A Theory of Programming:
Denotational, Algebraic and Operational
Semantics

C.A.R. Hoare

March 31, 1993

Abstract

Professional practice in a mature engineering discipline is based
on relevant scientific theories, usually expressed in the language of
mathematics. A mathematical theory of programming aims to pro-
vide a similar basis for specification, design and implementation of
computer programs. The theory can be presented in a variety of
styles, including

1. Denota.tibnal, relating a program to a specification of its ob-
servable properties and behaviour.

2. Algebraic, providing equations and inequations for comparison,
transformation and optimisation of designs and programs.

3. Operational, describing individual steps of a possible mechan-
ical implementation.

This paper presents a simple theory of sequential non-deterministic
programming in each of these three styles; by deriving each presen-
tation from its predecessor, mutual consistency is assured.

1 Introduction

A scientific theory is formalised as a mathematical description of

some selected class of processes in the physical world. Observable

properties and behaviour.of such a process can then be predicted
from the theory by mathematical deduction or calculation. An en-
gineer applies the theory in the reverse direction. A specification
describes the observable properties and behaviour of some system
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that does not yet exist in the physical world; and the goal is to de-
sign and implement a product which can be predlcted by the theory
to meet the specification.

This paper proposes a mathematical treatment of computer pro-
gramming in the simple non-deterministic programming language
introduced by Dijkstra {1]. The theory is well suited for use by engi-
neers, since it supports both stepwise development of designs from
specifications and hierarchical decomposition of complex systems
into simpler components which can be designed separately. Fur-
thermore, it permits derivation of a complete set of algebraic laws
to help in transformation of designs and optimisation of programs.
Finally, an operational semantics 4s derived; this treats practical
aspects of implementation and efficiency of execution.

The insights described here were obtained by a study of communi-
cation and concurrency in parallel processes, where the three seman-
tic styles have been applied individually by independent schools of
research to the same class of phenomena. The operational style was
used first {2] to define the Calculus of Concurrent Systems (CCS);
the algebraic style took precedence in the definition [3] of the Alge-
bra of Concurrent Processes (ACP), whereas the denotational style
lies at the basis of the mathematical theory [4] of Communicating Se-
quential Processes (CSP). Many of the detailed differences between
these three process theories originate from their different styles of
presentation. To obtain a synthesis based on a full understanding, it
is helpful to concentrate on a single theory, and present it fully in all
three styles; there 1s the additional hope that their complementary
benefits can be exploited in practice. It is the goal of this paper
to explore the relevant techniques in the case of a simple sequen-
tial programming language, thereby avoiding any controversy that
surrounds the treatment of process algebra.

Not a single idea in this paper is original. The concept of denota-
tional semantics is due to Strachey and Scott [5], and the particular
choice of ordering of non-deterministic programs is due to Smyth
[6]. The embedding of programs as predicates 1s due to Hehner
[7]. The language is essentially the same as that of Dijkstra [1].

"The denotational theory is taken from Tarski’s calculus of relations

[8]. The treatment of recursion in specifications is given by Tarski’s




fixed point theorem [10] and for programs by Plotkin [9]. The al-
gebraic treatment of the language has already been fully covered in
[11]. Even the idea of consistent and complementary definitions of
programming languages goes back at least to [12].

The only originality in the paper is to show simple ways in which
the three presentations of the same language can be derived from
each other by mathematical definition, calculation and proof. The
denotational theory consists just of a number of separate mathe-
matical definitions of the operators of the langnage in terms of the
second-order predicate calculus. These can be individually formu-
lated and understood in isolation from each other. The algebraic
laws can then be derived one by one, without danger of complex or
unexpected interactions. A normal form theorem gives insight into
the degree of completeness of the laws, and permits additional laws
to be proved without induction.

An operational theory is equally easily derived from the algebraic.
First an algebraic definition is given for the basic step (transition
relation) of an abstract implementation; and then the individual
transition rules can be proved separately and individually as alge-
braic theorems, again with reduced risk of complex or unexpected
interactions. The phenomena of deadlock (no transitions) and diver-
gence {an infinite sequence of transitions) are analysed, and shown
to relate correctly to their algebraic interpretation.

As always in such smooth developments, the simplicity is an arte-
fact of many laborious and less successful iterations, mercifully con-
cealed from the reader. Another reason for the simplicity and mod-
ularity of the proofs described above is that they follow the natural
progression from abstract description to concrete implementation. It

is possible (and indeed more usual) to work in the other direction,

starting with an operational presentation. A concept of bisimula-
tion is then selected, permitting the proof of algebraic laws; and a
model can then be derived by a standard initial algebra construction.
A derivation in both directions establishes completeness as well as
cousistency of the three presentations. But that is the subject of
another paper.




