mm/s A t = 1.5sec.

The objective of science is not to construct a list of actual observatlons of a particular
system, but rather to describe all possible observations of all possible systems of a
certain class. The required generality is embodied in mathematical equations or in-
equations, which will be true whenever their free variables are given values obtained
by particular measurements of any particular system of that class. For exa.mple the .
differential equation |

z=05xz, fort <3

describes the first three seconds of movement of a point whose veIocity varies in
proportion to its distance along the @ axis. The equatlon is clearly satisfied by the
observation given previously, because : :

T=05x14 and 1.5<3.

In applying this insight to computer progia,rnming, we shall confine attention to
programs in a high level language, which operate on a fixed collection of distinct
global variables : Lo :

ZyYyoor 2o

The values of these variables are observed either before the program starts or after it
has terminated. To name the final values of the variables (observed after the program

9

10 CHAPTER 2. DENOTATIONAL SEMANTICS

terminates), we place a dash on the names of the variables

!

7 !
iy, ,2

But to name the initial values of the variables (observed before the program starts),
we use the variable names themselves, without decoration. So an observation of a
particular run of a program might be described as a conjunction -

z=4 A 2'=5 AN yY=y="T.

This is just one of the possible observations of a program that adds one to the
variable z, and leaves unchanged the values of y and all the other variables; or in
familiar symbols, the program consisting of the single assignment

'rs =:c+1

A genera,l formula descrlbmg all posmble observations of every execution of the above r
program is : : :

=z+1 A y’:y Ao A 2=z

Such a formula will henceforth be abbreviated by the programming notation which
it exactly describes; for example, the meaning of an assxgnment is actually explamed
by the deﬁmtzon : :

ST —m—{—l =4 m’.zzz:-]-l/\y’:.y/\.../\z’:z.

Slmllarly, a program which makes no change to anything is written as I (pronounced _ -

“skip”) and defined
I =y 2'=zAy=yA.. A =2

In words, an observation of the final state of Il is the same as that of its initial state.

These definitions play the role of specifications, giving an observable criterion of
correctness for any implemnentation of the language. Like all definitions, they cannot
actually be proved false or even refuted by experiment: however, as we shall see later,
they may fail to define the language that we want to implement and use.

Of course, high level programs are more usually (and more usefully) regarded
as instructions to a computer, “given certain values of z,y,...,2, to find values of
z',y',..., 2 that will make the predicate true”. But for the purpose of our mathe-
matical theory, there is no need to distinguish between descriptive and imperative
uses of the same predicate.

2.1. CORRECTNESS AND IMPLICATION 11

2.1 Correctness and implication

In engineering practice, a project usually begins with a specification, perhaps em-
bodied in a formal or informal contract between a customer and an implementor. A
specification too is a predicate, describing the desired (or at least permitted) prop-
erties of a product that does not yet exist. For e‘(ample, the predicate -

>z A Y=y

specifies that the value of = is to be increased, and the value of y is to remain the
same. No restriction is placed on changes to any other variable. There are many
. programs that satisfy this specification, including the previously quoted example

zi=2z+1.

Correctness of a program means that every possible observation of any run of
the program will yield values which make the specification true; for example, the
specification (z' > = Ay’ = y) is satisfied by the observation (z =4 A2/ =5Ay =
y = 7). The formal way of defining satisfaction is that the spe(;lﬁca,tlon is xmphed
by a description of the observation, for example

(x=4Aa"' =8Ny =y=T)=(2'>zAy =y).
This implication is true for all values of the observable variables
V,y,..., ¥, s (@=4Aa' =5Ay =y=T)= @ >z Ay =y)

In future, we will abbreviate such universal quantification by Dijkstra’s conventional
square brackets, which surround the universally qualified formula thus

(z=4A2'=8Ay=y=T)= (" >2zAy =y).

In fact, the specification is satisfied not just by this single observation but by
every possible observation of every possible run of the program z := z 4 1:

(z=z+1)=2>2">2Ay =y]

This mixture of programming with mathematical notations may seem unfamiliar; it
is justified by the identification of each program with the predicate describing exactly
its range of possible behaviours. Both programs and specifications are predicates over
the same set of free variables; and that is why the concept of program correctness
can be so simply explained as universally quantified logical implication between a
program and its specification.

Logical implication is equally interesting as a relation between two programs or
between two specifications. If § and T are specifications, [§ = T} means that T is
a more general or abstract specification than S, and at least as easy to implement.
Indeed, by transitivity of implication, any program that correctly implements S will

12 . CHAPTER 2. DENOTATIONAL SEMANTICS

serve as an implementation of T', though not necessarily the other way round. So
a logically weaker specification is easier to implement, and the easiest of all is the
predicate true, which can be implemented by anything.

Similarly, if P and @ are programs, [P = @] means that P is a more specific
or determinate program than @, and it-is (in general) more useful. Indeed, by
transitivity of implication, any specification met by @ will be met by P, though
not necessarily the other way round. So a logically weaker program is for any given
purpose less likely to serve; and the weakest program true is the most useless of all.

The initial specification of a complex product is usually separated from its even-
tual implementation by one or more stages of development. The interface between
cach stage can in principle be formalised as a design document D. If this is also
interpreted as a predicate, the correctness of the design is assured by the implica-
tion [D = S} and the correctness of the later implementation P by [P = DJ]. The
correctness of P with respect to S (and the validity of the whole idea of stepwise
development) follows simply by transitivity of implication:

" If[P= D] and [D = S] then [P = S].

When a predicate is used as a specification, there is no reason to restrict the
mathematical notations available for its expression. Indeed, any notation with a
clear meaning should be pressed into service, because clarity of specification is the
only protection we have against misunderstanding of the client’s requirements, which
can often lead to subsequent disappointment or even rejection of a delivered product.

Particularly important aids to clarity of specification are the simple connectives
of Boolean algebra, conjunction {and), disjunction (or), and negation (not}. Con-
junction is needed to connect individual requirements such as “Temperature must be
less than 30° and more than 27°”. Disjunction is needed to provide useful options for
economic implementation: “For mixing, use either the pressure vessel or the evap-
oration tank”. And negation is needed for even more important reasons: “If must
not explode”.

The freedom of notation which is appropriate for specification cannot be extended
to the programming language in which the ultimate implementation is expressed.
Programming notations must be selected to ensure computability, compilability, and
reasonable efficiency of execution. In a given programming language, there is a lim-
ited collection of combinators available for construction of programs from their prim-
itive components. Typical components include assignments, inputs and outputs; and
typical combinations include conditionals, sequential composition, and some form of
iteration or recursion. It is for good reason that most programming languages exclude
the Boolean combinators and quantifiers of mathematical logic. For example, there
is no programming language or compiler that would enable you to protect against
disaster by writing a program that causes an explosion, and then avoid explosion by
just negating the program before execution.

A result of these practical restrictions is that, although we can interpret all pro-
grams as predicates, the converse is obviously invalid: not every predicate describes

2.2, THE PROGRAMMING LANGUAGE S 13

the behaviour of & program. For example, consider the extreme predicate false. No
observation satisfies this predicate, so the only object that it could correctly describe
is one that gives rise to no observation whatsoever. From a scientific viewpoint, such
an object does not exist and could never be constructed. The notations of a pro-
gramming language must therefore be defined to ensure that they can never express
the predicate false, or any other wholly unimplementable predicate. o

However, we must live with the danger of proposing and accepting an ummple—
mentable predicate for specifications. Indeed, any general notational restriction that
ensures computability (or even just sa,tisﬁa,bility) could seriously impact clarity and
conciseness of specification, and so increase the much greater risk of failure to capture
the true requirements and goals of the project. Once these have been successfully
formalised, a check on implementability (and on efficiency of 1mp1ementa.t10n) may
be made separately with the aid of mathematics or good engineering judgement; and
this will be confirmed in the end by successtul delivery of an actual product which
meets the specification. There is fortunately no danger whatsoever of delivering an
implementation of an unimplementable specification.

2.2 The programming language

In this section we shall give a denotational semantics of our simple sequential pro-
gramming language in terms of predicates describing the behaviour of any program
expressed in that language. As explained earlier, the variables z,y,...,# stand for
the initial values of the like-named global variables of the program, and gy, 2
stand for the final values.

Let e, f,..., g stand for expressions such as 41, 3 Xy +2,... that can feature on
the right hand side of an assignment. Clearly, their free variables are confined to the
ithdashed variables of the program; and for simplicity, we assume that all expressions
always evaluate successfully to a determinate result. Generalising an example glven
earlier, we define a simple assignment,

;(3?3_:.6) =y {(&'=eAy =yA...AZ =2).

The program which makes no change is just a special case
It =df T =T

A multiple assignment has a list of distinct variables on the left hand side, and a list
of the same number of expressions on the right; it is defined

(33,:1}:: e,f) =df (m":e/\y’:ff_,,/\z’zz),

A clear consequence of the definition is that an implementa.tion must evaluate all the
expressions on the right hand side beflore assigning any of the resulting values to a
variable on the left hand side.

14 - CHAPTER 2, DENOTATIONAL SEMANTICS

Other consequences can be simply formulated as a,lgebrarc laws they have very
31rnp1e proofs For example :

ri=e = Z,yi=eY
r,y:=ef = y,z:=[e

All the deﬁmtlons and laws extend to lists of more than two variables, for example .

(zy—g,f) (2,9, .. z'=w,f S g)

In fact every a,smgnment ma.y be transforrned by such laws to a tofal asmgnment

TylYyrey® = eaf;"')g

where the left hand side is a list of all the free variables of the program in some
standard order In future we will abbrewate thlS to ‘ :

V= f(?)),

where v is the vector (2,y, ...,) of program variables, and f is a total function from
vectors to vectors. Predicates will be similarly abbreviated

Plv,v’) i.nstea,d of P(T’E_,y,...,Z,m”yr,_,.,z’).

Any non-trivial program is composed from its primitive components by the com-
bining notations (combinators) of the programming language. The run-time be-
haviour of a composite program is obtained by actual execution of its components —
all, some, or sometimes even none of them, Consequently, at a more abstract level, a
predicate describing this composite behaviour can be defined by an appropriate com-
position of predicates describing the individual behaviours of the components. So a
combinator on programs is defined as a combinator on the corresponding predicates.
That is part of what it means for a semantics to be denotational.

The first combinator we consider is the conditional. Let bbe a program expression,
containing only undashed variables and always producing a Boolean result (true or
false); and let P and @ be predicates describing two fragments of program. A
conditional with these components describes a program which behaves like P if b is
initially true, and like @) if b is initially false. It may therefore be defined as a simple
truthfunction

Pab @ =g (bAP)V(-bAQ).
A more usual notation for a conditional is
if b then P else Q instead of P <1 b 1> Q.

The reason for the change to infix notation is that it simplifies the expression of
algebraic laws:

2.2, THE PROGRAMMING LANGUAGE 15

P4bpP = P |
Pabbp@ = @Qa-bP
(Pabb@Q)dbbR = Pabdbb(Qab bR)

= PabbR
Pa4bb(@<debR) = (P4bb@Q)decb(PabdbR)

The first law expresses idempotence, the second gives a form of skew symmetry, the
third is an associative law, and the fourth states the distribution of any conditional
operator < b > through the conditional <i¢ t>, for any condition ¢. All the laws may
be proved by propositional calculus; the easiest way is to consider separately the
cases when b is true and when it is false. In the first case, replace P < b > @ by
P and in the second case by Q. The purpose of the algebraic laws is to help in
mathematical reasoning, without such tedious case analyses.

