Mathematical Models for Computing Science

Lecture Notes for
Marktoberdorf Summer School
August 1994

C.A.R. Hoare

Mathematical equations and other predicates are used in the physical sci-
ences to formalise, describe, and predict the observable behaviour of some
isolatable fragment of the real world. Phenomena of interest in comput-
ing science can with advantage be formalised as mathematical predicates in
the same scientific way. As a result, concurrency can often be modelled by
conjunction [5], non-determinism by disjunction, locality by existential quan-
tification, and correctness by logical implication [7]. This thesis is illustrated
by application at a variety of levels of granularity, scale and abstraction: in
hardware, by switching, combinational and sequential circuitry (9, 6; and in
programming [4] by the procedural [2], parallel [1], and logical [8] paradigms.

The major achievement of modern science is to demonstrate the links
between phenomena at different levels of abstraction and generality, from
quarks, particles, atoms and molecules right through to stars, galaxies, and
(more conjecturally) the entire universe. On a less grand scale, the com-
puter scientist has to establish such links in every implementation of higher
level concepts in terms of lower [10, 11]. Such links are also formalised as
equations or more general predicates, describing the relationships between '
observations made at different levels of abstraction [3]. Their clarification
assists in understanding the structure of an entire scientific discipline.

Co '.'/l_/’f é - %j g

Ly £ Y e

L i

i J{ . -, Y .r‘. ¢] .
Ef 1 i I W
H-@-»/ Kho mev F L@: X ? 5

At bom i‘@ﬁ 0{ rErr

Las

=

i
Y
ki
H

Contents

1 Observations and Alphabets 6
1.1 Water tank control system -« . o .. oo e s 6
1.2 Transistor DEtWOrKS. . . - o ¢ v v v m oo m o s e e e e 7
1.3 Combinational logic ."« - e e e 8
1.4 Sequentialcircuits o v o v 3
1.5 Sequential DIOZTAMS . . o o v s o v oo n s oo s e e e 9
{1.6) Parallel programs . . .« v« oo s v s e 9
" Communicating DroCesSSes . . -« « c o v v s ot s s s s 10
1.8 Functional Programs . . .+« « « « o o v v o s o m e s 10
1.9 LOICPrOGramms . . oo oo v v vo s o s os s s oo e 11
110 Databases . . .« v o esa e a e 11
9 Behaviour and Predicates 11
91 Thewatertank- oo oo v v oo oo oo 13
99 Cmostransistors . . . o -« s s v s e o em e 13
9.3 Combinationallogic . - - v v v v v v o i n e 135
2.4 Sequential circuits+ -+ oo 16
,a\ Sequential PrOgrams . . « - o oo oo s oo s e e e 17
2.8 Parallel programs . . « -+ o st 18
274 Communicating PIOCESSES . « « v -+ = s« o s s v s o x v s 18
93 TFunctional programming« « o oo s oo s e .. 19
29 Declarative logic programming . . .« . oo oo oo 19
010 Databases . . . o« e v s s e s s s e 20
3 Concurrency and Conjunction 20
3.1 Transistornetworks. . . . o o v oo s oo e n e e e e 22
39 Combinational logic . . - « -+ o v v o v e s e 23
3.3 Sequential Circtits« o - o oo s ae e 25
34 Sequential DrOgramas . . .« v oo s oo m s ... 28
3.3 CoOmMmUNICACINg ProCeSSES . .« . o v v v o v s s n s e e e e 26

3.6 Functional programming . . - - « « -+ oo s s e o T -
3.7 Logic PLOGTAIMIING « + « « « « o s v v xm s ms o m e o s 28
3 3\ Sha.red store pa.ra.llelism 28

4’ Spec;ﬂcatmn and Correctness 29 -
41 Controlofiquidintank« ¢ v oo vt e a3
4.2 A SOLHDZ PIOGIAINL . - - « v+ o o o s oo s s s s m e n e 33
4.3 Greatest common divisoro e e e 34
44 TOCAl WITES .+ v v v v v v o m e s i e 34
45 BuffersimCSP . .. o v oo it e 33
4,5 Residual in combinational cirenitso . 36
4.7 Residual in sequential programs - .« o s e o e 38

(O]

5 Algebra and Normal Forms
5.1 LOGICDLOGIAMS . . . oo ovemmron v s ee e
5.2 Transistor networks. -« « o [
5.3.. Combinational logic . . . v oo s e s e
54 Sequential PrOgrams« - - ec st

6 Abstraction and Quantiﬁcai;ion
6.1 Transistor nets implement logic gates« oo v oo e e
6.2 Combinational logic implements natural oumbers
6.3 Sequential circuits implement combinational
6.4 From transistors to sequential circuits o ... - oo
6.5 Functions implement pelations . . - . o v v s e e e e e e e s
6.6 Sequential programs implement pacallel-

» Failures and Preconditions
7.1 Short circuit in a transistor network . . . @ i e e e e
7.2 Cyclesin combinational circuits . . -+ . o .0 s e e e e
73 Undefined expressions in assignmentso« v v
4 - Inconsistency in functional programs . . . « - - -« o e s om0t
7.5 Non-deterministic deadlock in communicating processes . . .

Introduction

A scientific'theory is a predicate, usually expressed in the notations of math-
ematics, which describes all possible observarions that can be made directly
or indirectly of any system from a given reproducible class. An example is
Finstein’s famous equation)

e = mc2

where e is the energy of the system
m is its mass
and ¢ is the speed of light.

Considerable familiarity with physics is needed to correlate the variables e
and m with the physical reality which they refer to.

The same physical system may be deseribed at many different levels of
abstraction and granularity, for example as a collection of interacting quarks,
or elementary particles, or atoms, or molecules, or crystal structures. Science
has discovered independent theories for reasoning at each of these levels of
abstraction. But even more impressive is the demonstration that each theory
is soundly based on the more detailed theory below it. This is the strongest
argument for the soundness not only for each separate theory, but also for
the entire intellectual structure of modern physics.

Mathematical theories expressed as predicates play an equally decisive
role in engineering. A significant engineering project begins with a specifica-
tion describing as directly as possible the observable properties and behaviour
of the desired product. The design documents, formulated at various stages
of the project, are indirect descriptions of the same behaviour. They are
expressed in some restricted notation, at a level of abstraction appropriate to
guide the physical implementation. This implementation is correct if its de~
tailed description logically implies its specification; for then any observaticn
of the product will be among those described and therefore permitted by the
specification. The success of the whole project depends not only on correct
reasoning at each level of design, but also on the scundness of the transition
between levels of abstraction. :

An engineering product is usually an assembly of components, which in
general operate concurrently. The operation of each component can be de-
scribed scientifically by a separate predicate. Their joint behaviour in the as-
sembly can often be described by the conjunction of these predicates. A non-
deterministic product is described by the disjunction of predicates describing
its alternative modes of behaviour. Finally, the links between predicates de-
scribing behaviour at different levels of granularity and abstraction can be
formalised by quantification. Propositional and predicate logic provide all
the basic concepts needed for a systematic engineering design methodology.

These leczures will illustrate the methodology by examples drawn from
many branches of computing science. The first is a simple control system, 2

water tank that must not be too empty or too full. This application must be
implemented partly with the aid of an electronic system built ultimately from
transistors. The behaviour of C-mos transistors is described at a fine level
of granularity by Boolean switching logic. At the gate level, combinational
logic provides simpler designs and.methods of reasoning about them. The
introduction of storage elements (latches) requires a shift to a more complex
sequential circuit theory. Formalisation of links between these theories is
needed to show how components assembled at a coarser level of granularity
can be implemented as sub-assemblies at the finer level. Such transitions
between levels of abstraction are as important to reliable engineering as they
are to the progress of science.

Software also provides a wide range of programming paradigms and their
corresponding theories. For conventional sequential programs, I take the lan-
guage and theory of E.W. Dijkstra’s Discipline of Programming. A more
complex theory is needed for parallel programs operating in shared store;
these complexities are avoided in the declarative programming paradigms,
both functional and logical, as well as in simple relational databases. Dis-
tributed computing is represented by Communicating Sequential Processes.
Fach of these theories has it own concepts and methods of reasoning, which
may be happily studied in isolation. The links between the theories are also
essential to the validity of systems assembled from programs written in differ-
ent languages, and for avoidance of engineering errors of the worst kind, those
which lurk in the interfaces between different materials and technologies.

Each of these topics will be treated only in the simplest passible fashion,
ignoring many known problems and practical difficulties. This too accords
with scientific principle, and certainly with educational practice. The world
becomes comprehensible only by isolating a few significant features; disturb-
ing factors are initially regarded secondary effects, controllable by careful de-
sign of experiment. And even in applying the theory, an engineer will often
prefer to develop a sketch of a new design in a simple but inaccurate the-
ory: experience gives confidence that errors revealed by a later more complex
analysis can be avoided by later adjustments in the details of the implemen-
tation. The embedding of simple theories in more complex but realistic ones
can help to make this transition reliably.

The simple and undeveloped theories expounded in these lectures are
very far from practical application. The primary reason for their study can
only be scientific curiosity, to answer questions on “How does it work, and
why?”. Experiments in computing are notoriously easy and cheap to conduct,
by program execution or by hardware simulation; so there is little joy in
predicting their individual results. But what the theory gives is prediction
and control of general properties, not only of a particular program but of
a general class of programs. Of greatest interest is the way in which the
separate theories are linked, because this clarifies the inherent structure of
computing science as an intellectual discipline. It forms the basis of a coherent

[41]

general education in the subject and for subsequent mutual understanding
and cooperation of specialist engineers and research scientists.

1 Observations and Alphabets

The first task of the scientist is to isolate some interesting class of system for
detailed study. Then a selection must be made of those properties which are
regarded as observable or controllable or generally relevant to understanding
and prediction of system behaviour. For each property, a variable name is
chosen, to denote its value; and instructions are given on how and when that
property is to be observed, in what unit it is to be measured, etc. The list
of variables is usually accompanied by a declaration of the type of value over
which each of them ranges, for example

= : integer, ¢: real, ..., z : Boolean.

This collection of variables is Imown as an alphabet; and the names will occur

as free variables, together with physical constants, in any predicate describing

the general properties of the system.

An observation of the system can be expressed as a set of equations, as-
cribing particular constant values to each of the variables in the alphabet,
for example .

z=4& y=373%...& z = false.

In logic, such observations are cailed valuations or interpretations; in com-
puting, the instantaneous state of a machine executing a program is often
recorded in this way as a “symbolic dump”.

1.1 Water tank control system

Most of the dynamic variables treated in the physical sciences are assumed
to be continuously varying with time aver a continuum of possible values.
Consider a simple tank containing a liquid (Fig. 1). The variables selected
to describe the state of the system are as follows:

¢ (measured in seconds) is time since the start of the apparatus (¢t = 0).
v, stands for the measurable volume of liquid in the tank (in litres).

z, is the total amount of kquid poured into the tank up to time 2.

y. is the total amount drained from the tank up to time ¢.

a, is the setting of the input valve at time ¢ (in degrees).

b, i3 the getting of the output valve at time &.

==

U
‘ f lly

Fig: 1

1.2 Transistor networks

The ultimate components of most digital electronic circuits are transistors
and wires. The transistors act as switches to connect (and disconnect) the
wires, either to a source of power (High voltage), or to ground (Low voltage).
Observations are assumed to be made only when the whole network is stable,
in the sense that all switching activity has ceased, and all connections are
permanently established. For simplicity, we will postpone consideration of
circuits that never stabilise.

In design and documentation, each wire is given a name, say v, w, g, 3, d.
For each such name w, let Hw be a Boolean variable which is observed to
be true when wire w is stably connected to High voltage, and false when it
is discommected from High voltage. Similarly, let Lw mean that wire w is
connected to Low voltage. For example, particular observations of the stable
values of the wires connected to the three terminals of a P-transistor might
be :

LgA Hs A Hd
or HgAHsALd,

where g is the wire connected to the gate
s is connected to the source
and d is connected to the drain.

-~

The association of two Boolean variables to each wire permits represen-
tation of four possible states. The usually desirable states are those in which
exactly one of Hw and Lw is true. The state in which both are false is called
floating or tristate. In the fourth state, known as a short-circuit, the wire
connects the sources of low and high voltage, sometimes in an oscillatory
manner. This state must be avoided by the designer.

1.3 Combinational logic

Avoidance of the floating and short-circuit states can be achieved by cer-
tain design conventions that will be detailed later. As a result, the design
of combinational logic may use the wire name itself as a Boolean variable to
"distinguish the remaining two states.

w means the wire is connected to High (and not to Low)
—w means the wire is connected to Low (and not to High).

For example, if = and y are connected to the inputs of an OR-~gate and z to
its output, typical observations might be

ZAYAOT

=zAy AT

1.4 - Sequential circuits

The previous examples treat just a single observation of each wire, made at
the end of a cycle of operation, when the whole circuit has reached a stable
state. Sequential circuit design deals with the whole sequence of successive
cycles, so subscripted variables are needed to record the observations. Let v
stand for the value of wire v recorded at the end of the #*% cycle of operation.
Here, ¢ ranges over the natural numbers

N ={0,1,2,...}.

A particular observation is recorded as an infinite sequence of Boolean values.
For example, if z is the input and z is the output of a delay element, we might
observe:

£=<0,1,1,0,1,0,...>

Az =<1,1,0,1,0,...>

1.5 Sequential programs

The effect of executing a sequential program is to change the values of the
global variables of the program. These can be observed before the program
gtarts and after it terminates: the intermediate values are of little or no
concern. Consider a global program variable with symbolic name z; we use
a dashed variable =’ to denote its final value, and the undecorated name z
itself to denote the initial value. Obviously the type and range of values of
these observational variables are the same as those declared in the program
for the global variable with the same name. It is convenient to exclude from
the alphabet of a program the dashed variant of the variables to which it
makes no assignment. So a particular observation of the program z :=z +y
might be 2 =3A2 =TAy =2

1.6 Pai'allel programs

In a computer with multiple processors, it is possible for two programs to
share the same main store, and to update stored values in an almost arbitrar-
ily interleaved fashion. A similar complexity is introduced by gingle-processor
machines which timeshare a number of program threads with the aid of inter-
rupts. Observations of initial and final values of the variables are no longer
adequate to control the possibilities of interaction (even interference) between
the programs. So the entire history or trajectory of the entire program from
its start to its finish must be recorded as a set of timed observations of the
current machine state. The observation variables are

start: the start time
finish: the finish time.

For each program variable, its name denotes a function from a time in the
interval [start ... finish] onto the value of the variable at that time. An ob-
servation of a program that assigns to z and y in parallel could be

" gtart = 37 & finish = 43

LVt 3IT<t<c4z = =12
£42<t<43 = =20
LITLI<40 = =4
L40<t<43 = n=16

Here the value of z has changed at time 40, and the value of y at time 42.
Each value has changed only once.

1.7 Communicating processes

A communicating process is intended to interact with its environment at
certain distinct points in time. Each individual interaction can be recorded
as a value from 2 certain set A of event names (often called the alphabet of
the process). An observation of the behaviour of the process up to a given
moment of time can be recorded as the sequence of events in which it has
engaged so far. Thisisknown asa irace, usually abbreviated to fr; its typeis
A*, the set of all finite sequences of events from A. At this level of detail, the
exact timing of the occurrence of an event is ignored, and only their relative
ordering is significant. Events that occur simultaneously would have to be
recorded in some arbitrary order.

As an example, consider a device which alternately engages in the two
events a and b. Perhaps it is a simple single buffering device, which alter-
nately accepts a message and delivers it at the other end. For simplicity, we
will ignore the content of the message. An observation of the behaviour of
this device may occur after three events, when :

trace = < a,b,a>.

Some time latér {(when the second meSSa.ge has been delivered), a subsequent
observation may be '

trace =<a,b,a,5>.

1.8 Functional programs

The alphabet of a functional program consists of the names of all the func-
tions it declares and uses, together with their types, for example

10

bed N 2N = N.

Each execution of the program begins with input of a call to one of these func-
tions, with a particular set of constant parameters. Each successful execution
ends with output of a constant value computed by the program. Observation
of all executions may be recorded in the usual way as an equation, ascribing
a particular value to the variable

bed = the greatest common divisor.

Observation of the entire value of the function bed would require an infinite
set of runs, and take an infinite text to record its graph. But physical science
long ago abandoned its fear of the infinite, when it took real numbers as
its medium of measurement; and there is no need for computing science to
hesitate from the same step. y

1.9 Logic programs

In the declarative view of logic programming, a predicate is just a function
that delivers a Boolean value. Like a functional program, its alphabet is the
set of predicate names that it uses and defines, for example,

father, mother, grandfather.
Typical observations might include

father (hency, elizabeth)
-mother (henry, elizabeth).

1.10 Databases

The alphabet of a relational database consists of the set of its attribute names
(and their types), for example

title, theatre, authar.
Tts observations are just the records that can be retrieved from it, for example:

title = Camelot A theatre = Coliseun A author = Lerner.

2 Behaviour and Predicates

The normal discourse of scientists and engineers i3 wholly dependent on an
agreed interpretation in reality of the alphabet of names used to describe
observations or measurements. Only this makes it possible to perform exper-
iments and record the observations against the relevant observation name.
Scientific investigation often starts with a long, detailed and accurate record

11

of particular observations of particular systems; and actual individual obser-
vations continue to play a decisive role throughout the later development of
scientific kmowledge. .

But the real purpose and goal of science is to replace a merely histor-
ical record of ohservations by a theory of sufficient accuracy and power to
predict the observations that will be made in experiments that remain to be
performed in the future. A scientific theory is usually expressed as a math-
ematical predicate — an equation or an inequation or a collection of such
formulae — which contain as free variables the names which have been se-
lected to denote observations. A predicate P(z,y,-..,2) correctly describes
a particular observation, e.g.

z=12&y=373 &...& z= false

if substitution of each variable by its observed value makes the predicate true
(satisfies it):

P(12, 373, ..., false).

The predicate correctly describes a particular system or subclass of system
if it describes every possible observation of every possible experiment made
on any member of the class.

A useful scientific predicate is one that is as strong as possible, subject to
the constraint of correctness: in general, it should be false when its variables
take combinations of values which in reality never occur together. This rec-
ommendation is violated by the weakest possible predicate, namely true (or
equivalently, z =z Ay = ¥), which is satisfied by every conceivable obser-
vation. It correctly describes every system; and it is useless because it does

. s0. The strongest predicate false is equally useless for the opposite reason:

there is no system which it describes. (If there were, it would have to have
no observations, and therefore be inaccessible to science). All of science is
concerned with predicates that lie strictly between the two extremes of truth
and falsity.

In science and engineering, it i3 normal practice to reason, manipulate,
differentiate and integrate textual formulae containing free variables, which
have an external meaning independent of the formulae in which they occur.
Such practices have been decried by pure mathematicians and logicians, who
strongly prefer bound variables and closed mathematical abstractions like
sets, functions, and (less commonly) relations. But the conflict is only one of
style, not of substance. Every predicate P(z,y,..., z) can be identified with
the closed set of all tuples of observations that satisfy it:

{(:,y,...,z)I'P(:r:,y,...,z)}.

Conversely, every formula § describing a set of observations can be rewritten
as a predicate

{z,9,..-,2)€S.

The preferences of pure mathematicians are explained by their main con-
cern, which is the proof of mathematical theorems — formulae without free
variables which are equivalent to the predicate true.-Since our concern is pri-
marily with descriptions of physical systems, we shall prefer to use predicates
containing free variables from an alphabet whose existence, composition and
meaning can only be explained informally by relating them to reality. In
fact we will begin to identify systems with descriptions of their behaviour, so
that we can combine, manipulate and transform the descriptions in a man-
ner which corresponds to the assembly and use of the corresponding systems
in the real world. In this, we will see that the universal truth of abstract
mathematical theorems, so useless for direct description of reality, plays an
egsential role in validating the transformations applied to such descriptions
by scientists and engineers. '

2.1 The water tank

The behaviour of a physical process is usually described by a physical law,
often in the form of a conservation principle or a differential equation. In the
example of the water tank, the obvious law of conservation of liquid may be
expressed

+w=p+nEtxe foralltz>0,

where € is the maximum rate of accumulation of errors due to seepage,
evaporation, precipitation, condensation, etc.

Other physical constraints may be imposed as inequations on the setting
of the valves: :

0<a <amaz, 0ZLb <bmar.

Finally, the relationship between the valve settings and the flow of liquid may
be expressed by differential equations, say -

L i=kxa and y=kxb+dxu

where § accounts for extra outflow due to water pressure. This collection of
mathematical equations and inequations is strong enough to make a predic-
tion about future water volumes, given sufficiently precise knowledge of the
valve setting and the other variables and constants in the system.

2.2 Cmos transistors

An N-transistor (implemented in C-mos) is drawn

13

1|

where g is called the gate, and s and d are source and drain respectively. It
acts as a simple switch, connecting the source to the drain when the gate
is connected to High voltage. Thus if either of s or d is already connected
to Low, the other will be too. This aspect of the transistor’s behaviour is
described by the predicate '

Hg = (Ls = Ld),

d

which hoids in all the stable states of the three wires g, s and 4, connected to
the transistor. A connection through an N-transistor will also transmit High
voltage, but unfortunately only with a degree of attenuation that makes its
use unreliable in controlling other switches. For simplicity, we assume non-
transmission of High voltage, even at the risk of ignoring the possibility that it
leads to short circuits. A P-transistor is complementary to the N-transistor,
in the sense that it makes its connection just when the gate is low, and then
it will reliably conduct High voltage:

3

: —9—% Lg = (Hs = Hd).

d

Two essential components of any switching network are the power rail
(VDD) and the ground plane (GND). Any wire can be connected to either
of these sources, to neither of them, or (erroneously) to both. Connection of
wire g to power is indicated pictorially by

T

Tts effect is to make Hs true, which is described by the simple assertion
Hs. -

Connection to ground is indicated

14

Ld or \

2.3 Combinational logic
An OR-gate is usually drawn

Its purpose is to present at wire z the higher of the two voltages at the wires
¢ and y. This is described by the equation

z=zVy.

Similar definitions-can be given for AND-gates and NOT-gates.

u=rAs

15

2.4 Sequential circuits

Every combinational component ig also a sequential circuit, whose behaviour
is obtained by just subscripting all the wire names by time. For example, the
behaviour of the OR-gate is described asa sequential circuit by the predicate

2 =T+ Y forallt_GN'.

The simplest component that distinguishes the sequential circuit from the
combinational is the Delay, whose output on each cycle of operation is equal
to its input at the end of the previous cycle.

This behaviour is described by the predicate
VZ!.'H.]_ =..Zt, .fora.llteN.

This enables the value of z to be predicted from the value of z at all times
except ¢ = 0, when it is in fact inherently unpredictable.

Another component of a sequential circuit provides useful storage. It is
the D-type fip-flop, and has two input wires (z and p) and one output (z).
The output remains constant on successive cycles, unless a control signal is
received on p. In this case, the data value presented on the other input wire
(z) is stored for output on the following cycle.

16

Teq1 = (2 if p, otherwise z), forall t € N.
In future, this will be written using a shorter conditional notation

Tepp = (Zg 4 p: t>a:¢).

2.5 Sequential progréms

The fundamental constituent of a sequential program is an assignment state-
ment, for example :

=2+

This causes the final value of z to be equal to the sum of the initial values of
z and ¥:

' =z+y.

No restriction is placed on the initial or final values of any other global vari-
ables. Since no assignment is made to ¥, 4 is not even in the alphabet of the
process. '
A muitiplé assignment evaluates a list of expressions, and assigns their

values to corresponding members of a list of variables: for example, the as-
signment '

z,p=z+3, y—%
is captured by the predicate

f=z+3&y =y-7

Tn fature we will identify the notations of a programming language with the
predicates that describe exactly the behaviour of the program when executed.

17

The interpretation of programs as predicates allows a simple definition of
the conditional construction, using only propositional logic. Let programs P
and Q bave the same alphabet, and let ¢ be a Boolean expression written in
the language (so it has only undashed variables, and can describe only the
initial state). We then define

ifbthenPelseQ=(P<lbl>Q).