The most characteristic combinator of a sequential programming language is se-
quential composition, often denoted by semicolon. (P; @) may be executed by first
executing P and then . Its initial state is that of P, and its final state is that of
Q. The final state of P is passed on as the initial state of @; but this is only an
intermediate state of (P; @), and it cannot be directly observed. All we know is
that it exists. The formal definition therefore uses existential quantification to hide
the intermediate observation, and to remove the variables which record it from the
list of free variables of the predicate.

P(v,v); Qv,v") =¢ F°: P(v,2°) A Q(v% 7).

Here, the vector variable v® stands for the correspondingly decorated list of bound
variables

(z°,3%...,2%.

These record the intermediate values of the program variables

(wlyﬂ’ * ')z)i

and so represent the intermediate state as control passes between P and Q. But this |
operationa,l explanation is far more detailed than necessary. A clever implementatidn
is allowed to achieve the defined effect by more direct means, without ever passing
through any of the possible intermediate states, That is the whole purpose of a more.
abstract definition of the programmmg language.

In spite of the complexity of its definition, sequential composition obeys some
simple, familiar and obvious algebraic laws. For example, it is associative and has
Il as its left and right unit. Finally, sequential composition distributes leftward (but
not rightward) over the conditional. This asymmetry arises because the condition & is
allowed to mention only the initial values of the variables, and not the final (dashed)
variables.

16 CHAPTER 2. DENOTATIONAL SEMANTICS

(P,Q),REP;(Q;R)
;P =P =PI
(P4b Q)R = (P;R) b > (Q; R).

If ¢ is any expression (only mentioning undashed variables), the assignment
zi=e

changes the value of z so that its final value is the same as the initial value of e,
obtained by evaluating e with all its variables taking their initial values. So if P(z)
is any predicate mentioning @, P is true of the value of z after the assignment in just
the case that P is true of ¢, i.e.,

zi=e; Pz) = :(3:50 1 2% =¢e: P(zo))
P(e).

19l

But P(e) is just P with z substituted by e.. This substitution effect is defined to
generalise to any expression:

(o= e5 (@) = f(e).
For example - :) A '
(z:=2+1;Bxe+y<z) = Bx(z+1)+y<=2).

Other common notations for substitution are f?, fle/z] and f{z/e]. Substitution
permits a rightward distribution law for conditionals:

zi=e;(PdbpQ) = (z:i=¢; P)dai=¢e;bb(z:=¢; Q)

Non-determinism is the programming concept that we define next. Let P and
@ be predicates describing the behaviour of programs. Their disjunction (P V Q)
describes the behaviour of a program which may behave like P or like @, but with no
indication which it will be. As an operator of our programming language, disjunction
may be easily implemented by arbitrary selection of either of the operands and the
selection may be made at any time, either before or after the program is compiled or
even after it starts execution. DISJunCtIOD. is an extremely simple expla,na,txon of the
traditionally obscure phenomenon of non-determinism in computing science; and its
simplicity provides additional justification for the 1nterpreta,tlon and mampulat]on
of programs as predlcates

All the program combmatms defined so far distribute through d]SJllIlCthIl This
means that separate consideration of each case is adequate for all reasoning about
non-determinism. Curiously, disjunction also distributes through itself and through
the conditional

2.2, THE PROGRAMMING LANGUAGE 17

Pabp(QVR) = (Pa4bbp@) Vv (PabbR)
P;(QVR) = (PQ) \ (P; R)
(QVE); P = (@;P) \ (R; P)
PV(QV R) = (PVQ) v (PVR)
PVv({@<«bbR) = (PVQ) qb (PV R).

As a consequence of distribution through disjunction, all program combinators
also enjoy the property of monotonicity. A function f is said to be monotonic if it
preserves the relevant ordering, in this case implication. More formally

[fX = fY] whenever.[X = Y].

(Here, X and Y are mathematical variables ranging over predicates with the same
given alphabet, and the line displayed above is true, no matter what predicates take
the place of X and Y). All program combinators defined so far are monotonic in all
arguments; for example ' ' -

[X;Y = X'; Y] whenever [X = X'Tand [V = Y],

Monotonicity is a very important principle in engineering. Consider an assembly
which tolerates a given range of variation in its working environment. Consider also
one of its components, which also has a certain tolerance ¢. The tolerance of the whole
assembly can be expressed as some function f of the component tolerance ¢. The
engineer usually assumes that f is a monotonic function, so that if the component is
replaced by one with a broader tolerance ¢/, then the tolerance of the whole assembly
will in general also be broader, or at worst, the same:

<= 1) < F(E)),

where < is a partial ordering for comparison of breadth of tolerance. Problems arising
from violation of monotonicity are in practice the most difficult to diagnose and
rectify, because they invalidate the whole theory upon which design of the assembly
has been based. _ '

When faced with the task of implementing a complex specification S, it is usual
to make an early decision on the general structure of the product, for example as the
sequential composition of two program components. To formalise and communicate
this decision, each of these components is going to need separate specifications, say D
and . The correctness of these specifications can be checked before implementation
by proof of the implication

(D;E)=S), | | (%)

where the sequential composition between specifications has the same definition as -~

between programs considered as predicates. Now what remains are the presumably
simpler tasks of finding two programs P and () which implement the two designs,
Le.,

18 CHAPTER 2. DENOTATIONAL SEMANTICS

[P = D] and [@ = E].

Now just deliver the product (P; Q). By fnonol}onicity of sequential composition
(P; Q)= (D; B,

and the fact that

(P; Q)= 8]

follows by transivity from a proof of the correctness of the design step (*). What is
more, this proof was completed before the start of implementation of P or). The
technique can be repeated on the components P and); and because of monotonicity
it extends to all other program combinators. Their monotonicity is essentlaI to the
genera.l engineering method of stepwise design-decomposition.

But this account of stepw1se demgn requires a simultaneous guess of both the
component designs I? and E. This is like trying to factorise a given whole number §
by simultaneously guessing both the factors D and E, and then checking the guess -

by multiplication:
DxE=025.
If one of the factors I is already known, there is 2 much more cer.tain way of calcu- .
lating D by long division
| D=8+,
where + is an approximate inverse of X, in the sense that

DLS+F ifandonlyif Dx E<S,

Such an inverse is called a Galois connection, and is very useful when exact inverses
are not available.

It turns out that sequential composition also has a Galois connection (which we
also write as +). So if E specifies some program already designed or already avail-
able in a library, it is possible to calculate S <+ F as the weakest specification which
satisfies the original intention

(S+E)E= S

Such Galois connections exist for any operator that distributes through disjunction
(through empty and infinite disjunctions as well). However, the symbolic calcula-
tions required to simplify the predicate S + E may be heavy; and the result will be
unimplementable in the case that there is no way of using F as proposed to imple-
ment S. For example

('isodd) + (z:=2x3) = false

2.3. RECURSION 19

All the symbolic calculations described above require that designs are expressed in
a mixture of programming notations (for decisions that have already been taken) and
more general predicates (for the parts that are specified but still need to be designed).
This is yet another advantage of the philosophy of expressing both programs and
specifications in the same logical space of predicates.

2.3 Recursion

A final advantage of monotonicity is that it permits a simple treatment of the impor-
.tant programming concept of recursion, and of its important special case, iteration;
‘without this, no program can take significantly longer to execute than to input.
Predicates over a given set of observational variables may be regarded as a complete
lattice under implication ordering, with universal quantification as meet and existen-
tial as join. The bottom of the lattice is the strongest predicate false and the top is
true. Here we will use bold font to distinguish true (considered as a program pred-
icate over free variables v,v') from italic {rue, which is a possible value of a Boolean
expression & (containing only undashed free variables v).

Moving to a second-order predicate calculus, we introduce a variable X to stand
for an arbitrary predicate over the standard set of first-order variables. Fortunately,
all the combinators of our programming language are monotonic, and any formula
constructed by monotonic functions is monotonic in all its free variables. Let G.X
be a predicate constructed solely by monotonic operators and containing X as its
only free predicate variable. Tarski’s theorem [12] guarantees that the equation

X=GX

has a solution for X; and this is called a fixed point of the function G. Indeed, among
all the fixed points, there is a weakest one in the implication ordering. This will be
denoted by

(X 1 G.X).

It can be implemented as a single non-recursive call of a parameterless procedure with
name X and with body (G.X). Occurrences of X within (G.X) are implemented as
recursive calls on the same procedure.

The mathematical definition of recursion is given by Tarski’s construction:

(JU,X u GX) =df V{X : [X = GX] : X}

where \/ is the lattice join applied to the set of all solutions of [X = G.X]. The
following laws state that the join is indeed a fixed point of G, and that it is the
weakest such:

[G.(pX = GX) = (pX 11 G.X)]

20 CHAPTER 2. DENQOTATIONAL SEMANTICS

[Y = pX : G.X] whenever [Y = G.Y].

A simple common case of recursion is the iteration or while loop. If bis a condition,

while b do P

repeats the program P for as long as b is true before each iteration. More formally,
it can be defined as the recursion

(X = (P; X)) b 1,

An even simpler example (but hopefully less common) is the infinite recursion which
never terminates '

pX. X,
This is the weakest solution of the trivial equation
X =X

it is therefore the weakest of all predicates, namely true. In engineering practice, a
non-terminating program is the worst of all programs, and must be carefully avoided
by any responsible engineer, That will have to suffice as justification for practical use
of a theory which equates any non-terminating program with a totally unpredictable
one, which is the weakest in the lattice ordering,

Consider now the program which starts with an infinite loop:
(pX = X); 2,y,...,2:=3,12,...,17.

In any normal implementation, this would fail to terminate, and so be equal to
(X = X). Unfortunately, our theory gives the unexpected result

=3 AY=12 AL A =17,

the same as if the prior non-terminating program had been omitted. To achieve this
result, an implementation would have to execute the program backwards, starting
with the assignment, and stopping as soon as the values of the variables are known.
While backward execution is not impossible (indeed, it is standard for lazy func-
tional languages), it is certainly not efficient for normal procedural languages. Since
we want to allow the conventional forward execution, we are forced to accept the
practical consequence that the program

(X = X); P
will fail to terminate for any program P; and the same is true of

P (pX o X).

2.4. PRECONDITIONS AND POSTCONDITIONS 21

Substituting (X :: X) by its value true we observe in practice of all programs P
that o

true; P = true
P true = true.

These laws state that true is a zero for sequential composition. :

But these laws are certainly not valid for an arbitrary predicate P." As always
in science, if a theory makes an incorrect prediction of the behaviour of an actual
system, it is the theory that must be adapted; and this usually involves an increase
in complication. The violation of plausible simpler laws is what requires and jus-
tifies introduction of new concepts and variables, which cannot perhaps be directly
observed or controlled, but which are needed to explain what would otherwise be
anomalies in more directly observable quantities. All the discoveries of fundamental
forces and particles in modern physics have been made in this way. Of course, the
old theory is not actually refuted: it would still apply to a lazy implementation. But
we are not interested in such an inefficient kind of implementation. It is not the one

that we wanted.

2.4 Preconditions and postconditions

In the case of computer programs, the anomaly described in the prévious section

is resolved by investigating more closely the phenomena of starting and stopping-of - -

programs. The collection of free variables descrlbmg programs is enlarged to mclude_ :
two new Boolean variables: : '

ok, which is true of a program that has started in a fully
defined state.

ok!, which is true of a program that has stopped in a fully
defined state.

If ok’ is false, the final values of the program variables are unobservable, and the
predicate describing the program should make no prediction about these values.
Similarly, if ok is false, even the initial values are unobservable. These considerations
underlie the validity of the desired zero laws. ‘

The new variables ok and ok’ must never appear in the text of any program. How- .

ever, they do appear in the list of existentially quantified variables in the definition
of sequential composition, and in the list of universally quantified variables which
are abbreviated by the square brackets.

The variables ok and ok’ are useful also in specifications of components of larger
programs, The correctness and even the termination of a component with specifi-
cation @ is often dependent on some assumed properties of the initial values of the
variables. This assumption is described by a precondition P, which will be true be-
fore the program starts. The specification can therefore be written

22 CHAPTER 2. DENOTATIONAL SEMANTICS

(0k A P) = (ok' A Q),

or in words “If the program component starts in a state satisfying P, it stops in a
state satisfying @).” For historical reasons, @ is known as a postcondition.

The responsibility for ensuring that P is true at the start is thercby delegated
to the preceding part of the program. If the assumption is violated, no constraint
whatsoever is placed on the behaviour of the program; it may even fail to terminate.
Successful teamwork in a large engineering project always depends on appropriately
selected assumptions made by the individual designers engaged on a particular sub-
task, and the corresponding obligations undertaken by their colleagues. So it is worth
while to introduce a special notation :

(P,Q) =4 (ok AP = ok A Q).

This is the primitive notation used by Morgan in [13]. The clear distinction of
precondition P from postcondition @ is also an advantageous feature of VDM [14].
In the interpretation of programs as single predicates, the concepts of correctness
and refinement are identified with the implication ordering. The same ordermg can
be defined for pairs of predicates, as shown by the theorem '

[(PI,QI) = (PQ,QQ)] it [P2 = Pl] and [P2 & Q} = Qz}

Here, (P1,G)1) is better because it has a weaker precondition P;, and so it can be
used more widely; furthermore, in all circumstances (P;) where (P, @) can be used,
(P1, @1) has a stronger postcondltlon s0 its behaviour can be more readlly predlcted
and controlled. ..

Equivalence of predlcate pairs can be deﬁned by mutual implication:

[(P1, @1) = (P2, Q2)) I [(P1, Q1) => (P2, Q2)] and [(P1, Q1) = (Ps, @2)).

It follows that many equivalent predicate pairs actually denote the same predicate,
for example:

(AQ)=(APAQ)] and [(PQ)=(FP=Q).

It is convenient to regard the form (P, P = @) as a standard form for writing the
predicate pair. '

The definition of a predlcate pair shows how any pair of predicates can be con-
verted to a single predicate by introducing two new variables ok and ok’ into its
a,lphabet ‘The resulting predicate R(ok, ok') is monotonic in ok’ and antistrict in ok,
in the sense that

[R(ok, false) = R(ok,true)] and [R(false,ok’)].

Conversely, any predicate R with the above properties can be written as a predicate

pair (Ro, R'), where
Ry = ~R(true, false) and R = R{true, true).

2.4, PRECONDITIONS AND POSTCONDITIONS 23

The definition establishes a bijection between predicate pairs and single predicates
with the required monotonic and antistrict properties. All the notations of our pro-
gramming language (including the refinement ordering on programs) can be applied
to predicate pairs, as will be shown in the rest of this section. Consequently the
bijection is an isomorphism. For all purposes of mathematical calculation, one may
use either interpretation of the meaning of programs.

A signiﬁcént advantage of explicit mention of preconditions and postconditions
is a solution of the postponed problem of undefined expressions in assignments. For
each expression e of a reasonable programming language, it is possible to calculate a
condition De -which is true in just those circumstances in which e can be successfully
evaluated. For example

D17 = Dz = irue

D(e+f) = DeADf

Dle/f) = DeADfA(f#0).
Successful execution of an assignment relies on the assumption that the expression
will be successfully evaluated, so we formulate a new definition of assignment

zi=e¢ =g (De,ad’=¢ AN Y=y A ...AZ=2)
Expressed in words, this definition states that

‘either the program never starts (ok = false) and nothing can be
said about its initial and final values,

or the initial values of the variables are such that evaluation
of e fails (—De), and nothing can be said about the final
values,

or the program terminates {0k’ = true), and the value of 2/
is e, and the final values of all the other variables are the
same as their initial values.

The definition of the conditional also needs to be modified to take into account the
possibility that evaluation of the condition is undefined

PAabQ=(Db=(bAPV=-bAQ)).

However, in future we will maintain the simplifying assumption that all program
expressions are everywhere defined. '

The normal combinators of the programming language can be defined directly in
terms of predicate pairs as shown by the theorems:

24 CHAPTER 2. DENOTATIONAL SEMANTICS

(Pr, Q1) V (P2, Q2) = (PAAP,@Q1V Q)
(PLR) bbb (Py,Q2) = (PAtbbP,Qi<db b Q@)
(P, @) (P, @2) = (={=Py;true) & ~(Qr;~F), Q1; Q2).

These theorems show that all the combinators of the programming language map
pairs of predicates to pairs of predicates. The functions are all monotonic, and pairs

of predicates form a complete lattice under implication ordering:

V5, Qi) ((/\.‘Pi)1(Vf @)
NP @) = (Vi P) AN(Pi = Q1)
It follows that the least fixed point of such a function is also expressible as a predicate

pair: this property of all programs is therefore maintained even in the presence of
recursion.

To be more specific, any function of predicate pairs can be analysed as a pair of
functions applied to (P, @), for example

(F(PQ), G(FQ)).

Here, F' is monotonic in P and antimonotonic in @, whereas for G it is the other
way round. The least fixed point is calculated over the complete lattice of predicate
pairs, and gives the mutually recursive formula

w(X,Y) = (F(X,Y),G(X,Y)) = (P(Q),Q))

where P(Y) = vX 2 F(X,Y)
Q@ = p¥ = (P)= GP(Y)Y))

fl

Here, vz denotes the strongest fixed point. It may be calculated from the weakest
fixed point by the law:

(va 2 g.2) = (~pe i —g(-z)).

The treatment given above applies to arbitrary predicate pairs (P, Q), provided
that they do not contain ok or ok'. In particular, the precondition P is even allowed
to mention the dashed final values of the program. Morgan’s refinement calculus
has shown that this freedom may be useful in the early stages of specification and
design. But programs with such preconditions would be expensive or impossible to
execute. In fact, all predicate pairs expressible in the notations of the programming
language satisfy the restriction that their preconditions do not mention final values,
This permits simplification of the precondition for sequential composition, This fact
will be proved and used in the next chapter,

The preference of many researchers is to define the predicate pair as the meaning
of the program, and use the theorems given above as definitions of the combinators

2.5. PREDICATE TRANSFORMERS ' 2%

of the programming language. This avoids the introduction of the “unobservable”
variables ok and ok’, widely regarded as a distasteful coding trick. However, the
coding trick is still useful in revealing the isomorphism between single-predicate and
two-predicate definitions of the same language. The programmer may use whichever
is most convenient for the immediate purpose, and change freely between them when
pursuing different purposes. That is the practical benefit of unifying theories of
programming. S ' '

For the proof of general algebraic laws which apply equally to speciﬁcatiohs as
to programs, there is no doubt that the single predicate formulation is the most
convenient. However, there are a few important laws which are not valid for general
predicates, but only for those that are expressible as predicate pairs. These include
‘the unit laws for composition

I (PQ)=(PQ)=(P,Q); I
which are valid for the new definition of I as
(true,z’ =z Ay =y A...AZ = =z)

Even more important is the first zero law, which originally motivated introduction
of the predicate pairs, which is now trivial

true; (P, @) = true.
The second law zero is
Pitrue = true, for all programs P.

This can be proved easily for assignments; and a simple induction extends the proof
to all programs written without recursion. However, proof of the recursive case uses
methods developed only in the next chapter.

2.5 Predicate transformers

The definition of our programming language was originally given by Dijkstra in
terms of predicate transformers. For any program @, its weakest precondition P =
wp(@, R) maps a postcondition R describing the final state after its execution onto
a predicate P. This is the weakest precondition that describes all initial states in
which execution of the program is guaranteed to terminate in a state satisfying the
given postcondition. For a liberal precondition (wlp), termination is not guaranteed;
but if it occurs, the postcondition will be satisfied.

Let @ be a predicate describing the behaviour of a program. Its weakest liberal
precondition can be defined

wip(Q, B} =q¢ —(Q; -~ R).

26 CHAPTER 2. DENOTATIONAL SEMANTICS

This means that execution of @ cannot end in a state that fails to satisfy R. From this
definition, we can derive theorems that characterise the notations of the programming
language, for example, '

WIP(QI v Qﬂs R) = wlp(Ql: R) A wlp(QQ: R)
wip(Q1 <4 b Q2 B) = wip(Q1, R) 1 b b wlp(Qa, R)
wlp(Q1;Q2, R) = wlp(Ql,wlp(Qz, R)).

The simplicity of the last equatmn is 1mpresswe
The wip function satisfies the main healthiness condition required by Dijkstra,
that it distributes through arbitrary universal quantification

wip(@, Vi Ry) = Vi wlp(Q, Ri).

Conversely, let f be any function with this distributive property. Then there is a
unique () such that

wlp(@,R) = f.R, for all R.
The @ is defined by

Q= f.-lIL

An isomorphismn has been established between a language defined in terms of single
predicates (containing dashed and undashed variables}), and one defined in terms of
universally distributive predicate transformers. The original and continuing attrac-
tion of predicate transformers is that there is no need to use dashed variables: if
the postcondition does not contain them, neither does the precondition. Yet another
coding trick is eliminated.
The weakest liberal precondition suffers from the same problem with non-termination

as the single-predicate theory of programming described in section 2.3, for example

wip(true, true) = true

To obtain the full strength of Dijkstra weakest precondition in guaranteeing termina-
tion, the two-predicate theory is better. Let (P, @) be a pair of predicates describing
the behaviour of a program, as described in section 2.4. This can be converted to a
predicate transformer by

wp((Ps Q)sR) =df P& wlp(Q,R)

Like wip, this transformer is also universally distributive, and satisfies the same
laws that characterise the combinators of the programming language. However, non-
termination is treated in a more realistic fashion:

wp(true, true) = wp((false, true), true) = false.

Chapter 3

The Algebra of Programs.