I b is true (initially of course), all the observations of its execution are
observations of P; otherwise they are observations of Q-

Ap even simpler definition can be given of the vexed concept of non-
determinism. Let P and Q be predicates with the same alphabet. Then
their disjunction (P V Q) describes a system that may behave like P or like
Q; so all its observations are described either by P or by Q or by both. It
is impossible to know in advance which of them it will be — 5o the user of 2
non-deterministic product had better not care! :

2.6 Parallel programs

To control the complexity of parallel programming in a multiprocessor with
shared storage, let us assume that any variable which is the target of assign- '
ment in one program will not be assigned in any other concurrent program.
Consider the single assignment statement 7 = T+ ¥, with cutput variable
¢ and input variables z and y. As a result of its execution, there is a time
between its start and Gnish when the vaiue of 2 is equal to the sum of the
values of z and y, read at some garlier time t. At all times other than #/, the
value of z remains constant; 0o quch assurance can be given for y, because
its value can be assigned by some other CONCUITEN ly executing process. A
formal definition is: ‘

z;=$+y=3t,t"‘ start ‘_<_t_<_¢'$ finish :

Te = ZTgtart Ut
& changes (z) €1
where changes (z) is the number of changes in the value of z in the interval
between start and finish. - ‘

5.7 Communicating processes

The simplest communicating process is one that never interacts at all with its
environment. It is defined by she predicate describing its (lack of) behaviour:

STOP = (trace =<>)

where <> is the empty sequence. A slightly more interesting process is one
which first engages in an event 4 from its alphabet and then stops

13

a -+ STOP = (trace £ <a>)

where < @ > is the sequence containing only the event a

and z < ¥ means that y begins with (or consists of) a copy of z. This
is kmown as prefiz ordering. :

Even more interesting is a process P that first does a and then b, and
then starts again from the beginning. Such a process satisfies the equation

P={(a— (b= P)).

Tts behaviour will always be a finite subsequence of the infinite alternating
sequence : .

trace < abababa

An equivalent finite description of this behaviour is obtained by counting the
number of past occurrences of @ and b at a given time:

0< trace.a— trace . b <1

where trace . T is defined as the number of occurrences of the event z in the
trace.

Tn the example above, the equation defining P has P on the right-hand
gside as well. Such recursive definitions are very useful in computing; and
explanation of their exact meaning is one of the reasons for the study of
computing theory.

2.8 Functional programming

The primitive component of a functional program is a (possibly conditional)
equation, for example -

bed(z,y) = bed(z,y—1z), Hy>sz.

This is already an exact description of the behaviour of the program. It

gtates that if the second of the parameters to bed i3 greater than the first, the
result will be the same as if the first parameter had been subtracted from the
second. More formally, this behaviour is described by a predicate in which
all free variables are quantified over the appropriate range

Y,y |y > 2 bed(z,y) = bed(z,y—2).

2.9 Declarative logic programming

The simplest component of a logic program is a clause consisting solely of a
head, for example '

19

father (henry, elizabeth):—

This states that father is a Boolean function, which, when appiied to con-
stants henry and elizabeth, gives the answer true. This is exactly what is
stated by the predicate:

father (henry, elizabeth).

A more interesting clause in a PROLOG program is one that contains a
body as well as a head:

grandfather (X, Z):— father (X, Y), father (¥, Z).
The corresponding predicate is obtained by direct notational substitution:
1. replace :- by « (logical implication) |
2. replace , by A (conjunction)
3. yniversally quantify over all free variables.
The example shown above becomes
VX.Y.Z|: father (X, Y) A father (¥,2) = grandfather (X,Z). |
By the laws of predicate logic, this is equivalent to
vX,Z): QY = father (X, Y)A father (Y, Z)) = grandfather (X, Z).

2.10 Databases

A database is a predicate defined by complete enumeration of all its obser-
vations, for example

(title = Camelot A theatre = Coliseum)
v (title = Cats A theatre = Haymarket)
Vv (title = Hair A theatre = Coliseum).

A database query is also a predicate, using a much more expressive language

to select the desired observations from the database. An example query might
be ‘

theatre € -{Hayniarket, Coliseurn} & title # Hair.
3 Concurrency and Conjunction

Propesitional logic provides many ways of constructing complex predicates
from simpler ones; for us, the most importans is undoubtedly conjunction,

20

which we will write as &, and pronounce a3 and. I it needs definition, the
following will suffice:

1. An observation satisfies a conjunction (P & Q) if and only if it satisfies
both P and Q.

2. The alphabet of (P & @) is"the union of the 'separate alphabets of P
and Q.

Conjunction is extremely useful in describing the behaviour of a product that
is constructed from (say) two components with known behaviour, described
individually by the two predicates P and Q. We will congider first the simple
but important case, when the alphabets of P and @ are disjoint, containing no
variable in common. Then their conjunction (P & Q) describes the behaviour
of two completely separate components, the first of which is described by P
and the second by Q. There is no connection between the components, and
no synchronisation or coordination of their behaviour. Each observation of
their joint behaviour can be split in two: one part involves only variables
from the alphabet of P, and this part satisfies P; the rest of the observation
gimilarly satisfies Q. That is exactly the condition under which the whole
observation satisfies (P & Q).

Tn most cases of interest, components of an engineering product are as-
sembled together in such a way that they can interact and thereby affect each
other’s behaviour. In principle, such an interaction can also be observed from
the outside, and the observation can be recorded in some variable, say y. The
interaction and its observation belong simultaneously to the behaviour of both
the components which participate in it.

The physical possibility of interaction is therefore represented by the fact
that the variable y belongs to the alphabet of both of the predicates P and
Q that describe them. In order for an observation (say, z = 7 & y = 12) of
one component P to be coupled with an observation (say y =12 & z = 3)
from the other component. @, it is essential that both observations aive the
same value to all the variables they share (in this case, just y); so that the
coupling gives (say) s =T & gy =12& z = 3. Such a coupled observation
can still be split into two overlapping parts, one of which satisfies P and the
other Q. That is the exact condition for the whole observation to satisfy the
conjunction (P & Q) of the. component descriptions; its alphabet is clearly
still the union of their separate alphabets.

This is the general method of modelling connection and interaction in
an assembly constructed from two or more companents. But in practice,
of ‘course, we are mostly interested in connections that can physically be
realised in some available technology, for example by connection of wires
in hardware, or by juxtaposition of programs in some software system. Any
scientific theory which is to be useful in engineering practice must clearly state
the general conditions under which assembly of components with non-disjoint
alphabets will be physically realisable. If these conditions are violated, the

21

resulting conjunction of contradictory specifications could yield the predicate
false, which is a logical impossibility and could never be implemented in
practice.

A very effective way of achieving the necessary consistency is to distin-
guish which variables in the alphabet of each subsystem are controlled by
that subsystem itself, rather than the environment in which it may be con-
nected. These are called ouiputs, and form the output alphabet outaP of the
subsystem P. Each variable of a complete subsystem can be controlled by
only one of its components. So the conjunction (P & Q) is forbidden unless
the output alphabets are disjoint:

outaP Nouta@ = {}.
A controlled variable in any subsystem is controlled in the whole system
outa(P & Q) = outaP U outaQ.

The input alphabet is just defined as the rest of the variables that are not
outputs

inaP = aP —omtal.

3.1 Transistor networks

A complex electronic network is constructed from simpler components by
connection of wires. By general convention, wires that have been given the
game name in two separate components of an assembly are joined together
to form a single wire with the same name. Normal electrical conduction
will ensure that both components see the same voltage on the wire at all
times, at least when the cirenit is stable and therefore observable. It is this
that corresponds in physical reality to the logical principle that the variable
denoting the wire can have only a single value.

By the definition of stability, a cireuit is stable only when all its compo-
pents are. As a result, the conjunction of predicates describing exactly the
stable states of the components will describe exactly the stable states of the
connected assembly. There is no need in a switching model to make any dis-
tinction between input and output wires. Consider, for example, an assembly
made from two transistors, a P-transistor and an N-transistor, connected as
shown _

4

v w

7

The conjunction of the four component descriptions ig

Hs
&{Ly = (Hs = Hu))
&(Hv = (Lw = Ld))
&Ld.

This can be rewritten as
(Lv = Huw) & (Hv = Lw) & Hs&lLd

which describes with reasonable accuracy the actual and intended behaviour
of a negation circuit with input v and output w. As a combinational circuit
it is often abbreviated to

- w

3.2. Combinational logic
The wires in a combinational circuit have the same effect of equalising values
of variables in the alphabets of the components which they connect. But in
this case, distinction between cutput and input wires is essential to avoid the
kind of inconsistency that will lead to falsity of the describing predicate, and
to short-circuit in the implemented product.

Consider the assembly of the three components introduced earlier:

23

_Z_DO_—W—
'This is described by

(z=zVy) & (w="-2),
which may be rewritten as

(w=(zA-y) & (z = ~w).

Here, the second conjunct describes the value of z, which may be of no
subsequent interest in the use of the circuit. A wire whose only purpose is
to carry a signal locally within a subassembly can be hidden (as described
in the next lecture), with resulting simplification of the entire behavioural
description.

The assembly of combinational circuits is subject to the constraint that
the output wire of each circuit can be connected only to the input of some
other gate, and that a chain of gates connected in this way must never form
a cycle. The simplest circuit that violates this condition is

w = "w

The predicate describing the circuit is a contradiction, the same as false.
In practice the voltage on w might oscillate around some intermediate value,
consuming considerabie power. These phenomena simply cannot be described
in a theory with such a small and simple alphabet. That is why they must
be excluded by syntactically checkable constraints on the predicates that are
conjoined. : :

24

3.3 Sequential circuits

The connection of sequential circuits is subject ¢to a similar restriction to that
on combinational circuits; but a cycle of connected gates is allowed on con-
dition that it contains a delay. For example, here is a circuit that combines
three components that have been encountered earlier. '

Its behaviour is described as the conjunction
(2t = T V 4:)&(Tes1 = 2 < pr B Te)&{cerr = pe).

Again, if z is. never going to be used outside the assembiy, this can be sim-
plified to ' '

(Zegr = (2 V 3e) @ e D @) &(Cerr = pe).-

3.4 Sequential programs

Two sequential programs can be executed safely in parailel, provided that
neither of them updates any global variables used by the other. Parallel
execution then has exactly the same effect as sequential execution in either

25

order. This effect is most simply described as the conjunction of the sepa-
rate effects of each component. Using l| to denote parallel execution of two
assignments

gi=z+zljy= y—32

is precisely described by the conjunction of their separate behaviours:
(r=z+2) &y =y-2).

It can be seen that the effect is the same a3 the multiple assignment

T, Yy=2+7% §—2

The output alphabet of a sequential program consists of all its dashed
variables, i.e., those that appear to the left of an assignment within it. The
regtriction on sharing the output variables is sufficient to ensure consistency
of the conjunction. We can therefore relax the usual constraint against one
component using variables updated by another parallel component. For ex-
ample, we can allow

@=z-ylly=2xp =@ =c-n & =2xy.

When one of the components refers to a variable {e.g. y) updated by the
other, our theory requires that it is the initial value of that variable that is
obtained. An implementation might have to make a private copy of such vari-
ables before executing the programs in parallel. Consequently in this theory
parallel components can never interact with each other by shared variables.
We will see that such interactions can lead to highly non-deterministic effects.
These may well be worth avoiding, even at the cost of extra copying (which
is needed anyway on a distributed implementation with disjoint stores).

3.5 Communicating processes

Consider two completely separate processes with event alphabets A and B,
containing mo events in common (4 N B = {}). A trace of their parallel
execution is just an arbitrary interleaving of events from the traces of the
individual processes. From this interleaved trace, omit all the events in B; the
resulting trace (containing just the A-events) is denoted by trace [A. This
will be a trace of the behaviour of the first process; and similarly trace | B
will be a trace of the second process. So if P(trace [A) and Q(trace | B) are
descriptions of the behaviours of the two component processes, a description
of their joint behaviour is given just by a conjunction of these two predicates.
The event alphabet of the combined process is the union (AU B) of the two
alphabets of the components.

Surprisingly, the same reasoning still works when there are events commen
to the alphabets of both the processes. The occurrence of such an event

26

requires simultaneous participation by both processes, and therefore appears
at the appropriate position in the trace of both of them. For example, let A =
{a, b} and C = {b,c}. The following table shows how the two restrictions
work: -

trace = abpachbcad -
trace[A = aba b ab
trace | C = b c¢bhe b

The example shows a typical trace of the connection of two buffering processes
with alphabets A and C

P=ag—>b—P
Q=b-oc—@¢.

Their assembly is described by the conjunction of predicates describing their
separate behaviour:

0 < trace.a—traceh < 1
& O0<itraceb—tracec< 1.

From this it follows that
0 < trace.a — trace.c < 2.

If the only purpose of the event b is to convey information between these
two components, the description that does not mention trace.b will be more
convenient. The necessary hiding of the event b will be described in the next
lecture. ‘

3.6 Functional programming

The meaning of a functional program is the conjunction of the predicates
describing its individual clauses. For example, a function bcd may be defined
by three clauses, which are true for all z,y, z:

bed(z,y) = = <= =y
& bed(z,y) = bed(z, y-z) & y>=z
& bed(z,y) = bedlz-y, y) & z<y.