In this chapter we confine attention to that subset of predicates which are expressible
solely in the limited notations of a simple programming language, defined syntacti-
cally in table 1. The semantic definitions have been given in the previous section,
and provide the basis for proof of a number of algebraic laws. Hitherto, most of
these have been valid for arbitrary predicates; but now we can prove additional laws,
valid only for predicates which are programs. To emphasize the algebraic orientation, -
we shall use normal equality between programs in place of the previous universally
quantified equivalence : ' . N

P=@Q for [P=Qq) ‘
Such laws are valid for all P and @ ranging over programs. Of course, P and @
themselves are predicates which contain free variables in the appropriate alphabet.
Capital letters are used to distinguish these “second order” variables from the lower
case variables which they contain as predicates. ;

Algebraic laws in the form of equations and 1nequat1ons have many advantages
in practical engineering, As in more traditional forms of calculus, they are useful in
calculating parameters and other design details from more general structural deci-
sions made by engineering judgement. There are good prospects of delegating part of
the symbolic caleulation to a mechanised term rewriting system like OBJ3[15]. And
finally, a theory presented as a set of equations is often easier to teach and to learn
than one presented as a mathematical model. Differential calculus is much more
widely taught, and more widely used by scientists and engineers, than the founda-.
tionary definitions of analysis on which pure mathematicians have shown it to be
based.

That is why each of the formal definitions given in the previous section has been
followed by a statement of its most important algebraic properties. Proof of these
properties is rightly the responsibility of a mathematician; that is the best way of
helping engineers, whose skill lies in calculation rather than proof. The goal is to
compile a complete collection of laws, so that any other true law that may be needed
can be derived by symbolic calculation from the original collection, without ever
again expanding the definition of the notations involved.

27

28 CHAPTER 3, THE ALGEBRA OF PROGRAMS.

<program> : = true
| <variable list> := <expression list>
<program> <1 <Boolean expression> > <program>
<program> ; <program>

<recursive identifier>

l

|

| <program> V <program>

|

| # <recursive identifier> :: <program>

In the form (X :1 P), X must be the only free recursive
identifier in P.
* Table 1. Syntax.

A valuable aid to the achievement of completeness is the definition of a normal
form. A normal form uses only a subset of the primitives and combinators of the
language, and only in a certain standard order. For example, the conjunctive normal
form of Boolean Algebra has conjunction as its outermost combinator, disjunction
next, and negation as its innermost operator. The algebraic laws must be sufficient
to ensure that every program in the language can be transformed by calculation using
just these laws to a program expressed in normal form. There is often a simple test
of equality between normal forms; so reduction to normal form generahses this test
to arbitrary expressions of the language

The laws may be classified a,ccordmg to the role that they play in the reductlon
to normal form

1. Elimination laws remove operators which are not allowed in the normal form.
Such laws contain more occurrences of the operator on one side of the equation
than on the other,

2. Distribution laws ensure that the remammg operators can be rearranged to a
standard order of nesting.

3. Association and commutation laws are needed to determine equality of normal
forms which unavoidably admit variation in their written representation.

For purposes of exposition, we will define a series of normal forms, of increasing
complexity and generality, dealmg successwely with assignment, non- determinism,
non-termination, and recursion.

3.1. ASSIGNMENT NORMAL FORM 29
3.1 Assignment normal form

The first in our series of a normal forms is the total assignment, in which all the
variables of the program appear on the left hand side in some standard order:

Ty Yooy 2 1= €, [0, 0.

Any non-total assignment can be transformed to a total assignment by vacuous ex-
tension of the list, for example:

(z,y = & f) = (z,9,...,2 = & f,...,2).

As mentioned . before, we abbreviate the entire list of variables

(2,9,...,2) by the simple vector variable v, and the entire list of expressions by
the vector expressions g{v) or A(v); these will usually be abbreviated to g or h. Thus
the normal form will be written

v i=g or v := h(v).

The law that eliminates sequential composition between normal forms is

(v :i= g; v = h{v)) = (v := h{g)).

The expression k(g) is easily calculated by substituting the expressions in the list g
for the corresponding variables in the list v. For example

(z,y = z+Ly—1; 2,y = y,z)
= (z,y = y—Laz+1)

We now need to assume that our programming language allows conditional ex-
pressions on the right hand side of an assignment. Such an expression is defined
mathematically :

edelf = e - ife
= f if —e.

The definition can be extended to lists, for example
(el,e2) dec b (f1,f2) = ((eldcb f1),(e2dc > f2)).
Now the elimination law for conditionals is

((vi=g)<deb(v:= k) = v:i=(gdcbh)

Finally, we need a law that determines when two differently written normal forms
are equal. For this, the right hand sides of the two assignments must be equal:

30 CHAPTER 3. THE ALGEBRA OF PROGRAMS.

(v i=9) = (v:i=~h) iff [g=4hl

Of course, if g and h are expressions of an undecidable calculus, the algebra of
programs will be equally incomplete. This means that a kind of relative completeness
has to be accepted as the best that can be achieved in a calculus of programming,

3.2 Non-determinism

Disjunction between two semantically distinct assignments cannot be reduced to a
single assignment, which is necessarily deterministic. We therefore move to a more
complicated normal form, in which the disjunction operator connects a finite non-
empty set of total assignments ' '

wi= Vv (vi=g) V...V (v = h).

Let A and B be such sets; we will write the normal form as \/ A and V B. All the
previous normal forms can be trivially expressed in the new form as a disjunction
over the unit set

vi=g = \{v := g}.

The easiest 6pera€;or to eliminate is disjunction itseif; it just forms the union of
the two sets:

(VA) v (VB) = V(AUB).
The other operators are eliminated by distribution laws
(VA)< b >(VB) = V{PQ: PEAAQEB: (P<b bQ))
(VA)(VB) = V{PQ: P€cANQEB: (P;Q)}.

The right hand sides of these laws are disjunctions of terms formed by applying the
relevant operator to total assignments P and @, which have been selected in all
possible ways from A and B. Each of these terms can therefore be reduced to a total
assignment, using the laws of 3.1. Thus the occurrences of ; and <1 b I> in the right
hand sides of the laws given above are also eliminable.

The laws which permit comparison of disjunctions are
[((VA)= R] ift VP: P€ A: [P=R)
[v=f=(:i=gV...Vv:=Rh)]iff [fe{g,...,h})

The first law is a tautology; it enables a disjunction in the antecedent to be split into
its component assignments, which are then decided individually by the second law.

3.3. NON-TERMINATION : 31
3.3 Non-termination

The program constant true is not an assignment, and cannot in general be expressed
as a finite disjunction of assignments. Its introduction into the language requires a
new normal form

true db > P

where P is in the previous normal form. It is more convenient to write this as a
disjunction

bv P.
..Any unconditional normal form P .can be expressed as
| fa.lsc v P
and the constant true as
true V 1L

The other operators between the new normal forms can be eliminated by the laws

(bVP)V{(eVQ) = (bVe)V(PVQ)
(bvP)<dd b(eVQ) = (badbe)V(Pad bQ)
(BY P);(cV Q) = (bV (P;0))V(P5Q).

The third law relies on the fact that b and ¢ are conditions (not mentioning dashed
variables), and P and @ are disjunctions of assignments; from this, it follows that

(¢ 8] and [b; Q =).) (+)
We also need a right distribution law '

z=e(Pdb bQ)=(z:=¢P)d z:1=¢;b b(2:=6Q) -
if P and @ are disjunctions of assignments. The law for testing implication is

[(bVP) = (cVQ)] iff b= ¢ and [P=cV Q)

3.4 Recursion

The introduction of recursion into the languages permits construction of a program
whose degree of non-determinism depends on the initial state. For example, let n be
a non-negative integer variable in

whilenisodd do{(n:=n61lVn:i=n&2)

32 CHAPTER 3, THE ALGEBRA OF PROGRAMS.

where n© k =0k 2 n > n — k. The effect of this is clearly described by the
predicate

n' <n &n'iseven & (nis even = n' = n).

Informally, this can be expressed as a disjunction of assignments:

n = (ndniseven bn—1)
Vn = (ndniseven bn-—3)
Vn = {(n<dniseven b 0)

But there is no finite set of assignments whose disjunction can replace the. informal
ellipses (...) shown above, because the length of the disjunction depends on the initial

value of n.
The solution is to represent the behaviour as an infinite sequence of expressions

S={i:ieN:5}

Each 5; is a finite normal form, as defined in 3.3; it correctly describes all the possible
behaviours of the program, but maybe some impossible ones as well. So we arrange
that each Si;; is potentially stronger and therefore a more accurate description than
its predecessor S;:

[S;.,.l = S.'], . for all .

This is called the descending chain condition. It allows the later members of the
sequence to exclude more and more of the impossible behaviours; and in the limit,
every impossible behaviour is excluded by some S;, provided that ¢ is large enough.
Thus the exact behaviour of the program is captured by the intersection of the whole
sequence, written (A, S;), or more briefly (A S5).

For the example shown above, we define the infinite sequence S as follows

So = true

S = n'=ndniseven bn>1

S = n'=ndniseven b(n>3Vn' =10)

S3 = n'=ndniseven b (n>5Vn' € {0,2})

Si = n'=ndniseven b(n>2-1Vn' <i& n'even).

Each S; is expressible in finite normal form, It describes exactly the behaviour of the
program when 7 is initially less than 27, so that the number of iterations is bounded
by 7. The exact behaviour of the program is described by any S; with ¢ greater
than the initial value of n. It follows that the predicate describing the behaviour of

3.4. RECURSION 33

the whole program is equal to the required infinite conjunction A;S;. The laws for
recursion given below will provide a general method for calculating the successive
approximations S; describing the behaviour of any particular loop.

The calculation depends critically on the descending chain condition for 5, be-
cause it is this that permits distribution of all the operators of the language through

intersection:
AS)VP = A(SVP)
(AS)d b bP = A(Si<bbP)
Pab>(AS) = AN(PabeS)

AASH P = A5 P)
Pi(AS) = AJ{P;S) provided that P is in finite

normal form.

Operators that distribute through intersections of descending chains are called con-
tinuous. Every combination of continuous operators is also continuous in all its
arguments.. This permits formulation of a continuity law for recursion: .

,LLX 94 /\i S,'.X = Ai #X H S".X
provided that S; is continuous for all ¢, and it forms a descending chain for all X,
ie.,

[S;.H X = S,X]

Another advantage of the descending chain condition is that a descending chain of
descending chains can be reduced to a single descending chain by diagonalisation

Ael\s Su) = A; S,

provided that V&, 1,7, Si; < Siipr & Su < Siyu. This ensures that a function F,
continuous in each of its arguments separately, is also continuous in its arguments
taken together

F(AS,AT) = \i F(Si, Ta)

In turn, this gives the required elimination laws for the three operators of the lan-
guage

(AS)V(AT) = A(SiVTi)
(AS)<a b b(AT) = AlSi<a b bT)
(AS)(AT) = A(SiTh).

The occurrence of the operators on the right hand side of these laws can eliminated

34 CHAPTER 3. THE ALGEBRA OF PROGRAMS.

- by the laws of 3.3, since each 5; and T} is finite.