Each individual clause describes a particular property of bed, which is shared
by many functions. For example, the first clause is satisfied by mén and maz,
whereas the second clause is satisfied by the remainder function. All three
clauses are satisfied by the greatest common divisor, a partial function whose
domain is confined to strictly positive integers.

Note that the three conditions on these three lines are disjoint, in the sense
that at most one of them can be true at a time. This ensures that no attempt
will be made to ascribe inconsistent values to bed(z,y). If consistency is

27

not obviously (even mechanically) checkable, a more complex theory will be
peeded to explain the consequences of this error.

3.7 Logic programming

In declarative logic programming, as in functional programming, the individ-
ual clauses are put together with conjunction :

V¥ X, Z |: grandfather (X, Z) <= 3 Y |: father (X,Y) & father (Y, Z)
& ¥ X, Z |: grandfather (X, Z) <=3 Y |: father (X, Y) & mother (Y, 2).

These clauses may be combined and simplified to

V X, Z |: grandfather (X, 2) <
(3 Y |: (father (¥, Z)V mother (Y, 2)) & father (X, Y)).

In declarative logic programming, there is no need for disjointness of the
conditions contributed by the separate clauses.

3.8 " Shared store parallelism

The parallel execution of sequential programs (described in 3.4) requires that
each parallel component operates on a copy of the initial values of any vari-
ables assigned by other components; and run-time interference is thereby
excluded. In general, shared-store parallelism does not require this initial
copying; and its model is more complicated. The predicate describing pro-
gram behaviour has been carefully designed to be consistent with any be-
haviour of any program running in parallel, provided that the two processes
respect each other’s output variables. As a result, parallel execution is again
validly modelled by conjunction.
Consider the example

g:=z+ylly=2xy
=(3u,v | start <u <o < fnish:yw =2 X Ygzart & changes (y) < 1)
& (3¢, t' start <t < ¢/ < finish: Ty = Tggart + ¥ & changes (z) < 1).
The conjunction of the two descriptions can be used to analyse the possible
outcomes of parallel execution of the assignment. The deciding factor is

whether y is updated before 7 reads it (u' < t) or the other way round. Let
us use the suggestive abbreviations '

T =Sgart © = Tinish
¥ = Ystart Y = Yfinish-

Then the parallel execution is described by

23

changes (z) <1 & changes (y) €1
& ((z'=z+y&y =2xy)
V($J=$+2xy&:y'=2xy& cha.ng(-.‘(-'r-‘)z Change(y)))

where change (z) is the time that z changes. .

This example shows that the range of possible effects of parallel execution
is described by the disjunction of several cases. As expected, they are the
same as executing the two assignments in either order or even simultane-
ously. The disjunction represents genuine uncertainty or non-determinism of
the outcome of parallel execution; it is a result of unavoidable ar deliberate
failure to control the relative timing of execution of the parallel components.
Note that a valid implementation may always select the first alternative, for
example by copying the initial states. This prevents even a deliberate plan
for processes to interact through shared store. However, such interactions can
be achieved on joint termination of the processes, or by means of a hroad-
cast synchronisation signal, as in the Bulk Synchronous Paradigm (BSP) for
parallel programming,

4 Specification and Correctness

We have seen the role of predicates in describing the actual behavicur of indi-
vidual components of an assembly. In suitable circumstances, the behaviour
of the whole assembly is deseribed by the conjunction of the predicates de-
scribing its components. The result can be used by the scientist to predict
or even control the outcome of individual experiments on the assembly. But
once the theory has been confirmed by experiment, it has an even more valu-
able role in reasoning about much more general properties of much wider
classes of system. In computing science, this is particularly important, since
most particular experirnents are very cheaply and refiably conducted by run-
ning a computer program, and working them out by theory is so complicated
that it would require computer assistance to predict them anyway.

In engineering, predicates are also used in a complementary role, to de-
seribe the properties of a system which does not yet exist in the real world; -
but some client, with money to pay, would like to see it brought into exis-
tence. A predicate used as a specification should describe the desired system
as clearly and directly as possible, in terms of what behaviour is to be ex-
hibited and what is to be avoided. The specification may be part of a formal
contract between the client and the team engaged to implement the product.

Individual requirements placed on the system can be formalised as sep-
arate predicates; like the components of an assembly, these are collected
together by simple conjunction, but now unrestricted by the constraints of
implementation technology. As a resuit, the conjunctive structure of a clear
specification is usually orthogonal to the structure of its eventual implementa-
tion. Engineering would be delightfully easy if a fast and economieal producs

could be assembled from two components, one of which was fast and the
other one econornical.

In summary, both systems and specifications are (conjunctions of} predi-
cates, describing all actual and all desired behaviour respectively. This gives
a particularly convenient definition of the concept of correctness, as logical
implication. Let § be a specification, composed perhaps as a conjunction

of many individual requirements placed on the behaviour of a system yet to-

be delivered. Let P be a description of all the possible behaviours of the
eventually delivered implementation, composed perhaps as the conjunction
of the description of its many components. Assume that P and § have the
same alphabet of variables, standing for the same observations. We want
assurance that the delivered implementation meets its specification, in the
sense that none of the possible observations of the implementation could ever
violate the specification. In other words every observation that satisfies P
must also satisfy S. This is expressed formally as an universally quantified
implication:

Vv,w,...:0P=3

where v, w, ... are all the variables of the alphabet. E.-W. Dijkstra abbrevi-

ates this using square brackets to denote universal quantification:

[P = S}

Logical implication is the fundamental concept of all mathematical rea-
soning; it plays a crucial role in deducing testable consequences from scientific
theories; so it should not be a matter of surprise or regret that it is the basis
of correct design and implementation in engineering practice. The remainder
of these lectures will give many examples drawn from computing science.

The progress of a complex engineering project is often split into a number
of design stages. The transition between each stage is marked by signing off
a document. produced in the earlier stage and used in the later. A design
document D can also be regarded as a predicate: it describes directly or
indirectly the general properties of all products conforming to the design.
But before embarking on final implementation, it is advisable to ensure the
correctness of the design by proving

D=5

Now the proof of the product itself may be discharged by the supposedly
simpler task .

[P = D].
Transitivity of implication then ensures the validity of the original goal
[P = Sl

30

This is a very simple justification of the widespread engineering practice of
stepwise design. It is a vindication of our philosophy of interpreting speci-
fications, designs and implementations all as predicates describing the same
kind of observable phenomena; the next lecture will show how to deal with
phenomena of different kinds.

Stepwise design is even more effective if it is accompanied by decompo-
sition of complex tasks into simpler subtasks. Let D and Z be designs of
components that will be assembled to meet specification S. The correctness
of the designs can be checked before their implementation by proof of the
implication ‘

(D& E = 8]

The two designs can then be separately implemented as products P and @
such that :

[P=>D] and [Q=E]
Their assembly will then necessarily satisfy the original specification:
[P & Q=5]

The correctness of the final step does not depend on lengthy integration test-
ing after assembly of the components, but rather on a mathematical proof
completed before starting to implement the components. The validity of the
method of stepwise decomposition follows from a fundamental property of
conjunction, that it is monotonic in the implication ordering.

Explanation of correctness as implication gives a strangely simple treat-
ment of the perplexing topic of non-determinism. Let P and Q be programs
with the same alphabet. Their disjunction (P V Q) may behave like P or
it may behave like Q. In order for this to be correct, both P and Q must
be correct. Fortunately, this is also a sufficient condition, as justified by the
fundamental logical property of disjunction as the least upper bound of the
implication ordering: ~

[PvQ=5] if [P=5]and(Q= S|

The account given above assumes that the alphabets of specification, de-
sign and implementation are all the same. In many cases, the alphabets are
different, and for good reason: they reflect different levels of abstraction,
granularity and scale at which the observations are made. The task of de-
sign and implementation is to cross thesé levels of abstraction, and to do so
without introducing error. A general method will be treated fully in a later
lecture. :

A simple but common special case of abstraction is when the alphabet
of the specification is a subset of that of the implementation. For example,
specifications will usually exclude mention of any variable introduced to de-

31

scribe internal interactions of the components of the implementation. Such

a variable serves as a local variable in a program or a bound variable in 2
mathematical formula. For the implementation to work, such variables must
indeed have some value, but we do not care what it is. It may therefore be
hidden by existential quantification. The quantification is justified by the
J.introduction rule of the predicate calculus:

[P=>S]iﬁ'[(3vl:P)=~S]

whenever the variable v does not occur in S. The variable is removed from
the alphabet of P. Existential quantification of local wires or variables of
a product can considerably simplify the descriptions, without affecting the
range of specifications that will be satisfied.

An important engineering principle is the reuse of existing assemblies and
designs. Suppose it i8 decided to use a known design or available component
Q in the implementation of a specification §. But it remains to design an-
other compenent X which will be connected to @, adapting its behaviour to
meet the requirement S. More formally, X must satisfy the implication

(X & Q=9

. There are many answers to such an inequation, of which (X = false) is the
most trivial. It is also the most difficult to implement, in fact impossible!
What we want is at the other extreme, the answer that i3 easiest to imple-
ment. ,

That is why we ask: What is the weakest specification that should be met
by the designersof X7 Ina topdown design, it is much better to calculate X
from Q and S, rather than attempting to find it by guesswork. Fortunately,
propositional calculus gives a very simple answer

X=(Q=9).
This is guaranteed by the law
[X & Q= S]iff (X = (@ =9

But of course X must not mention any of the output variables of Q. So the
answer must hold for all values which @ may give to them, for example

C X=MnylQ=9)

where outaQ = {z,y}. This answer will be called the residual of S by @,
because it describes what remains to be implemented to achieve § with the

aid of Q. The answer is justified again by a simple law
W&QﬁﬂﬁW=WmWQ¢ﬂ]

whenever z,y € aX.

4.1 Control of liquid in tank

The primary requirement on an industrial control system is usually to hold
some controlled variable within certain safety limits. In the example of the
water tank, we impose a lower limit minv and an upper limit mazv on the
volume of liquid held:

miny < v € magv, forallt.

These express absolute limits on v, which must be maintained at ail fimes.

Sometimes there are undesirable states which are permitted only for a
relatively short proportion of time. For example, we may wish that the
volume should not be above (mazv —4) for more than 10 % of any consecutive
interval longer than ten seconds. The undesirable condition can be defined
as a Boolean function of time (taking values 0,1).

risk; = (w +J > mazv).
Now the requirement is expressed using integrals.
[0 risk,dz < 1, for all t.

The overall specification is a conjunction of the two requirements expounded
above. The purpose of this example is to show that, in the formalisation of a
specification, one should not hesitate to use notations chosen from the entire
conceptual armoury of mathematics: whatever will express the intention as
clearly and directly as possible. This is the only possible protection against
the embarrassment and expense of implementing a product which turns out
o be not what was wanted.

4.2 A sorting program

One of the requirements onr a program that sorts data held in an array A
is that the result A’ should be sorted in ascending order of key. An array
is regarded as a function from its indices to its elements. Let key be the
function which maps each element to its key. The desired condition is

(key o A') is monotonic,

where o dendtgs function composition. A second requirement on the program
is that the result should be a permutation of the initial value:

(3p | p is a permutation: 4' = 4 o p).

The specification is the conjunction of these two requirements. -Alphabet
constraints prevent the program from being implemented as a conjunction of
components which meet the two requirements separately.

Again, this example uses fairly sophisticated concepts from pure mathe-

33

matics to achieve brevity at a high level of abstraction. Other more diffuse
formulations of the sorting concept may be shown to be equivalent to it. And
they should be, if that increases confidence that the specification describes
exactly what is wanted.

4.3 Greatest common divisor

The most direct way of specifying the greatest common divisor is that it must
be a divisor of both its operands, and the greatest such. Such a function f is
described by the predicate S:

Sf)=Vzy|zy>3: z mod f(z,y) =0
& y mod f(z,y) =0 :
& (Vz[zmodz:ymodzz--O:f(:c,y)modz=0).

The functional program fp(bed), given in section 3.6 meets this specification,
in the sense that

(¥ bed |: fo(bed) = S(bed)).

Here quantification is over the alphabet of the program, namely the free
variable bed. There are other functions too that meet this slightly unusual
weakened specification.

If the functional program is incomplete, and for particular parameter
values none of the conditions which guard the clauses is true, then there will
usually be many different functions bed which satisfy the predicate describing
the program; and the correctness condition above will not be provable. If the
program fails to terminate, this too will usually be signalled by failure of the
proof. But there are some subtleties which are here ignored.

4.4 Local wires

In the design of the negation circuit (section 3.1), the sole purpose of the
wires g and d is to connect the circuit to power and ground. Their values
have no interest in the specification and use of the circuit, and they will
never be connected to any other wire. Their existence should therefore be
- concealed by existential quantification over the relevant variables

3 Hs, Ls, Hd, Ld |:
After this quantification, the predicate describing the circuit gimplifies to
(Hv = Lw) & (Lv = Hu).

This is clearly a reasonable extérnal specification of the circuit, at the switch-
ing level of abstraction. The direction of the implication shows how informa-
tion propagates (with reversed polarity) from wire v to w. :

34

Exactly the same treatment is given to local wires in a combinational
circuit. For example (3.2)

@zliz=zsvy&w=-z)=(w="zA"y).

In general, localisation should be confined to wires in the output alphabet
of the predicate. This ensures that the value of the wire is controlled by
exactly one of the components included in the assembly. Otherwise, there
are problems like floating wires, which would undermine the correct working
of the logic, or at least the ability of our simple theory to describe it.

4.5 Buffers in CSP

A communicating process can be specified by an arbitrary predicate describ-
ing its traces. For example, consider a simple message buffer, which stores
the messages which it has input, and outputs them later on demand. One
property of such a process is that it never outputs more messages than i
inputs: and usually there is some limit N on the number of messages that
it can store. Let the input of a message be denoted by the event g, and the
output by b. Then an N-buffer can be specified by

0 < trace.a — trace.h < N.

So the example (P = a = b — P) of section 2.7 is a 1-buffer.

When communicating processes are combined to operate in parallel, they
interact with each other by simultaneous participation in events which are
common to both their alphabets. Typically, such an event is the communi-
cation of a message on some channel which connects the processes. If that is
the sole purpose of the channel, then the occurrence of the shared events, the
values of the messages, and even the existence of the communication channel
are of no interest to the surrounding environment; once the component pro-
cesses have been composed, they should be hidden from external observation.
The obvious way of doing this is simply to remove all record of the occur-
rence of the event to be hidden from the trace of the combined processes. For
example, consider the pair of buffers defined in 3.3. Their joint behaviour is
described by

0 < trace.a— traceb <1
& 0< troceb— tracec <1l

After assembly of the components, the event b represents just internal com-
munication between them. The effect of concealing the event b is to make
the value of trace.b unobservable; it must have some value, but we neither
know nor care what it is:

Inl: 0L tmée.a—-—n_{l
& 0<n— trecec sl

35

By simple arithmetic, this simplifies to
0 < trace.a — trecec <2,
confirming the obvious fact that a buffer of depth two can be constructed by
connecting two single buffers — after the channel that they share has been
hidden. ’
4.6 Residual in combinational circuits
Consider a specification
5 =(z=(z £y}
Suppose that the design so far has progressed to a stage
Q=(2=(zA-y) V)
where .outaQ = {z}. What remains to be implemented is the residual
(vVz]: Q=) |

By considering separately she two cases z = true and z = false, this can be
simplified to a conjunction

D=(w=(z2y)&(-zsAy= w).

The task of implementing this design is fortunately simple, indeed obvious.
P=(w=—zAY)

An alternative design decision
P=(w=z#y)

is equally correct, but pointless, because it is no easier to implement than
the original specification §. The use of a magic formula does not reduce
+he need for common sense judgements about the general direction of design.
The primary role of the mathematics is to control complexity of the detail,
where human judgement is less reliable in achieving correctness.

47 Residual in sequential programs

Suppose the task of 2 loop is to maintain a constant value for the expression
(z — y). This task is expressed in the specification

S=(~-y=z-9)

Suppose for other reasons it is desirable to increase the value y by

36

Q={y=2xy)

What change must be made to the value of z in order to establish 5? The
answer is given by the residual

Vyly=2xy=>(@-y=z-y9)
(' -2xy=z-9)

'=z4+y

=+ Y.

The answer, which is not totally obvious, has been derived by pure calcula-
tion. . _

But the technique is not magical, and sometimes it just can’t work, Sup-
pose the specification is to make the product and y odd, so the required
residual is '

(Vy’]:y':—*ny::r(:z’xy'isodd))
z' x2x yisodd
false.

ni

This is, of course, unimplementable: there is no way that an odd product
can be obtained by doubling one of the factors. Fortunately, the calculation
of the residual gives clear warning of the impossibility of implementation.

5 Algebra and Normal Forms

The interpretation of designs as predicates permits all questions of correctness
to be resolved in principle by reasoning in the predicate calculus. But proofs
conducted exclusively in the predicate calculus are laborious to the point of
impracticality. In established branches of engineering, the problem is solved
by division of labour. For example, applied mathematicians reason primarily
by arithmetic and symbalic calculation, using an appropriate collection of
algebraic laws; the proof of these laws is the proper contribution of pure
mathematicians, who enjoy the necessary facility in predicate logic.

A telling example from classical mathematics is provided by the distinc-
tion between calculus and analysis. The differential calculus is defined by a
collection of algebraic laws, for example

% =2xX 3.
The definition of the differential operator expands this law to a predicate
' 2 -3 2
(Ye|e>0:34d f——(—z—-—z-"-Z:«::r: <€)

It is this predicate that is proved by the branch of pure mathematics known

37

as analysis; all other mathematicians, including scientists and engineers, sim-
ply use the calculus, without any need (and certainly with no desire) ever to
expand the abbreviations again.

The simplicity and power of algebraic reasoning is achieved by severely
restricting the notations in which the reasoning is conducted. This is nec-
essary because the validity of the algebraic laws often depends on powerful
assumptions made about the range of values of the free variables appear-
ing in them. For ‘example, the simplest version of the differential calculus
agsumes that all functions involved are everywhere differentiable. Substitu-
tions for the free variables must be restricted to terms whose syntactic form
guarantees the assumptions. In particular, the operators appearing in all
the terms must be confined to those which ensure their results will satisfy
the assumptions, whenever their operands do. For example, simple versions
of differential calculus have to exclude division from the list of permitted
operators.

The presentation of an algebraic theory begins, like the definition of a new
programming language, with a specification of the syntax of allowable terms.
This is given by a signature, consisting of an enumeration of the atomic terms
(or constants) of the language, together with a list of the operators, which
may be used to combine them into larger terms. That defines the syntax:
the substance of the algebra is presented by a collection of algebraic equa-
tions between terms containing free variables as well as the operators and
constants of the signature. The laws are proved or claimed to be valid for
all permitted values of the free variabies, namely those that are expressible
in the restricted notations of the signature. In our examples, the free vari-
ables are second-order, in that they range over predicates, which themselves
contain other free variables denoting observations: these first-order variables
are seldom mentioned explicitly in the laws, but they are assumed to satisfy
the alphabetic constraints imposed in the definition of the operators.

For any given signature of atoms and operators, there is no end to the list
of algebraic laws that might be postulated or proved by the pure mathemati-
cian. But the task may be considered accomplished when enough laws have
been proved that all other equations (expressible within the notational limi-
tations of the signature) can be proved from those already presented. These
proofs should be conducted by algebraic reasoning alone, perhaps with a little
induction, and certainly without expanding the definitions of the operators.
The presentation of the collection of laws will then be accompanied by a proof
of their completeness in this sense.

A good criterion for the cothpleteness of a collection of laws is the exis-
tence of a normal form, and a proof that every term of the language can be
reduced to this form by algebraic substitution alone. The test for equality or
implication between normal forms should be easier than between arbitrary
terms. Ideally, it should be just textual identity or containment of normal
forms, but other mechanically checkable equivalences are also allowed.

38

A familiar example of an algebraic presentation is given by Boolean Alge-
bra. Here the operators include conjunction, disjunction and negation; and
there are enough laws to reduce each term to a normal form, for example, the
conjunctive normal form CNF. This is written as a conjunction of a number
of clauses: each clause is a disjunction of a number of distinct literals, each
of which is either an atom or the negation of an atom. For example (v = —w)

“reduces” to the normal form

(vVw)A(moV-w)

(As usual, it is actually an expansion in the size of the text.) Two normal
forms are equal if they can be made textually identical by reordering the .
operands of the conjunctions and the disjunctions.

5.1 Logic programs

A clanse in a conjunctive normal form is called a Horn clause if it contains
exactly one positive literal, and all the other literals are negated atoms. A
predicate has the Horn property if it is expressible as a conjunction of Horn
clauses. A Horn clause

(hVv-aV=bVv..)
is usually written as an implication backwards
(h<= aAbA..).

Here h is called the head of the clause, and the rest is called its body. All
the clauses of a PROLOG program are Horn clauses, though the notation is
different: :

h:-a, b, ...
If the head is the only literal, this can be written
(h &= true) or k-
Boolean algebra can be conveniently extended by allowing quantification
over a local Boolean variable, for example,
@z |: B(z)) = B(true) v B{jalse).

The right hand side of this equation can be reduced to conjunctive normal
form by standard techniques. More interesting, the normal form will have
the Horn property if the original term had that property. This means that
localisation of predicate names in a logic program can be eliminated, at least
in the propositional case. .

39

The proof that 3 preserves the Horn property is given by displaying the
laws of Boolean logic that can be used to effect the reduction of 3z |: B{z)
to Horn clauses, on the agsumption that B(z) is expressed the same way.
Firstly, separate out all clauses of B(z) that contain z at their head (if there
are none, add the vacuous clause z < false). The resuit can be written:

Iz (L ilieSimEA)) & (& jlie Tk« Bi(a).
By Boolean algebra, this reduces to
(& i,jlieSAjeT:h«Bi(4)) ¥S#{}

which is a conjunction of Horn clauses, (or just irue, if T is empty).

The purpose of the restriction of logic programs to Horn clauses is to
permit a particularly efficient method ‘of implementing the answer to an ar-
bitzrary query. Each clause is implemented as the declaration of a Boolean
function, with the given head and body; each atom in the body is imple-
mented as a call on the function with a head that matches it. If there is no
match, the answer is taken as false.

The fact that unmatched calls give the answer false is absolutely necessary
for the logic program ever to give a negative answer to any question at all.
Without it, any collection of Horn clauses can always be satisfied by taking
all its atoms as true! Prolog in fact goes to the opposite extreme: it will give
a negative answer whenever this is consistent with the program: pasitive
answers will be given only when forced. To predict when false answers will
be given, the predicate defined by the program must be strengthened.

The technique of strengthening is as follows. First collect together all
clauses with z at their head:

(& i}iES:ch;).

Logically, this is equivalent to'a single clause whose body is the disjunction
of all the A: -

ze(Vilied:).

The value of z computed by the logic program is the falsest possible one,
namely o .

z={(Vi]lie§:A)

If S is empty, this correctly reduces to z = false. The actual behaviour of
the logic program is described exactly by making this change for all heads of
clauses appearing in the pregram. After this strengthening, it is not legiti-
mate to add any further clauses which share the same heads. This restriction
can be enforced by including ail the strengthened heads in the output alpha-
bet of the program.

40

In logic programming texts, the replacement of implication by equality is
gaid to be justified by the closed world assumption. Thisisa rather mystical
misnomer. It is not an assumption, but a correct scientific description of the
actual answers given by execution of the logic program. The programmer’s
responsibility is to write enough clauses in the program to ensure that the
computed answers correspond to what is wanted in the world outside the
computer. -

5.2 ‘Transistor networks

The predicate describing a transistor can easily be rewritten in the form of
a pair of Horn clauses; for example, an N-transistor is described by

Hs <« ILgAHd
& Hi <« LgAHs

Connection to power and ground give Horn clauses with empty bodies.. So
any description of a switching circuit, being a conjunction of transistors, has
the Horn property, which it retains even after hiding the local wires. The
predicate can easily be rewritten as a logic program, whose execution gives
the same result as etching the circuit on the surface of a silicon chip, and
connecting its leads to a battery. The actual propagation of signals through
the transistors causes the source and drain to become connected only if this
is forced by the predicate describing the transistor; and the replacement of
implication by equality is justified by the same reasoning as in the previous
section. As a result, the familiar negation circuit

(Lv = Huw) & (Hv= Lw)
is actually described by the stronger predicate
(Hy = Lw) & (Lv = Huw).

Now at last it is possible for the designer to discharge the proof obligation
that allows the network to be used as a combinational logic gate, namely that
every wire is connected to High or Low. This is formally expressed by the
equations

" Hw=-Lw, foral wires w.