The continuity laws ensure that descending chains constitute a valid normal form
for all the combinators of the language; and the stage is set for treatment of recur-
sion. Consider first an innermost recursive program {containing no other recursions)

puX o FPX,

where F.X contains X as its only free recursive identifier. The recursive identifier
X is certainly not in normal form, and this makes it impossible to express F.X in
normal form. However, all the other components of F\.X are expressible in normal
form, and all its combinators permit reduction to normal form. So, if X were re-
placed by a normal form (say true), (F.true) can be reduced to finite normal form,
and so can F.(F.true), F.(F.(F.true)),... Furthermore, because F is monotonic, this
constitutes a descending chain of normal forms. Since F' is continuous, by Kleene’s
famous recursion theorem, the limit of this chain is the least fixed point of F'

X s FPX) = /\n F™ true.
This reduction can be applied first to replace all the innermost recursions in the

program by limits of descending chains, The remaining innermost recursions now
have the form

pY i H(A,, F™.true, A G™true,... ,Y)
By continuity of H, this transforms to
pY s AL HnlY

where H,.Y = H.(F™.true, G™.true,...,Y), which is (for fixed Y} a descending
chain in m. By continuity of yu, this equals

Aoty Hp Y.
and by Kleene’s theorem -
| /\m./\n(H,’,‘l.true).
Because this is descending in both n and m, we get
A, Hn.true.

Thus the next innermost recursions are converted to normal form; by repeating the
process, the whole program can be converted to normal form

A\, Sn-

Another way of describing the same conversion is that S, is the result of replacing
every recursion (uX :: F.X) in the program by the n'h element of its approximating

3.5, COMPUTABILITY) 35

series, i.e, F™*, true. :

There is no direct algebraic way of testing equality between limits of descending
chains. A partial solution to this problem is to relax the descending chain condition,
and represent a program as the conjunction of all finite normal forms which it implies.-
For all programs P,

P=A{X: X is a finite normal form and (P = X] : X}

This means that if P and @ are different programs, there ex1sts a finite normal form
that is implied by one of them and not the other.

" The proof of this fact is not trivial, and relies on the continuity of all the operators
in the programming language. It also suggests another normal form for programs
as intersections of arbitrary sets of finite forms. Each operator F of the language is
applied pointwise to the finite forms in their operands

FS={P: PeS§: F.P}.

Recursion is explained as the greatest fixed point in the inclusion ordering for sets -
of finite forms. The original semantics of the language should be recoverable by
applying the A operator to all the sets.

But this construction will not work for arbitrary sets of finite forms: they have to
satisfy certain additional closure properties. These are properties shared by any set .
generated from a program P by taking all its finite approximations:

S={p:[P=p]:p}
l.IfpeSand p=> qgthenge S.
2. If T C S and AT is expressible in finite form then AT € 5.

The calculus of programs should be extensible to intersections of arbitrary sets which
are closed in this sense.

The finite normal forms play a role similar to that of rational numbers among the
reals. Firstly, there is only a countable number of them. A second similarity is that
every real is the limit of a descending chain of rationals. Finally, the rationals are
dense, in the sense that any two distinct real numbers can be shown to be so by a
rational number which separates them. The application of these insights to computer
programs is the contrlbution of Scott’s theory of continuous domams

3.5 Computability

The algebraic laws given in 3.1, 3.2 and 3.3 permit every finite program (one that
does not use recursion) to be reduced to finite normal form. The reduction rules
are nothing but simple algebraic translormations, of the kind that can be readily
mechanised on a computer, and therefore even on a Turing machine. The infinite
normal form (A; Si) of section 3.4 can never be computed in its entirety; however, for

36 CHAPTER 3. THE ALGEBRA OF PROGRAMS.

each n, the finite normal form S, can be readily computed; for example by replacing
each internal recursion (X 1 F.X) by (F™. true). .

This suggests a highly impractical method of executing a program, starting in a
known initial state s, in which Boolean conditions can be evaluated to true or false.
The machine calculates the series §,, of finite normal forms from the program. Each
of these is a disjunction (b, V P,). If (s; b,) evaluates to true, the machine continues to
calculate the next S,y1. If all the (s bn) are true, this machine never terminates; but
that is the right answer, because in this case the orlgma.i program, when started in
the glven initial state s, contains an infinite recursion or loop But as soon as a false
(s; bn) is encountered, the corresponding P, is executed, by selectmg and executing
an arbitrary one of 1ts constituent assignments. We want to prove that the resulting
state will be related to the initial state by the predicate (/\ Si). Unfortunately, this
will not be so if the selected assrgnment is not represented in S, for some m greater
than n.

The validity of this method of execution depends on an additional property of the
normal form, that once n is high enough for b, to be false, all the assignments P
remain the same as P,, for all.m greater than n. This can be formahsed

[(bn V Pn) = (bn V Pogt)), for all n, k.

Let us therefore define a new ordering relation < between normal forms, one that is
stronger than the familiar implication ordering. For finite normal forms, this requires
that if the condition of the weaker program is false, its effect is exactly the same as
that of the stronger program

(bvP)<(ev@Q) iff b= ¢ and [~e= (P =Q)].

This is clearly a preorder, with weakest element (true V true). What is more, it is
respected by all the combinators of the programming language. If F.X is a program,
it follows that {i :: . true} is a descending chain in this new ordering. This shows
that all innermost recursions enjoy the property that we are trying to prove.
Furthetrmore, because of monotonicity, any program combmator H preserves this

property |
H(/\,-S;) = /\i(H-Si)- Co

For nested recursions, the proof uses the same construction as given at the end of
the previous section. All the chains involved are descending in the new ordering as
well.

3.6 Completeness
A reduction to normal form gives a method of testing the truth of any proposed

implication between any pair of programs: reduce both of them to normal form, and
test whether the inequation satisfies the simpler conditions laid down for implica-

3.6. COMPLETENESS - 37

tion of normal forms. If so, it holds also between the original programs. This is
because the reduction laws only substitute equals for equals and each of the tests for :
implication between normal forms has been proved as a theorem.

For the algebra of programs, the converse conclusion can also be drawn: if the
test for implication fails for the normal forms, then the implication does not hold
between the original programs. The reason is that the tests give both necessary and
sufficient conditions for the validity of implication between normal forms. For this
reason, the algebraic laws are said to be complete. Of course, since the normal form
is infinite, there cannot be any general decision procedure.

Completeness is a significant achievement for a theory of programming. Each of
the laws requires a non-trivial proof, involving full expans:on of the definitions of all
the operators in the formulae, followed by reasoning in the rather weak framework
of the predicate calculus. But after a complete set of laws have been proved in this
more laborious way, proof of any additional laws can be achieved by purely algebraic
reasoning; it will never be necessary again to expand the definitions.

For example, we have to prove the right zero law

P true = true.
Since P is a program, it can be reduced to normal form A S.
AS;true = A.bV P);true
Al V (V;(v = ¢;); true))
Ai bV (V;(vi= e;; true))
= /\'- b,‘ vV (VJ tl‘HE)

= true,

Apart from the practical advantages, completeness of the laws has an important
theoretical consequence in characterising the nature of the programming language.
For each semantically distinct program there is a normal form with the same meaning,
and this can be calculated by application of the laws. It is therefore possible to regard
the normal form itself as a definition of the meaning of the program, and to regard
the algebraic laws as a definition of the meaning of the programming language, quite
independent of the interpretation of programs as predicates describing observations.
This is the philosophy of “initial algebra” semantics for abstract data types.

There are many advantages in this purely algebraic approach. Firstly, algebraic
reasoning is much easier in practical use than the predicate calculus. It is often
quite easy to decide what laws (like the zcro laws) are needed or wanted for a pro-
gramming language; and then it is much easier just to postulate them than to prove
them. And there is no need to indulge in curious coding tricks, like the introduction
of ok and ok’. Finally, most algebraic laws are valid for many different programming
languages, just as most of conventional schoolroom algebra holds for many different
number systems. Even the differences between the systems are most clearly described

38 CHAPTER 3. THE ALGEBRA OF PROGRAMS.

and understood by examining the relatively simple differences in their algebraic pre-
sentations, rather than the widely differing definitions which they are given in the
foundatlons of mathematics.

The real and substantial benefits of a.Igebra, are ach1eved by completely abstract-
ing from the observational meaning of the variables and operators occurring in the
formulae. Full advantage should be taken of the benefits of this abstraction, and for
as long as possnble But if the algebra is ever going to be applied, either in engineer-
ing or in science (or even in mathematics itself), the question arises whether the laws
are actually true in the apphcatlon domain,

To answer this question, it is necessary to give an mdependent meaning to the
variables and operators of the algebra, and then to prove the laws as theorems. It is a
matter of personal choice whether the investigation of algebra precedes the search for
possible meanings, or the other way round (as in this monograph). The experienced
mathematician probably explores both approaches at the same time. When the task
is complete, the practising engineer or programmer has a secure intellectual platform
for understanding complex phenomena and a full set of calculation methods for the
reliable design of useful products. And that is the ultimate, if not the only, goal of
the investigations.

Chapter 4

Operational Semantics |

The previous chapters have explored mathematical methods of reasoning about spec-
ifications and prograrms and the relationships between them. But the most important
feature of a program is that it can be automatically executed by a computing ma-
chine, and that the result of the computation will satisfy the specification. It is the
purpose of an operational semantics to define the relation between a program and
its possible executions by machine. For this we need a concept of execution and a
design of machine which are sufficiently realistic to provide guidance for real imple-
mentations, but sufficiently abstract for application to the hardware of a variety of
real computers. As before, we will try to derive this new kind of semantics in such a
way as to guarantee its correctness.

In the most abstract view, a computation consists of a sequence of individual
steps. Each step takes the machine from one state m to a closely similar one m/;
the transition is often denoted m — m’. Fach step is drawn from a very limited
repertoire, within the capabilities of a simple machine. A definition of the set of all
possible single steps simultaneously defines the machine and all possible execution
sequences that it can give rise to in the execution of a program.

The step can be defined as a relation between the machine state before the step
and the machine state after. In the case of a stored program computer, the state
can be analysed as a pair (s, P), where s is the data part (ascribing actual values to
the variables ,y,...,2), and P is a representation of the rest of the program that
remains to be executed. When this.is E, there is no more program to be executed;
the state (¢,1) is the last state of any execution sequence that contains it, and ¢
defines the final values of the variables.

It is extremely convenient to represent the data part of the state by a total as-

signment
T,Y....52 = k,0,...,m

where k,{,...,m are constant values which the state ascribes to z,y,. ..,z respec-
tively. If s is an initial data state interpreted as an assignment, and if P is any
program interpreted as a predicate, (s;) is a predicate like P, except that all oc-
currences of undashed program variables have been replaced by their initial values

39

40 CHAPTER 4. QPERATIONAL SEMANTICS

'(k, l,...,m). If this is the identically true predicate, execution of P started in s may
fail to terminate, Otherwise it is a description of all the possible final data values v’
of any execution of P started in s. If { is any other data state,

(% 1) = (85 P)]

means that the final state (¢,1I) is one of the possible results of starting execution of
P in state s. Furthermore,

[t Q = 5 P

means that every result (including non-termination) of executing @ starting from
data state ¢ is a permitted result of executing P from state s. If this implication
holds whenever the machine makes a step from (s, P) to (t,Q), the step will be cor-
rect in the sense that it does not increase the set of final states that result from the
execution; and if ever a final state (¢, 1) is reached by a series of such steps, that will
be correct too. - - '

In order to derive an operational semantics, let us start by regarding the machine

step relation — as just another (backwards) way of writing implication:
(8, P) = (t,Q) instead of [(£;Q) = (s; P)}.

The following théorerﬁs are now trivial. -. |

1. (s,v:= .e)' - ((vi= (s;e)),).

The effect of a total assignment v := e is to end in a final state, in which the variables
of the program have constant values (s;e), i.e., the result of evaluating the list of
expressions e with all variables in it replaced by their initial values. Here, we return
to the simplifying assumption that expressions are everywhere defined.

2 (5Q) — (@) |
Al in front of a program () is immediately discarded.
3. (s,(P; R)) — (4L,(@Q;R)), whenever (s, P) = (¢,@Q)
The first step of the program (P; R} is the same as the ﬁrs£ step of P, with R saved
up for execution (by the preceding law) when P has terminated.
4. (s, PVQ) - (s,P)

(PVQ) — (s0Q)

The first step of the program (P V @) is to discard either one of the components P
or (). The criterion for making the choice is completely undetermined.

41

5. (s, P14b Q) — (s, P) whenever s; b
(s, P4 b Q) — (s,Q) whenever s; —b

The first step of the program (P < b > @) is similarly to select one of P or @, but
the choice is made in accordance with the truth or falsity of (s;), i.e., the result of
evaluating b with all free variables replaced by their initial values. '

6. (s,uX=FX) — (&F(uX FX)

Recursion is implemented by the copy rule, whereby each recursive call within the
procedure body is replaced by the whole recursive procedure.

7. (s,true) - (s,true).
The worst program true engages in an infinite repetition of vacuous steps.

The formulae 1-7 have been presented above as theorems, easily provable from the
algebraic laws of the programming language. But it is even easier to present these
laws as a definition of the way in which the programs are to be executed. In this
definition, the components s and P of each state are represented concretely by their
texts. The states are identified as pairs (s, P}, where s is a fext describing the data
state, and P is a program {ezt, defining the program state.” We use typewriter font
to distinguish text from meaning: P is the text of a program whose meaning is the
predicate P. The symbol — is a relation between the texts; it is actually defined
inductively by the list of laws given above: it is the smallest relation satisfying just
those laws. ' o

A purely operational presentation of a programming language has many advan-
tages. Firstly, it is surprisingly short and simple; furthermore it closely reflects
the programmer’s understanding (sometimes called “intuition”) of how programs are
actually executed. This is especially important in the diagnosis of unexpected be-
haviour of a program, carelessly written perhaps by someone else. Finally, the clear
correspondence to an executing mechanism gives an immediate guarantee against the
danger of incomputability, without the long proof of section 3.5. Many researchers
into the theory of programming regard an operational semantics as the standard or
even the only way of starting research in the subject.

The disadvantages of an operational presentation arise from its extremely low level
of abstraction. Mathematical reasoning based on this presentation has to appeal
constantly to the completeness clause, i.e., to the absence of any transitions other
than those postulated. Small additions or changes in the laws can have unexpectedly
gross (or even rather subtle) effects on the theory. What is worse, the assumption
that the whole program text is observable means that there can be no non-trivial
algebraic equations, between programs. Finally, since operational reasoning starts
with the text of the program, it is absolutely useless for direct reasoning about
specification and design before the program is written. In the later sections of this
chapter, we will investigate methods of raising the level of abstraction of operational

42 CHAPTER 4. OPERATIONAL SEMANTICS

semantics to that of the algebraic or even denotational semantics.

4,1 Total correctness

In the previous section, we used the implication relation = to justify the seven
clauses of the operational semantics of the language. The intention was to guarantee
the consistency of the operational semantics, in the sense that every final state of
an execution satisfies the predicate associated with the program. This is certainly a
necessary -condition for correctness. But it is not a sufficient condition. There are
two kinds of error that it does not guard against:

(i) There may be too few transitions (or even none at alll). An omitted transition
would introduce a new and unintended class of terminal state. A more subtle
error would be omission of the second of the two laws (4) for (P V @), thereby
eliminating non-determinism from the language.

(ii) There may bgé too many transitions. For example, the transition

(5:Q) = (5,Q)

is entirely consistent with the approach of the previous section, since it just
expresses reflexivity of implication. But its inclusion in the operational definition -
of the language would mean that every execution of every program could result
in an infinite iteration of this dumb step.

To guard against these dangers, we need to obtain a clear idea of what it means
for an operational semantics to be correct. The purpose of an operational seman-
tics is to define the “machine code” of an abstract machine. One of the best and
most common ways of defining a machine code is to write an interpreter for it in a
high level programming language, whose meaning is already known; and a language
immediately available for this purpose is the one whose observational meaning has
been given in Chapter 2. The criterion of total correctness of the interpreter is that
its application to a textual representation of the program P gives rise to exactly the
same observations as are described by P, when given its meaning as a predicate.

The alphabet of global variables of our interpreter will be '

s to hold the data state (as text)
p to hold the program state (as text).

They will be updated on each step of the interpreter by the assignmenf

s,pi= nezt {s,p).

The definition of the nezt function operating on texts is taken directly from the
individual clauses of the operational semantics; for example:

next (s,1;Q) = (3,Q), for all s.

4.1,

TOTAL CORRECTNESS | 43

For non-determinism we need two assignments

s,p:= nextl{s,p)Vs,p:i= ‘nezt2 (s, p) ... STEP

where neztl(s,PV Q) = (s,P) and nezt2(s,PV Q) = (s,Q).

In all other cases neztl (s,P) = next2(s,P) = neat (s,P).

The inner loop of the interpreter repeats this step until the program terminates

(p;é‘ﬂ)* st .. LoOP.

The mterpreter defined as LO OP is a predicate descrlbmg the rela.tlonshlp between

the initial and final values of the program variables s and p. It leaves unchanged
the values of the program variables ,y,...,z The predicate P, corresponding to
the initial value of p, describes the way that the abstract varxa.bles LyYyeoeyZ aTE
updated. The interpreter is correct if the updates correspond with each other in
some appropriate sense. The relevant sense is described exactly by the final value of
the variable s, produced by the interpreter. This should describe one of the particular
final values permitted by the predicate P.

So there are two ways of describing the execution of a program P.

(i) First initialise the values of s and p to S and P. Then execute the interpreter

LOOP. This updates s and p, but not the program variables z,y,...,2 If and
when the loop terminates, execute the final value of s, which will assign the
desired final values to the program variables. The program variables s and p
are local to the interpreter, and we are no longer interested in their final values.
Sc they may as well be reinitialised. In summary, the effect of thls method of
execution is described by the predicate SRS

$,p =8, P; LOOP; $38,p :=S,4P

where the programming notations have the meaning described in chapter 2.

(ii) First execute the initial value S, thereby assigning to the program variables the

same values as they have in the interpreted execution (i). Then exécute the
program P, which updates the program variables, hopefully to the same final
state as that produced by the interpreter The variables s and p can then be
updated to their same final state as in (i). This execution method is descr;bed'
by the predicate ' ‘ '

S P;s,pi=s,P.

It may be worth a reminder that S and P are constant program texts, S and
P give their meaning as predicates, whereas s and p are local variables of the
interpreter, and their values are changed by the LOOP,

44 _ CHAPTER 4. OPERATIONAL SEMANTICS

The hope that the two execution methods are the same can be justified by proof
of the equation between the two predicates displayed under (i) and (ii). If this can be
proved entirely from the algebraic laws, it establishes the desired correspondence be-
tween the operational and the algebraic semantics. If the theorem is weakened to an
implication, the operational semantics is still correct, but may be more deterministic
than the denotational.

Note that both the statement of the theorem and its proof depend utterly on ac-
ceptance of the priority of the denotational or algebraic definition as a specification of
the language. Indeed, unless there is such an independent spec1ﬁcat10n, the question
of correctness of an operatlonal semantics cannot arise.

In the absence of an independent meaning for the programming language, the
operational semantics may be the only one acceptable or available as a foundation
for a theory of programming. In that case, other methods are needed for escaping
from its deplorably low level of abstraction. Such methods are discussed in the
remaining sections of this chapter. They will be of only secondary interest to readers
who recognise that the essential task of proving equivalence of denotational, algebraic
and operatlonal semantics has already been completed.

4.2 Bisimulation

As mentioned above, the operational semantics uses the actual text of programs
to control the progress of the computation; in principle, two programs are equal
only if they are written in exactly the same way, so there cannot be any non-trivial
algebraic equations. Instead, we have to define and use some reasonable equivalence
relation (conventionally denoted ~) between program texts. In fact, it is customary
to define this relation between complete machine states, including the data part.
Two programs P and Q will then be regarded as equivalent if they are equivalent
whenever they are paired with the same data state:

P~Q =y V=s E :(s,‘ I?)N(s, Q). .

Now the basic question is: what is meant by a “reasonable” equivalence between
states? The weakest equivalence is the universal relation, and the strongest is textual
equality; clearly we need something between these two extremes. There are a great
many possible answers to these questions; but we shall concentrate on two of the
first and most influential of them, which are due to Milner and Park [16]

To exclude the universal relation, it is sufficient to impose an obligation on a
proposed equivalence relation ~ that it should preserve the distinctness of a certain
minimum of “obviously” distinguishable states. IFor example, the terminal states of
each computation are intended to be recognisable as such, and their data parts are
intended to be directly observable. We define the terminal states:

(S, P) 7L’ =df ‘"'3(1:: Q) " (S}P) - (t’ Q)’

4.2, BISIMULATION 45

and require that
(i) if (s,P) ~ (t,Q) and (t,Q) 7, then s = t and (s,P) A.

The second condition on a reasonable equivalence relation between states is that it
should respect the transition rules of the operational semantics; or more formally

(it) If (s, P)~(t, Q) and (t, Q) — (v, S) then there is a state (u, R) such that
(s P) — (u, R) and (u, R) ~ (v, 8).
(iii) Since ~ is an equivalence relation, the same must hold for the convefse of ~.
The conditionk (i) may be expanded to a weak commuting diagram:
@) ~ (1,9)
T 2 1
(s,P) ~ (%,Q)
Or it may be contracted to a simple inequation in the calculus of relations:
(=) € (=)

A relation ~ which satisfies these three reasonable conditions is called a strong bisim-
ulation. Two states are defined to be strongly bisimilar if there exists any strong
bisimulation between them. So bisimilarity is a relation defined as the union of
all bisimulations. Fortunately, distribution of relational composition through such
unions means that bisimilarity is itself a bisimulation, in fact the weakest relation
satisfying the three reasonable conditions listed above.

An additional most important property of an equivalence relation is that it should
be respected by all of the operators of the programming language, for example:

1P ~ P and Q ~ Q' then (P;Q) ~ (P'; Q).

An equivalence relation with this property is called a congruence. 1t justifies the prin- -
ciple of substitution which underlies all algebraic calculation and reasoning: without
i, the algebraic laws would be quite useless. Fortunately, the bisimilarity relation
ha,ppens to be a congruence for all the operators mentioned in our operational se-
mantics; this claim needs to be checked by mathematical proof.

As an example of the use of bisimulation, we will prove the commutative law for
disjunction. The trick is to define a relation ~ which makes the law true, and then
prove that it has the properties of a bisimulation. So let us define a reflexive relation
~ that relates every state of the form (s, PVQ) with itself and with the state (s,qVvP),
and relates every other state only to itself. This is clearly an equivalence relation.
It vacuously satisfies bisimilarity condition (i). Further if (s,P V Q) — (t,X) then
inspection of the two transitions for V reveals that t = s and X is either P or Q. In

46 CHAPTER 4. OPERATIONAL SEMANTICS

either case, inspection of the laws shows that (s, Q V P) — (s,X). The mere existence
of this bisimulation proves the bisimilarity of (P Vv Q) with (Q V P).