We define the output wires of the network as those whose names appear in
the head of any clause, and the input wires are the rest. Let POST be the
asgertion that all output wires are two-valued, and let PRE say’ the same
about the input wires. The responsibility for ensuring PRE is placed upon

the environment in which the circuit is to be used: so the obligation of circuit

designer is to prove

41

PRE = POST.

This is a specification that must be satisfied by the strengthened version of
the circuit description; for example, in the case of the negation circuit

(Lw = Hv & Hw = Lv) = ((Hv # Lv) = (Hw # Lw)).

Note that this essential theorem cannot be proved without prior strengthen-
ing of the predicate describing the circuit. :

Now we can see exactly the reasons for the alphabetic restrictions on the
composition of combinational logic gates. The restriction on sharing wires in
their output alphabets is needed to ensure that the separate strengthening
of the predicates describing individual logic gates has the same effect as
strengthening applied to the whole combinational network after assembly.
The prohibition on combinational cycles is what ensures that the proof of
the two-valued property of the whole circuit can be validly constructed from
proofs that each individual gate propagates two-valuedness from its imput
wires to its output. Otherwise the preof would be circular — a mathematical
error just as serious as the corresponding hardware design exrror.

5.3 ~ Combinational logic

The description of a single logic gate is always a single equation with its
output variable standing alone on the left hand side. The description of a
combinational circuit is just a conjunction of a number of these equations;
the left hand side is always a single output wire and the right hand side is
a Boolean expression containing both input and output wires. Because of
the restriction against connecting two output wires, each output wire name
occurs on the left hand side of exactly one equation. Because of the restriction
against cyclic connection, the equations can be gorted into an order ensuring
that the first occurrence of each output wire name is on the left hand side
of its defining equation. After this reordering, it is possible efficiently to
gimulate the behaviour of the circuit just by executing the equations as a
sequence of assignments in a high level language.

The sorting of the equations is preserved by existential quantification over
an output wire. The existential quantifier 3w. can be eliminated by the al-
gebraic law - : '

Quw|P&ku=c& Qu) = P&Q(e)

Because the formula has been sorted, the equations P that preceded the equa-
tion for w do not contain w, and they are left unchanged; in all subsequent
equations, the variable w ig replaced by the right hand side of the defining
equation, and the defining equation is omitted. The resulting sequence of
equations is still sorted.

" YWhen two sets of sorted equations are combined by conjunction, it may

42

be necessary to sort again the entire collection. In some cases, this will not
be possible. These are just the cases in which there i3 a cycle of components
and wires in the hardware realisation of the circuit; so the combination would
be impossible to implement anyway. The normal form acts as a check against
this mistake.

5.4 Sef;uential programs

In this section we will consider programs with only one global variable z. Its
alphabet consists just of the variables {z, %'}, with z’ as output.” The only
assignments that can be written take the form

z = f.z,

where f is a total function representable as an expression of the programming
langnage. In fact, the restriction to 2 single variable is not serious; all our
reasoning will apply equally to longer lists of variables. These lists will appear
on the left hand side of multiple assignments, for example

T, y= e.(m, y)».f-(xi y)v

in place of the single assignment above.

Assignments will be chosen as the atoms of our algebraic theory. The
operators will include the conditional (defined previously), disjunction (rep-
resenting non-determinism), and a new operator for sequential composition
defined:

P(zi .'.B’); Q(fL‘,.’B’) = (E” l: P(Iv 1") & Q('U,:-F'))-

. The result of the composition has the same alphabet {z,z'} as its operands.
Implementation is easy: just execute P first in initial state ¢ to obtain its
final state v; then v is fed to Q as its initial state. The final state z’ of Q is
taken as the final state of the whole construction.

In reducing an expression to normal form, the most useful laws are those
that eliminate occurrences of each operator. For example, the law

(z:=ez; z:=f2)= (z = f.(e.x))

will eliminate semicolon between any list of consecutive assignments, since
presumably f.(e.z) is a valid expression of the language. Similarly, if the
language contains conditional expressions, the following law will eliminate
conditionals between assignments in favour of conditional expressions

(z:=e<xb'r>z:=f)=(z:=(e<1b &).

Tf sequencing and conditional were the only operators of the algebra, we have
already shown that the syntactically defined subclass of just assignments

43

constitute a normal form! Equality then depends only on equality of the
right hand sides.

To deal with disjunction, we need laws that show how the other operators
distribute through it in both directions:

(Pv@yR = (A RV(& R)
P; (QVR) = (P; Q)V(P; R)
(PVv@)abpR = (Pab>RIV(Q4b > R)

Pabp(QVR) = (PabpQV(PabbR).

All of these are provable in Boolean algebra — they can even be checked by
truth tables. By induction, these laws can be extended to disjunctions with
an arbitrary number of operands.

To accommodate disjunction, the concept of the normal form must be
extended to a nonempty set A of assignments, separated by disjunction, which
will be written

V A

Laws of distribution through disjunction can then be used to bring it out as
the outermost operator of the program:

(VAR (VE) = V{a; bla€ A& be B}
(VA)<d>(VB) = V{isadoblacAd&beB}
(VA4 v(VEB) = V(4uB)

The cccurrences of {a; b) and (¢ < d > b) on the right hand side of these
laws can be reduced to assignment by the two laws already given. Equality of
pormal forms is tested as equality of the sets enumerated by the right hand
gides of the assignments.

Consideration of normal forms can reveal interesting properties shared by
all programs; they are only a very smail subset of ail predicates with alphabet
{z,2'}. For example, the predicate (z < 3) can never be expressed in the
normal form, because every assignment allows an arbitrary initial value (the
functions are ail total). The predicate (g’ > 3) is not expressibie, because it
allows an infinite range of results, whereas every normal form i3 only a finite
disjunction. In fact, a necessary condition for expressibility of P(z,s’) as a
program is

(vz| : {«'|P(z,2")} is finite and non-empty).

Because of incomputability, this is not a sufficient condition.

In specifying and reasoning about programs, there is absolutely no need to
restrict our expressive power to predicates which correspond to programs. Let
us extend our consideration to all predicates with only two free variables, one

44

in its input alphabet and one in the output. The operators on such predicates
include all those of Boolean Algebra, including disjunction, conditional and
even negation. Sequential composition is definable in exactly the same way
as in the programming language. Finally, each predicate P can be converted
to a predicate (denoted P}, simply by reversing the roles of the input and
output alphabets -

a{P) = a(P), and outa(P) = na(P).

The composition and converse are identical to those defined for arbitrary
relations; and so they obey all the beautiful laws of the relational caleulus.

A good example of the power of this calculus is the definition of an approx-
imate inverse for sequential composition. This is an answer to the question:
What is the weakest specification X of a program which, when followed by
Q, will achieve specification S

[X; @ = 5]
The answer is
X =-1(—|S; é),

which we will denote $%Q, and call the residual of sequential composition.
The relevant law of the relational calculus is

[P; Q=98] i [P=5%Q)

Note the similarity of the law that makes positive integer division (div) an
approximate inverse of integer multiplication:

pxg<s iff p<Lsdivg.

The residual is intended to help in the topdown development of a program
to meet a specification’ S with the aid of a known program Q. For example

(& —y =z—-9%(y=2xy) (z'~2xy=2-9)

= r.=I+1Y.

The residual sometimes gives an unimplementable specification, for exam-
ple

(z/ x ¢ i8sodd div y:=2 % ¥} = false.

This indicates that nothing can be done before y ;=2 x y tomake z x y odd
afterwards. .

In more complicated cases, the check on implementability of the residual
may be helpful in selecting components to help in the task, and avoiding
those that hinder it.

45

6 Abstraction and Quantification

In previous sections, we have described how to formulate a scientific theory,

and how to use it for reasoning about specifications, designs and implemen-

tations. The method has been {llustrated by a number of separate theories,

which describe computer software and hardware at varying levels of gran-
ularity and abstraction. Reasonidg within a single one of these theories is
somewhat simplified by the assumption that all the predicates involved have
the same alphabet, and that in every law the variables of each predicate have
the same meaning in terms of observations. In this lecture we will begin to
build bridges between the separate theories, and show how to move securely
between their differing levels of abstraction.

We have given one example of a mismatch of alphabet between an imple-
mentation and a specification. This occurs when an implementation needs a
local variable (e.g. a wire) to model the interactions between its components.
Such interactions are an internal feature of the assembly, and they are not
intended to be observable from the outgide: the variable can therefore be
hidden by existential quantification, which reestablishes a perfect match of
alphabets between the implementation and the specification. But this tech-
nique cannot begin to deal with the more general case, for example when the
specification and implementation alphabets are completely disjoint. Quantifi-
cation over the entire alphabet of a predicate leads to a constant value, either
true or false. The first of these is vacuous and the second unimplementable;
they are equally useless for all practical purposes. :

We therefore need to extend the concept of correctness go that it ap-
plies even when the alphabets of the implementation and the specification
are disjoint. For example, we will explain how the gates of combinational
logic networks are actually implemented by transistor networks, even though
their alphabets are disjoint. Sequential circuits are used to implement the
functions of a computer, which must conform to a given architecture. Ma-
chine language programs produced by a compiler must faithfully implement
algorithms expressed in higher level languages. In each of these cases there
is a significant level of abstraction to cross; the observations at each level
of abstraction are of a different nature from those at the next or any other
level. The same mismatch is seen in the natural sciences, where the concep-
tual and observational framework changes (for example) between the quan-
tum, the atomic and the molecular levels. In engineering too, design of a
complex product passes through many levels, from capture and analysig of
requirements through software design and implementation down to selection
and assembly of electronic components. 1t is the crossing of conceptual levels
that presents the greatest risk of subtle and persistent errors: their avoidance
is a major goal of engineering methodology. :

The general technique for crossing a level of abstraction is to define the
way in which an observation at one level of abstraction corresponds to one or
more observations at the other level. This relationship can itself be described

46

by a predicate (often called a linking inveriant)
Lc, a),

which relates an abstract observation a (in the alphabet of the specification)
" to a more concrete observation ¢ (in the alphabet of the implementation).
Let P(c) be a product description“describing concrete observations c. Then
the quantified predicate

e Lc, a) : P(e)

describes all the ways in which the product P can give rise to an abstract
observation a. Let S(a) specify the desired properties of the abstract obser-
vations. Then the correctness of the product is expressed by the implication

[(3¢| L{c,a) : P(c)) = S(a)].

The linking invariant is what ensures complete match between the alphabets
on both sides of this implication.

Note that the predicates P and § are allowed to share observational vari-
ables that are not mentioned in L. However we strictly maintain the restric-
tion that no variable appears in the alphabet of all three predicates P, L,
and S. Such common variables would serve no purpose; they would merely
invalidate a number of laws useful for calculation.

The linking invariant acts like a conceptual component of the concrete
system, translating from concrete to abstract observations. The concrete
variables, since they do not appear in the specification, are then existentially
quantified in the usual way. Indeed, ordinary localisation is a special case,
arising from a linking invariant that is everywhere true; its abstract alphabet
is empty:

Lc) = (c=c).
In the top-down design of an implementation, we want to ask the converse
question: Given a linking invariant L(a, c), what is the weakest description

X(c) of the concrete observations ¢ that will satisfy the specification §{a)
describing the corresponding abstract observations . The answer is

" X(c)=(va| L{e,a) : S(a)).
In a commonly recommended special case, the abstract observation is

fully determined by the concrete one, so that the linking invariant can be
expressed as an equation using a function I

a=f.c

In this case, the concrete specification (“concretion”) can be calculated simply

47

by substitution
(Va| L(c, a) : 5(a)) = (¢ € dom.f = §(f.c)).

If f is a total function, the antecedent can be omitted. Similarly, if the
abstract observation determines the concrete by the function g

(Feclic=g.a: P(;)) = (a € dom.g & P(g.a)).

Tn the case of a total function, both abstraction and concretion have the same
simple effect, namely substitution of a formula for a variable. In continuous
mathematics, such a substitution is known as a change of coordinates.

The algebra of abstraction can be greatly simplified by use of the nota-
tions of sequential composition and its residual. The alphabet of a linking
invariant L can be partitioned into its abstract variables absaL and its con-
crete variables concaL{= aL—abseL). Provided that no variable of P occurs
in the abstract alphabet of L, we define

P;L=3a,c,...| L: P},

where quantification is over all variables ¢, ¢z, . .- in the concrete alphabet
of L. The residual operator is defined by

S%L=(Ya,e,...| L:S),

provided that &S N al = absaL. Here quantification is over all variables in
absal. The alphabets of (P; L) and (§%L) are just the symmetric difference
of the alphabets of their operands:

o P; L) = (aP Fal) = (P N=al)U{aln -aP).