But there is no bisimulation that would enable one to prove the idempotence laws
for disjunction. For example, let ~ be a relation such that

(s,1) ~ (s,11v I).

Clearly (s, IV I} — (s,1). However, the operational semantics deliberately excludes
any (t,X) such that (s,I) — (t,X); condition (ii) for bisimulation is therefore vio-
lated. In fact, this condition is so strong that it requires any two bisimilar programs
to terminate in exactly the same number of steps. Since one of the main motives for
exploring equivalence of programs is to replace a program by one that can be executed
in fewer steps, strong bisimilarity is far too strong a relation for this purpose.

Milner’s solution to this problem is to define a weak form of bisimilarity (which
we denote &) for which the three conditions are weakened to

(1) i (5,P) = (£,9) and (£,0)
then there is a state (t,R) such that (s,P) At (t,R) and (t,R) /.

(i) (vi-) € (5,

(iii) & is symmetric

* o, . e . o s
where — is the reflexive transitive closure of —. (This is very similar to the

confluence condition, used in the proof of the Church-Rosser property of a set of

algebraic transformations). Weak bisimilarity is defined from weak bisimulation in
the same way as for strong bisimilarity; and a similar check has to be made for the
congruence propel‘ty. .

Now we can prove idempotence of disjunction. Let =2 relate every (=,P) just to
itself and to (s, PVP) and vice versa. In the operational semantics (s,PVP) is related
by — only to {s,P); fortunately (s,P) 5N (s,P) since A reflexive. Conversely,
whenever (s,P) — (s’,P’) then (s,P V P) — (s,P) — (s’,P'), so equality is restored
after two steps. This therefore is the weak bisimulation that shows the bisimilarity

(PVP)=P.

Unfortunately, we still cannot prove the associative law for disjunction. The
three simple states (s,x 1= 1),(s,x := 2) and (s,x := 3) end in three distinct
final states; and by conditijon (i), none of them is bisimilar to any other. The state
(s,(x =1V x:=2)) and (s,(x 1= 2V x = 3)) are also distinct, because each
of them has a transition o a state (i.c., (s,x := 1) and (s,x := 3) respectively)
which cannot be reached in any number of steps by the other. For the same reason
(s,(x:=1Vx:=2)Vx := 3) is necessarily distinct from (s,x := 1V (x 1= 2Vx := 3)).
The associative law [or disjunction is thereby violated.

4.2. BISIMULATION 47

In fact, there is a perfectly reasonable sense in which it is possible to observe the
opera.tlonal distinctness between the two sides of an associative equatlon

(PVQ)VR-—PV(QVR)

Just take {wo copies of the result of executing the first step. In the case of the left
hand side, this will give either of the two pairs.

(R R) and ((P v Q) (PVQ)).

“Now each copy is run 1ndependently There are now ﬁve p0351b1ht1e3 for the subse-
~quent beha.woms of the pair: :

(,R), (P, P), (P,Q), (Q,P) and (Q, Q).

But if the same procedure is applied to the rlght hand side of the assocw.twe equa-
tion, the five possibilities are

(P,P),(Q,4),(,RB), (R,Q), and (R,R).

The third and fourth possibilities in each case are sufficient to distinguish the two
different bracketings. If copying the state is allowed after any step of the operational
semantics, it is possible to make a pair of observations of the two copied programs
that may tell which way the original program was bracketed. Such an observa.tlon
would invalidate the associative law.

So even weak bisimilarity is not weak enough to give one of the laws that we quite
reasonably require. Unfortunately, it is also too weak for our purposes: it gives rise
to algebraic laws that we definitely do not want. For example, consider the program

X (TVX).

This could lead to an infinite computation (if the second disjunct X is always se-
lected); or it could terminate (if the first disjunct I is ever selected, even only once).
Weak bisimilarity ignores the non-terminating case, and equates the program to IL
However, in our theory it is equated to true, the weakest fixed point of the equation

X =(IVX).

Our weaker interpretation true permits a wider range of implementations: for ex-
ample, the “wrong” choice may be infinitely often selected at run time; indeed, the
“right” choice can even be eliminated at compile time! For a theory based on bisimi-
larity, neither of these implementations is allowed. A non-deterministic construction
(PV Q) is expected to be implemented fairly: in any infinite sequence of choices, each
alternative must be chosen infinitely often. Weak bisinilarity is a very neat way of
imposing this obligation, which at one time was thought essential to the successful
use of non-determinism.

Unfortunately, the requirement of fairness violates the basic principle of mono-

48 CHAPTER 4. OPERATIONAL SEMANTICS

tonicity, on which so much of engineering design depends. The program (X V I)
is necessarily less deterministic than X, so (X :: X V II) should (by monotonicity)
be less deterministic than (uX :: X), which is the least deterministic program of all.
However, weak bisimulation identifies it with the completely deterministic program
L. It would therefore be unwise to base a calculus of design on weak bisimulation.

But that was never the intention; bisimulation was originally designed by Milner
as the strongest equivalence that can reasonably be postulated between programs, .
and one that could be efliciently tested by computer, without any consideration of
any possible meaning of the texts being manipulated. It was used primarily to explore
the algebra of communication and concurrency. It was not designed for application
to a non-deterministic sequential programming language; and the problems discussed
in this section suggest it would be a mistake to do so.

A great many alternative definitions of program equivalence based on opera.tlonal
semantics have been explored by subsequent research. One of them is described in
the next section. In the final section of this chapter there is yet another solution: to
derive an observational semantics from the operational. The algebraic laws can then
be proved from the observations, as described in Chapter 3.

4.3 From operations to algebra

In this section we. will define a concept of simulation which succeeds in reconstruct-
ing the algebralc semantics of our chosen language on the basis of its operational

semantics. First we define —» as the reflexive transitive closure of -
-~ (s,P) 2° (£,0Q) iff s:téndP—Q
(s,P) =™ (u,R) iff 3t,Q:: (s,P) — (£,Q) and (t,0) " (4,R)
(s,P) =" (£,Q) il 3n::(s,P) " (%,0).

Secondly, we define the concept of dinergence, being a state that can lead to an
infinite e\ecutlon

(S P) 1 =y Vn Jt,Q:: (s,P) = (t,Q)

Thirdly, we deﬁne an ordering relation C between states. One state is better in this
ordering than another if any result given by the better state is also possibly given
by the worse; and furthermore, a state that can fail to terminate is worse than any
other:

(s,P)E(5,Q) =y (s,P)T or (Yuz(t,0) > (wI)= (s,P) > (u,I)).
One program is better than another if it is better in all data states
PCQ iff Vs:u(sP)LC(s0Q).

The relation is often called refinement or simulation of the worse program by the
better.

4.4, FROM OPERATIONS TO OBSERVATIONS 49

It is easy to see that the syntactica,lly defined & relation is transitive and reflexive,
i.e., a preorder. As a result the relation

P~ Q =y PCLQand QCP

is an equivalence. Since it is also a congruence, it can be used in exactly the same
way as proposed for the bisimilarity relation in the previous section: one can thereby
derive a full collection of algebraic laws for the programming language from its op-
erational semantics. For example, associativity of V follows from the two lemmas

(5, PVQVER) 5 (LI (5,7) 5 (51 or (5,Q) 5 (1) or (5,B) 5 (1)
(s, PV(QVR}) iff (s P)T or (s, DT or (s,AT.

The same holds for the other b1a,cketmg as well.

But this is rather a laborious way of proving the rather large collection of laws.
Each of these laws of Chapter 3 is a theorem of the form [P = @]. They can all be
automatically lifted to simulation laws by the single theorem:;

P~g i [P=Q)

In fact, the above theorem can be strengthened to an equivalence, so that the laws
proved by simulation are exactly those of the algebraic semantics. The algebraic
semantics is isomorphic to the operatlona.l when abstracted by this particular notion
of simulation.

4.4 TFrom operations to observations

An operational semantics is in essence an inductive definition of all possible sequences
of states that can arise from any execution of any program expressed in the notations
of the language. This can be turned directly into an isomorphic observational seman-
tics by just assuming that the whole execution sequence generated by each program
can be observed. We will use the free variable e to stand for such an execution
sequence. Of course, the level of abstraction is exactly the same as that of the opera-
tional semantics. To hide the excessive degree of detail, we need to define a predicate
which relates each execution sequence onto an observa,tron just of its initial and fi-
nal states. Using this relation as a coordinate transformation, the definitions of the
observational semantics given in Chapter 2 can be proved as theorems. The proofs
are wholly based on the definition of the operational semantics, thereby completing
the cyclic proof of mutual consistency of all three theories of programming,.

An execution is formally defined as an empty, finite or infinite sequence of states
in which every adjacent pair of states is related by the operational transition —

E={e|Vi:0<i<{ie:e1— e},

where § gives the length of a finite scquence, or co for an infinite one. The execution

50 CHAFPTER 4. OPERATIONAL SEMANTICS

sequences generated by an initial state (s,P) are those that begin with this state
E(s,P)={elee E & (e =<>Vey = (s,P))}

The observations of a program P are those in which P is the initial state of the stored
program

E(P) = Us E(s,P).

The function F defines an observational semantics of each program text P. The
definition can be rewritten into an equivalent recursive form

E(s,P) = (s P)* {e]HtQ (s,P) — (t,0) & e € B(t,Q)},

where 2" X =4 {<>} U {<2 > e]|e € X}. As in Chapter 2, the recursion here is
understood to define the weakest (i.e. 1&1 gest) ﬁxed point, whmh will include all the -
infinite sequences as well.

But the definition lacks the important denotational ploperty, requiring that the
semantics of each combinator is defined in terms of the semantics of its components.
Fortunately, the problem is solved by proof of the following theorems, which closely
{ollow the structure of the operational semantics

E(s,T) = {<(s,)>,<>}
E(s,v=f) = (s,v:i=£)M<>,(vi= (s, D)}
E(s,PVQ) = E(s,P)U E(s,Q)

E(s,P<4 b Q) (s,P<t b >Q"E(s,P) ifsb
(s,Pd b Q" E(s,Q) if-sb
E(s,PQ) . . = add@Q(L(s,P))

U ddQ(E(s,P)) & fE E
&{5{ | : Sndaé mQ((t I([Q))zlnd thgeglg‘lQS)WIth (t,Q)}

where add@(e); = (s, P; Q) whenever ¢; = (s,P),
E(s, pX : F.X) = (s, pX 2 FX)ME(s, F.(uX = F.X)).

ll

If desired, these equations could be preéent_ed as the definition of the operational
sermantics of the language. Although they do not mention the step relation —, they
define exactly the same execution sequences. In fact, the step relation may be de-
fined afterwards as that which holds between the first and second members of any
execution sequence

(s,P) — (t,Q) iff Je:e€ E(s,P) & e; = (¢,Q).

The proof of this thcorem establishes an isomorphism between the traditional pre-
sentation of the operational semantics, given at the beginning of this chapter, and
its denotational presentation, given by the above definition of E.

4.4, FROM OPERATIONS TO OBSERVATIONS 51

Our original presentation of a denotational semantics in Chapter 2 mapped each
program text onto a predicate describing its observations. The definition of £ maps
each program text onto a set of observations, i.e., its execution sequences. Such a
set can easily be timed into a predicate e € [(P), which uses the free variable ¢
to stand for an observed value of the execution sequence generated by P. Similarly,
any predicate P, with free variables ranging over known sets, can be turned into a
set of observations by simple comprehension, for example {e | P}. The distinction
between these two presentations as sets and as predicates is entirely ignorable. So the
equations shown above could equally well be regarded as an observational semantics -
of the programming language, in exactly the style of Chapter 2. In future, let us use
the italic P(e) to stand for the predicate e € E(P). _

But of course, the level of abstraction of this new observational semantics is iden-
tical to that of the operational semantics. To raise the level, we use a standard
technique of data refinement, This requires us to specify which of the more concrete
observations we are interested in, and which parts of them we want to observe. These

decisions can be expressed as a predlcate containing both sets of free variables, ones

standing for the concrete observations, as well as ones standing for the abstract.

Our original abstract observations were selected on the assumptlon that we want
to observe only a very small part of the information contained in each execution,
namely the initial and final data states. Furthermore, we choose never to observe a
finite non-empty execution that has not yet terminated. So we are interested only in
minimal or maximal executions — those which cannot be reduced or extended

e=<>Veendsin I ¥V e is infinite.

The distinction between empty, terminated and infinite execution sequences is cap-
tured in the Boolean variables ok and o&':

k= (e #<>)and ok = (ok' = (e ends in II)).
For non-empty sequences, we can observe the initial data state v
ok = 3Is,Pue=(s,P) & init(s)

where init is a function that maps the text v:= k to the predicate v = k Slmlla.rly,
for termmatmg executions, we can observe the final states

ok’ = Is i eends in (s,I) & final(s)

where final is a function that maps the text v := k to the predicate v' = k.

Let ABS be the conjunction of the predicates displayed above. It has free variables
ok, of',v,v" and e. It describes all the ways in which an execution e can give rise to
particular values of the other more abstract variables. So the abstract observations
obtainable from any possible execution of P are desciibed by the predicate

abs(P(e)) =4 3e: ABS A P(e).

52 CHAPTER 4. OPERATIONAL SEMANTICS

The function abs maps predicates describing execution sequences (denoted by the
free variable e) to predicates describing observations of the initial and final states of
a subset of those sequences {denoted by the free variables ok, ok, v,v"). This latter
class of predicates is exactly the one used to give the original denotational semantics
of the programming language in Chapter 2. We wish to claim that the semantics
defined above by the functions abs is the same as that of Chapter 2. The claim is
substantiated by showing that abs is.an isomorphism between the relevant subsets
of the two classes of predicate, namely those predicates that can be expressed as
programs. ' : P ' '

The predicate ABS is often called a hnl\mg mvarla.nt because it relates observa- _
tions of the same system at two levels of abstraction. It is used to define the function
abs, which translates a low level predicate, whose free variables denote details of
an 1mplementa,t10n to a predicate descubmg the same system at a higher level of
abstraction. . The pledlca,te abs(P) is the strongest specification expressible at this
higher level which is met by any concrete implementation described by P. But in
a top-down demgn we would prefer to translate in the opposite direction; given a
specification S with free variables v,v’, ok, ok, what is the weakest descrlptlon of the
low-level observations that will satlsfy the spemﬁcat]on? The answer is glven by the
deﬁmtlon '

bs~1(S) = (Vv,v', ok, 0k’ : ABS = §). .
The transformations in each direction are linked by the Galois connection
[abs(P) = S] it [P = abs™}{(S)].
Irom this it follows that abs is monotonic with respect to implication, and
P= abs‘l(abstﬁ)) and abs(abs™1(S)) = S.
Even more important aré the equations |
abs(P) = abs(abs 1(abs(P))) and abs™(S) = abs~!(abs(abs™1(S))).

This means that abs o abs“1 is the identity function over the range of abs, and simi-
larly for abs™! 0 abs. In our case, this range includes a/l the predicates expressxble in
the programming language. So abs is a bijection between predicates with alphabet
{e} describing execution sequences and predicates with alphabet {v v', ok, ok'} de-
scribing initial and final states. In both cases the predicates both arise from program
texts.

Our last task is to show that abs is a homomorphism in the usual algebraic sense,
that it is respected by all the combinators of the programming language. The required
theorems look very like a denotational definition of the ebs function.

4.4, FROM OPERATIONS TO OBSERVATIONS &3

abs(true) = true

abs(ll) = —ok V (ok' Av' =)

abs(v:= f) = ok V (ok' AV = f)

abs(P V Q) = abs(P) V abs(Q)

abs(P <t b > Q) = (abs(P)A D)V (abs(@) A —b)
abs(P; Q) = abs(P); abs(Q)

abs(pX o FX)y=pY 2 Y
where F.Y = abs(F(abs™'Y)).

In the last clause, the functions abs and abs™! are needed to translate F' from a
function over predicates with e as their only free variable to a function F’ over
predicates with the more abstract alphabet.

The form of these definitions is exactly the same as those of the original observa-
tional semantics of the language in Section 2.2. Indeed, on omission of occurrences
of the function abs and abs™!, the two definitions are the same. More formally, the
theorems show that abs is an isomorphism between two different interpretations of
the notations of the same programming language: one as a description of execu-
tion sequences derived from the operational semantics, and one as a description of a
relationship between initial and final values of variables v, ok.

This completes the task of unifying observational, algebraic and operational theo-
ries of the same programming language. In each case the basic definitions or axioms
of ecach theory have been derived as theorems in its preceding theory, in a cyclic fash-
ion. It is therefore a matter of choice which theory is presented first. My preference
is to start with the most abstract, because this gives the most help in specification,
design and development of programs. Furthermore, derivation of algebraic laws is
quite straightforward, using standard mathematical proof methods. Finally, proof of
the properties of the operational semantics can take advantage of previously estab-
lished theorems. In gencral, a top-down approach seems easier than starting at a low
level of abstraction and working upwards, But the operational semantics has con-
siderable attraction, and is currently quite fashionable among theorists investigating
the foundations of Compuling Science.

Chapter 5

Conclusion

This monograph has recommended three distinct approaches to the construction of
theories relevant to computing — the operational, the algebraic, and the observa-
tional. They have each an important distinctive role, which can and should be studied
independently by specialists. But the full benefits of theory are obtained by a clear
and consistent combination of the benefits of all three approaches. The method of
consistent combination has been illustrated by application to a very simple program-
ming language for expression of sequential algorithms with possible non-determinism.
This is only a small part of the total task of clarifying the foundations of Computing
Science.,

We will need to build up a large collection of models and algebras, covering a wide
range of computational paradigms, appropriate for implementation either in hard-
ware or in software, either of the present day or of some possible future. But even this
is not enough. What is needed is a deep understanding of the relationships between
the different models and theories, and a sound judgment of the most appropriate
area of application of each of them. Of particular importance are the methods by
which one abstract theory may be embedded by translation or interpretation in an-
other theory at a lower level of abstraction. In traditional mathematics, the relations
between the various branches of the subject have been well understood for over a
century, and the division of the subject into its branches is based on the depth of this
understanding. When the mathematics of computation is equally well understood,
it is very unlikely that its branches will have the same labels that they have today.
Quoting from Andreski[17], “the contours of truth never coincide with the frontiers
between embattled parties and cliques”. So we must hope that the investigations by
various schools of programming theory will contribute to the understanding which
leads to their own demise.

The establishment of a proper structure of branches and sub-branches is essential
to the progress of science. Firstly, it is essential to the efficient education of a new
generation of scientists, who will push forward the frontiers in new directions with
new methods unimagined by those who taught them. Secondly, it enables individ-
ual scientists to select a narrow specialisation for intensive study in a manner which
assists the work of other scientists in related branches, rather than just competing

55

56 CHAPTER 5. CONCLUSION

with them. It is only the small but complementary and cumulative contributions
made by many thousands of scientists that has led to the achievements of the estab-
lished branches of modern science. But until the framework of complementarity is
well understood, it is impossible to avoid gaps and duplication, and achieve rational
collaboration in place of unscientific competition and strife.

Quoting again from Andreski

“...the reason why human understanding has been able
to advance in the past, and may do so in the future, is
that true insights are cumulative and retain their value
regardless of what happens to their discoverers; while
fads and stunts may bring an immediate profit to the
impresarios, but lead nowhere in the long run, cancel
each other out, and are dropped as soon as their pro-
moters are no longer there (or have lost the power) to
direct the show. Anyway let us not despair.”

Bibliography

[1] E. W. Dijkstra. A Discipline of Programminyg. Prentxce«Hall Serles in Automatlc
Computation. Prentice-Hall, 1976.

{2] Robin Milner. 4 Calculus of Communicating Systems. Sprmger, 1980 Lecture
Notes in Computer Science, Volume 92.

[3] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77-121, 1985.

[4] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31:560-599, 1984.

[5] Dana Scott and Christopher Strachey. Towards a mathematical semantics for
computer languages. In Proceedings, 21st Symposium on Computers and Au-
tomata, pages 19-46. Polytechnic Institute of Brooklyn, 1971. Also Technical
Monograph PRG 6, Oxford University, Programming Research Group.

[6] M.B. Smyth. Power domains. JCSS, 16:23-26, 1978.

[7] E.C.R. Hehner. Predicative programming Parts I and II. Communications of
the ACM, 27(2):134-151, Feb 1984.

(8] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73~
89, Sept 1941.

[9] Gordon D. Plotkin. A structural approach to Operational Semantics. DAIMI
FN-1. Computing Science Department, Aarhus, 1981.

[10] C.A.R. Hoare, 1.J. Hayes, Jifeng He, C.C. Morgan, A.W. Roscoe, J.W. Sanders,
L.H. Sorensen, J.M. Spivey, and B.A. Sufrin. The laws of programming. Com-
munications of the ACM, 30(8):672-687, Aug 1987; see Corrigenda in Commu-
nications of the ACM, 30(9):770.

{11] C.A.R. Hoare and P.E. Lauer. Consistent and complementary formal theories of
the semantics of programming languages. Acta Informatica, 3(2):135-153, 1974.

[12] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
of Math., 5:285-309, 1955.

57

58 BIBLIOGRAPHY

(18] C.C. Morgan. Programming from specifications. Prentice-Hall International
Series in Computer Science; London, 1990.

[14] Cliff B. Jones. Systematic Software Development Using VDM. Series in Com-
puter Science. Prentice-Hall International Series in Computer Science, 1986.

[15] Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical Report SRI-
CS1.-88, SRI International, Computer Science Lab, Aug 1988. Revised version
to appear with additional authors José Meseguer, Kokichi Futatsugi and Jean-
Pierre Jouannaud, in Applications of Algebraic Specification using OBJ, edited
by Joseph Goguen, Derek Coleman and Robin Gallimore, Cambridge.

[16] R. Milner. Communication and Concurrency. Prén{;ice-HaH _Interna,tiohal Series
in Computer Science, 1989.

(17] S. Andreski. Social Seience as Sorcery. Pelican Books.