The fundamental Galois connection between (;) and (%) can now be written
as before -

(P; L=>5] if [P=S%I

The converse ~ L of a linking invariant is obtained by just reversing the
roles of the concrete and abstract alphabets, leaving unchanged the meaning
of the predicate. Predicate calculus reveals that

~(SHIL) = (=5; ~ L).
Clearly also
-~ L = L ‘

~ distributes through all Boolean combinators
P; (L1v [2)=P; L1V P; L2, ete.

48

Linking invariants can be composed by sequential composition, under the
usual alphabetic constraints. (L1; L2) is defined just when

allnal2 = absaLl = concal2.
In this case]
absa(Ll; L2) = absal2.
Assuming these constraints, we get associativity
Ly (L2 L3) = (LL; L2); L3,

and all the other axioms of the relational calculus. These include a number
of interesting distribution properties

~(L; M) = (~M);(~ L)

=(L; M) = (~D%(~ M)
~(L%M) = (L) (~ M)
~(L%M) = (M); (~ L)
(LBMYRN = L%(N; M).

6.1 Transistor nets implement logic gates

"The description of a combinational circuit uses the single wire name wl as a
Boolean variable, with just two states, High or Low. The awitching circuit
uses two variables Hw and Lw for each wire, and is capable of describing two

additional states, when the wire is undriven and when it is short-circuited. If

the switching circuit is intended for use as a combinational circuit, it is the
designer’s responsibility to ensure that these additional states never occur.
In that case, we may code the linking invariant for each abstract wire w as

Link,, = (w = Huw & ~w = Lw).
When applied to the negation circuit, this gives the expected resuli:
. ((Hv = Lw) & (Lv = Huw)); (Link, & Link,) = (w = —w).
As an example of top-down design of a transistor network, let us start with

a logic gate specification w = —v. The weakest transistor network satisfying
this specification is

(w = ~0)%(Linky, & Lisk,) = (Hw # Lw & Bv # Lv = (Hv = Lw)).

This specification can be trivially satisfied by connecting w or v to both High
and Low. But that is ruled out by the proof requirement described in 3.2.

49

6.2 Combinational logic implements natural numbers

A combinational circuit may be required to implemment some function on nat-
ural numbers, say addition. The clearest specification is given in terms of
abstract variables 4, B, C ranging over natural numbers:

A=B+C.

N

To implement this specification by means of the voltages on the wires of a
combinational circuit, it is necessary te specify how each natural number is
represented. For practical reasons, the gize of the numbers is usually bounded
by some power of two, 3ay L. The usual binary representation can be speci-
fied as a linking invariant:

BINE = (A=ia" x 2™)
absaBINs = {31:}0
Here the subscripted mﬁables a, are pames of wires in the combinational
circuit. Their desired behaviour is specified by the residual
(A = B + C)%(BIN** & BINS & BINE).

The result can be calculated by sﬁbstitution:

L+1

L L
Z%XZ“:ZbﬂxT-&ZcﬂxZ“.
n=0

n=0 n=0
The usual implementation introduces an internal array of wires dg, dy, ..., dz,
which communicate the carry between components calculating the individual
digits of the result:

doy = 0
dagt ~ = majority (bn, Cn, dn)
n = oddparity (bn, Cn, dn}

where majority (€, ¥.2) = (AP V(FAZ)V (z Az) and oddparity (z,y,2) =
(z Ry #2). . : :

6.3 Sequential circuits implement combinational

Let V and W be wires of a sequential circuit described by S(V, W); their
alues are functions from time to Boolean. Let v, w be Boolean variables
naming the same wires when considered as a combinational circuit. Their
values may be observed at the end of any clock cycle during the operation of
the sequential circuit. The linking invariant describes all the ways that these

30

combinational observations may arise,

LE=3tliv=Vi&w=W,)
abseLK = {v,w}.

The strongest combinational circuit implemented by S is described by
S§; LK.

In the case of the negation circuit
((vt]: We=-V.); LK) = (w = ~w).

Tf this construction is applied to a sequential circuit with different behaviour
on each cycle, its combinational specification becomes non-deterministic. For
example

(Vt|: Wy =-Wi); LK = true.

This says that within the limited conceptual framework of combinational
circuits, it is impossible to predict or contrel the time-varying behaviour of
a genuinely sequential circuit.

The converse question: what is the weakest sequential circuit that imple-
ments a combinational specification C(v, w)? The answer is

Clv, w)BLK =Vt C(V,, We).

The residual operator has the required effect of decorating all the combina-
tional wire names with a single universally quantified subscript, denoting the
time of the observation. Furthermore any sequential circuit which displays
purely combinational behaviour can be written in the form (C(v, w}%LK}
for some combinational predicate C{v, w).

6.4 From transistors to sequential circuits

In a transistor network, if at the end of a cycle a wire is left disconnected from
both High and from Low, it will tend to retain the voltage which it had at the
end of the previous cycle of operation. This tendency can be reinforced to
any desired degree by electronic measures, which need not concern us here. It
is the retention .of voltage that permits sequential circuits to be constructed
from transistor networks. The effect can be described by a linking invariant
between the transistor alphabet {Hw, Lw} and the subscripted variable w;
which describes the same wire in the alphabet of sequential circuits. The
invariant is: ’
SEQ, =V t|: w, = (Hwy V (=Lw: A wer))
& ~wy = (Lw V (--Hwt A=)

51

A simple component in a sequential circuit is the Muller C-element. In
the diagram, unnamed wires are assumed to be hidden.

i
- —d[

—iL

/4

After hiding, simplification and strengthening, the transistor network is de-
scribed by

(Lz A Jzy = Lz) & (Hz A Hy = Hz). (%)
As a sequential circuit, its behaviour is described by
() (SEQ, & LINK, & LINK,).
After simpﬁﬁ;#ﬁion, thiﬁ reduces to
| 2z = majority (T, ¥, 2t—1)-

The output takes the same‘va.lue as its inputs, provided that they agree;
otherwise it retains its previous value unsil they agree again.

6.5 Functions implement relations

Let z be a variable standing for the argument of the call of a function, and
let y stand for its result. The function can often be conveniently specified by
a predicate R(z,y) which relates its argument 7 to its result y. A function
f meets this specification just when its graph is contained in the relation:

(vVz |z € dom.f : R(z,f.2))-
This can be rewritten as (R%.LK), where

LK = (z € dom.f & 3y = f.z)
and absaLK = {z,y}.

I fp(f) describes a functional program with alphabet {f}, the strongest rela-
tional specification which it satisfies is therefore (fp(f); LX), written in full
as:

=R (mgdom.f &y=fz): folf).

This describes the union of the graphs of all functions f satisfying fp(f)-
Working in the oppesite direction, relations can also implement specifica-
tions described in terms of functions. Let fo(f) be such a specification, with
f now serving as an abstract observation. Let z,y be concrete observations
of the initial and final states of a relational program. For these to satisfy the
specification, they must be observations of one of the functions permitted by

Ji B

3f|zedomf&y=fz: fp(f}
This can be abbreviated to '

;s LK.

1f the relational program is run several times on the same initial values z,
different values of y may be observed, provided these are consistent with dif-
ferent functions satisfying fp. The non-determinancy of the specification of
the function allows non-determinism of its implementation.

The final -question is: given a concrete sequential program described by
P{z,y), what is the strongest predicate that describes exactly the functions
implemented by P? There is no general answer to this question. Consider
the predicate

z2=0%&y=0.

This separately satisfies both the functional specifications

f = the identity function
f= the squaring function.

But the conjunction of these two specifications is false, which is certainly not
qatisfied by (z = 0 & y = 0), or anything alse,

6.6 Sequential programsm implement parallel

An observation of a sequential program is described by an alphabet (v, v’) of
initial and primed variables. The alphabet of a parallel program is a pair of
times (start, finish) and a function V which maps each ¢ {(between start and
stop) onto the values of the program variables v at that time. The predicate
which links these observations states clearly the times at which the initial
and final observations are made:

LK = (Vsta.rt =17 & Vﬁnish = TJ').

This link may be used to convert a shared-store parallel assignment to a
sequential one: .

(V:=f.V); LK.
Expanding the abbreviations:

3 V,start, finish | Vggart = ¢ & Vinish =7+
3t, ¢ | start < t < ¢’ < finish
Ve = f.(V:) & changes (V) <1

which reduces to the expected
o =f..

In the simpler theory of sequential programs this predicate is written in
the same assignment notation: v = f.v. The use of the same notation in
two different theories is common in mathematics; it is justified by a clear
mathematical link between their meanings. :

7T Failﬁtes and i’reconditions

The philosophical message of these lectures has been illustrated by a number
of theories drawn from different branches of computing science. In each case,
the simplest possible theory has been selected to make the relevant point.
The time is now ripe to confess some of the problems that we have ignored
go far, and to make suggestions on how they may be overcome. Usually
this requires a more complicated theory; and as usual, it is important to

54

explore the links between the simpler and the more complex theories, so as
to formulate the precise conditions under which the simpler theory can safely
continue to be used.

In a theory that is intended to help in engineering design, it is desirable
. o0 model accurately all the ways in which a product can fail. This often
requires an assumption that failure is observable and denotable by a variable
in the alphabet of the design. It is'only this that enables engineers to prove
absence of failure in a particular design project. If engineers discharge their
primary responsibility to avoid failure, the theory does not have to predict
accurately the other observations that may accompany the failure; it is often
mathematically convenient to leave them wholly arbitrary.)

A powerful general method of dealing with failure is to asscciate a sec-
ond predicate with each design, known as its precondition. This precondition
plays no direct part in describing the behaviour of the relevant component
or system. Rather, it specifies the expected behaviour of the wider envi-
ronment in which the system is embedded. If the environment satisfies the
precondition, the behavioural predicate can be expected to predict the actual
behaviour of the system. Otherwise it can't. Preconditions are an essential
feature of any large scale engineering project, where they formalise the gen-
eral assumptions that can be relied upon in each part of the design. It is the
task of other parts of the design to validate the assumptions. In this way,
responsibility for the correctness of the product can be shared among a large
" team of designers.

In this lecture, we replace the single-predicate model of system behaviour
with a pair of predicates (Pg, P'); the first of these P, is a precondition, and
the second P’ is the behavioural predicate, known as the postcondition; it
has exactly the same function that we have already described. We have seen
the power of disjunction, conjunction and quantification in the construction
of models of computing. We need to define analogues of these operations for
the new predicate pairs. ‘ :

Disjunction represents non-determinism; since we do not know what will
happen, successful use of a non-deterministic product requires satisfaction of
the preconditious of both alternatives:

(Pa, PV (G0, Q") = (Po & Qo, P'V Q').
Cpnjunctit:;n' is defined as'the dual of disjunction
(Po, P') & (Q0, @) = (PoV Qo, (Po = P1) & (Qo = @),

The post-condition states that the behaviour is described by one or both
of the component behaviours, depending on the truth of the corresponding
precondition. But only one of these preconditions needs to be true.

Successful use of parallelism requires satisfaction of the preconditions of
both components. So we need to define a separate parallel operator:

55

(Po, PYI(Qo, @) = (Pa & Qo P' & Q).

The hiding of a variable applies existential quantification both to the
precondition and to the postcondition. Again, this operation has different
properties from existential quantification, and needs a new symbol, say L:

Lz |: (Po, P') = (G |: Po), (3 |: PY)-

Note that the behavioural part of all these definitions is exactly the same
as in the simple case of a single predicate. Indeed, if all the preconditions in a
formula are the same, (say true), then the two-predicate model is isomorphic
with the single predicate.

In single-predicate models, universally quantified implication

(P=q

is used to signify that the product described by P is better than that de-
seribed by @, or at least as good. The reason is that the behaviour described
by P is more predictable and more controllable than thas of @, and therefore
useful for any purpose that Q may be uged for. All the operators defined for
an implementable theory are monotonic with respect to this ordering. This
means that replacement of @ by P as a component of any assembly can only
improve the quality of the assembly. For example, :

if [P = Q] then [P&R= Q& R
and [PVR= QVR]
and [P;R=@Q; R]
and

Tn a two-predicate model, we introduce a new notation P 3 Q (or equiva-
lently Q & P) to stand for the improvement ordering, comparing a predicate
pair P = (P, P') with another @ = {Qo, @)- If P is to be an improvement
on Q, its precondition must allow use of P in all circumstances allowed by
Q, and maybe more, i.e.,

) [Qg = PD]

Fhrthermo_re;'if the precon_dif.ion for Q holds, then P’s behaviour will be more
predictable and more controllable than that of Q

(@ & P' = Q).
The new ordering 3 is defined as the conjunction of these two conditions

P31Q = [Q@=P]&[@&FPo=Q

This definition has the required properties of any improvement ordering:

36

it is a preorder, and all the operators defined so far are monotonic.

PCP '
¥ PCQand QZR then PCR.
¥ PCQ then (PlIR) S (QIR)
and (Lz |: P) S (Lz |: Q)
and ...

In fact, C is a lattice ordering over pairs of predicates, with conjunction and
disjunction as its meet and join.

RcPvQ if RECPad RCQ
PgQCR if PCRand QCR

The bottom element is (faise, true), which is always unusable, and the top
element is (true, false) — clearly unimplementable.

Two descriptions may be defined as equivalent if each is always a valid
replacement for the other:

P=Qif PCQand QL P

Equivalent descriptions may be regarded as effectively equal. This formalises
a previous informal claim that the description of the behaviour of the system
ig irrelevant when the precondition is not satisfied. As a result, we have gen-
eral equivalences

(Po, P') = (Po, Po = P')
(PQ,P') = (PQ,PQ & P').

The introduction of a precondition into the description of a system is
exactly the same as the introduction of a new Boolean variable info its al-
phabet. Let us name this variable “0k”. An observation of its falsity means
that the system has failed through violation of its precondition. So every
 description includes the fact that truth of the precondition ensures the truth
of ok. It also ensures the postcondition. In summary, the pair notation can
be defined simply as an abbreviation

(PP =(Po=(ok & P'Y)

where ok does not occur in P or P'. Now the equations defining conjunc-
tion, disjunction, and ordering among pairs can be proved as theorems about
these single predicates.

Conversely, let Q(ok) be any predicate. We can define its precondition
and postcondition ' :

Qo = ~Q (false) and Q' = Q (true).
It follows that

57

(Qo, Qo =Q and (Qo, QY =(Go= Q).
Indeed, if Q{ok) is monotonic in ok, the translation can be inverted:
Qok) = (Q=> ok & @), i [Q(faise) = Q(true)].

This establishes an isomorphism between predicate pairs and single predicates
which are monotonic with respect to a single new Boolean variable in their
alphabet. :

7.1 Short circuit in a transistor network

A short-circuit is a path of conducting transistors and wires which leads
between the saurces of High voltage and Low voltage. Short-circuits dissipate
both heat and power, which can be injurious to the long term reliability of
_ the whole network. These effects cannot be modelled in a theory as simple
as ours. Designers are fortunately willing to accept an absolute obligation
to avoid short-circuits. Such an obligation can often be coded in a simple
theory by means of a precondition.

In the simple theory described so far, Hw means that the wire w is con-
nected to High through a series of P-transistors with Low gates; and Lw
means that it is connected to Low through a series of N-transistors with
High gates. The restriction on the kind of transistor is needed for reliable
use of the wire to control the gates of other transistors. Unfortunately a
short-circuit can be conducted through an arbitrary interleaving of transis-
tors of both types. .

To control this phenomenon, we need to observe it, and record the obser-
vations in two new variables WHw and WLw associated wire u: they mean
that the wire is “Weakly” High or Low. This is the result of connection to
either source by either kind of transistor, as described by the preconditions
of the transistors given below:

58

g : '
—C{ E | WIg= (WHs = WHd) & (WLs = WLd).

g
_‘_I I: WHg = (WLs = WLd) & (WHs = WHd).

The precondition for connection of a wire to High or Low is that it is not-
also connected to the other.

K WHs & =WLs

WLd & ~WHs

/774

The precondition of a network is the conjunction of the preconditions of
all its components. Consider the example:

59

WHs & ~WLs
& (WLz= WLs) & (WHs = WHz)
& (WHz = WHd) & (WLz = WLd)

& (WLd & ~WHd).

The precondition reduces to false, thereby revealing the short-circuit. The
postcondition is just

—Hz & ~Lz. -

If z is hidden or left foating, this predicate does not clearly predict a short-
circuit. Since the precondition does this job, the content of the postcondition
is fortunately irrelevant.

The more realistic treatment of short circuits is a sigpificant increase in
the complexity of the model. Since strong connection implies weak, there are
now dix states for each wire:

WHw & WLw short-circuit

Huw strongly High

WHw & -Hw weakly High
~WHuw & -WLw floating

WLw & -Luw weakly Low

Lw : strongly Low.

There are many other ways in which transistor network designs can go
wrong. For example, there is an unavoidable resistance and delay to conduc-
tion of voltage through transistors and along wires. This could be modelled
by introducing yet more states for each wire. An alternative practical expe-
dient is just to count the number of transistors, connected source to drain,
which separate an output wire from High or Low. If this never exceeds four,
there is probably some way of sizing and positioning the transistors to make
the whole network reliable and reasonably fast.

60

7.2 Cycles in combinational circuits

The correctness of a combinational circuit depends critically on the avoidance
of cycles in the connections from input wires to output wires. Hitherto, we
have assumed that a check against this error could be made by a syntactic
inspection of the form of the equations or of the diagram picturing the con-
nections. But the same check can be incorporated in the precondition for the
circuit, after introduction of variables to indicate roughly the relative depth
of each wire within the circuit.

If a connection graph is free of cycles, it is possible to ascribe to each wire
w a numeric value Tw, in such a way that the output wire of any gate has a
value strictly greater than the values of all its input wires. For example, Tw
may stand for the time (measured from the start of the cycle) at which the
wire reaches its final value, and remains stable thereafter. Now the precon-
dition of a simple combinational gate simply describes this constraint upon
its input and output wires, for example:

Tr< Tz & Ty < Tz

The precondition of the whole circuit is just the conjunction of the precon-
ditions for all of its gates. If this contradicts the basic property that < is
a transitive irreflexive relation, the precondition reduces to false, indicating
that the circuit is in all circumstances totally useless.

The main reason for this encoding of the acyclic property of circuits is to
permit the easy localisation of wire w by just exdstential quantification over
the variable Tw. The variable can then be eliminated by the laws:

3Tw: Tv < Tw & Tw < Tz) = (Tv < Tz)
(3 Tw |: Tw < Tw) = false, etc.

7.3 TUndefined expressions in assignments

In sequential programming language, consider the assignment

61

z:=1/0.

The expression on the right hand side is meaningless, and the effect of its
evaluation by computer may be either non-termination or an interrupt, or
even perhaps termination with z taking an arbitrary value. None of these
effects can be described in terms of a model at the high level of abstraction
at which we prefer to work. The complexities must be avoided by obser-
vance of an explicit precondition associated with éach assignment, namely
that the expression is defined; for example, the assignment z := f(z, y} has
precondition ({z,y) € dom.f).

The same technique deals effectively with infinite looping or recursion.
The precondition of the loop :

while z#3doz:=2

is obviously that the initial value of z must be three. A general theory of
recursion which achieves this effect is beyond the scope of these lectures.

7.4 Inconsistency in functional programs
Consider the functional program

flz)=0 ifz<3
flz)=1 ifz>3.

These two clauses are universally quantified over z. Consequently, their con-
junction is actually false: there is no function f that satisfies both of them
(what value would it give to f.37). To guard against this paradox, for each
function name f, we must introduce another variable Ef. This stands for a
subset of the domain of the function which needs to be allocated to a given
clause of the function definition; any attempt to define the function outside
its allocated domain is an error.
The precondition of the clause

fl@)=...ib

is that the allocated domain of f is sufficiently large to include the whole of
b; that is expressed by the predicate

(b= Ef).

When two clauses of a functional program are put together, it is essential
that their allocated domains do not overlap. All values of which are allo-
cated to one clauseé must not be allocated to the other, Consider the parallel
composition of two functions with preconditions f1(Ef) and f2(Ef). The
resulting precondition is given by

62

FLUESF) & f2(false) v f1(false) & f2{Ef).
As an example "
(b1 = Ef)||(b2 = Ef) = (b1V 62 = Ef) & (=51 V =b2).

This correctly allocates to the pair of clauses the union of their individual
allocations; it also states that thege allocations must not overlap.

Many functional languages take a less strict view about overlapping of
the conditions on the individual clauses. Clearly, it can be allowed if the
two clauses ascribe the same values to the function throughout the area of
overlap. Some languages are even more generous, and specify that in case of
conflict, the first clause will dominate. The construction of models for these
languages is an interesting exercise.

7.5 Non-deterministic deadlock in communicating pro-
cesses

Consider two processes with alphabet {a, b}
P=g—>P
Q=h—= Q.
These have behavioural descriptions:
P = (traceb = 0)
Q = (trace.a = 0).

Their parallel composition has behaviour defined by the conjunction of these
descriptions, which is equivalent to ‘

trace =<>.

The calculations show eorrectly that the pair of processes will deadlock from
the beginning, and never engage in any observable action.

Now consider a process that is non-deterministic, and may behave either
like P or like Q:

-' ,(P V Q) = (trace.b =QV trace.a = 0).

When this is run in parallel with Q, the conjunction of the specifications
indicates that the behaviour will be the same as that of @

PVQ&Q=(P&QVQ=Q

All possibility of deadlock has disappeared! The clause (P & Q) in the
phrase (P & Q V @) appears to allow an implementation to deadlock; yet
this choice has been ruled out, by adding the alternative @. This is quite

63

wrong. Disjunction with a non-deterministic alternative should make the
behaviour worse, not better.

The standard method of rescuing a scientific theory that is falsified by
particular experiments is to postulate the existence of some neglected factor,
whose observation or measurement would explain the discrepant phenomena.
In the case of Communicating Processes, this factor has to record all the
circumstances in which a process may deadlock. Deadlock occurs when the
environment of the process is prepared to engage in bne or more events in the
alphabet of the process, but the process itself refuses to do so. We therefore
need a new variable, called ref for refusal, in the alphabet of every process:
its value is the set of events refused by a process in some stable state.

The descriptions of the two processes are now extended to include a de-
scription of what they are not allowed to refuse:

P = (traceb=04& a¢€ ref)
Q@ = (trace.a=0& b éE ref).

The definition of parallel composition of two processes with the same alpha-
het states that an event is refused if either of them refuse it

P(reflQ(ref) = 3, slref =rUs: P(r) & Q(s)).
In our example, we still get
P||Q = (trace =<> & ref C {a, b})..

The possibility that this process stably refuses both @ and b simultaneously
is an observable phenomenon (ref = {a,b}), and does not disappear when
further non-determinism is added:

(PV Q@ = (PIQ)V Q) = (trace.a = 0 & (trace.b # 0 = b & ref)).

This illustrates our general account of the solution of scientific problems
by introduction of new “observables”. Many of the most important concepts
of physics have been introduced in this way — mass, energy, force, etc. But
of course, postulation of hidden factors introduces extra complexity into a
theory, as well as removing it one stage further from observable reality. Such

innovations are rightly resisted by the community of scientists, until all al--

ternatives have been explored and found even less attractive.

64

References

[1] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communi-
cating sequential processes. Journal of the ACM, 31:560-599, 1934.

[2] E.W.Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18:453-457, 1975.

[3] C.A.R. Hoare. Proof of correctness of data representation. Acta Infor-
matica, 1:271-281, 1972. ‘

[4] C.A.R. Hoare. The varieties of programming language. In Proc TAP-
SOFT, 351 in LNCS, pages 1-18. Springer, 1989.

[5] C.A.R. Hoare. Conjunction and concurrency. PARBASE 90, 1990.

[6] C.A.R. Hoare. A theory for derivation of combinational C-mos circuit
designs. Theoretical Computer Science, (90):209-251, 1991.

[7] C.A.R. Hoare. Algebra and Models, series F in Program Design Calculi,
volume 118, pages 161-195. Springer, 1993.

[8] C.A.R. Hoare. Programs are predicates. ICOT Journal (38):2-15, 1993.

[9] C.AR. Hoare and M.J.C. Gordon. Partial correctness of
C-mos switching circuits: an ezercise in applied logic, in Proc. 3rd
Ann. Symp. on Logic in Computer Science, Edinburgh 28-36, 1988.

[10] C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal form approach to
compiler design. Acta Informatica, (30):701-739, 1993.

[11] C.A.R. Hoare and L Page. Hardware and software: the closing gap.
Accepted for publication in Transputer Communications, 1994.

65