2 Observations and Predicates

When a physical system is described by a mathematical formula,
the free variables of the formula are understood to denote results
of possible measurements of selected parameters of the system. For
example, in the description of a mechanical assembly, it may be un-
- derstood that = denotes the projection of a particular joint along the
z-axis, & stands for the rate of change of z, and ¢ denotes the time
at which the measurement is taken. A particular observation can
be described by giving measured values to each of these variables,
for example:

z=14mm A &=Tmm/s A t= 1.5sec.

The objective of science is not to construct a list of actual obser-
vations of a particular system, but rather to describe all possible
observations of all possible systems of a certain class. The required
generality is embodied in mathematical equations or inequations,
which will be true whenever their free variables are given values ob-
tained by particular measurements of any particular system of that
class. For example, the differential equation

& =05 %z, fort53l

describes the first three seconds of movement of a point whose ve-
locity varies in proportion to its distance along the z axis. The
equation is clearly satisfied by the observation given previously, be-
cause

7=05x%x14 and 15<3.

In applying this insight to computer programming, we shall con-
fine attention to. programs in a high level language, which operate
on a fixed collection of distinct global variables

T, Yy 2.

The values of these variables are observed either before the program
starts or after it has terminated. To name the final values of the




variables (observed after the program terminates), we place a dash
on the names of the variables

2y, ..., 2.
But to name the initial values of the variables (observed before the
program starts), we use the variable names themselves, without dec-
oration. So an observation of a particular run of a program might
be described as a conjunction

z=4 A z'=5 A yY=y=T.

This is just one of the possible observations of a program that
adds one to the variable z, and leaves unchanged the values of ¥ and
all the other variables; or in familiar symbols, the single assignment

Ti=x+1.

A general formula describing all possible observations of every exe-
cution of the above program is

2'=z+1 A ¥Y¥=y A...A 2=z

Such a formula will henceforth be abbreviated by the progrdmming
notation which it exactly describes; for example, the meaning of an
assignment is actually explained by the definition

zi=z+1 =y =z+1AyY =yA...A2 ==z

Similarly, a program which makes no change to anything is written
as II (pronounced “skip”) and defined

I =g ' =xzAy=yA...AN2' ==z

In words, an observation of the final state of II is the same as that
of its initial state. - '

Of course, high level programs are more usually (and more use-
fully) regarded as instructions to a computer, “given certain values
of z,y,..., 2, to find values of ', y’,..., 2’ that will make the pred-
icate true”. But for the purpose of our mathematical theory, there




is no need to distinguish between descriptive and imperative uses of
the same predicate.

In engineering practice, a project usually begins with a specifi-
cation, perhaps embodied in a formal or informal contract between
a customer and an implementor. A specification too is a predicate,
describing the desired (or at least permitted) properties of a product
that does not yet exist. For example, the predicate

>z A Y=y

specifies that the value of z is to be increased, and the value of y is
to remain the same. No restriction is placed on changes to any other
variable. There are many programs that satisfy this specification,
including the previously quoted exarmnple

rz:=zx+ 1.

Correctness of a program means that every possible observation
of any run of the program will yield values which make the specifica-
tion true; for example, the specification (z’ > z Ay’ = y) is satisfied
by the observation (z = 4 A2’ = Ay =y = 7). The formal
way of defining satisfaction is that the specification is implied by a
description of the observation, for example

(z=4A2'=5Ay=y=T)=2> (' >zAy =1y).

This implication is true for all values of the observable variables
x’ m” y? y,? .. 323 z':

Vz,..,z' n(z=4 A2 =5Ay=y=T)= @ >zAy =y).
In future, we will abbreviate such universal quantification by Dijk-

stra’s conventional square brackets, which surround the universally
qualified-formula thus ‘

[(z=4A2'=5Ay=y'=T)=(z >z Ay =y))

In fact, the specification is satisfied not just by this single obser-
vation but by every possible observation of every possible run of the




program z =z + 1:
(z=z+)=2'>cAy =yl

This mixture of programming with mathematical notations may
seem unfamiliar; it is justified by the identification of each program
with the predicate which describes exactly its range of possible be-
haviours. Both programs and specifications are predicates over the
same set of free variables; and that is why the concept of program
correctness can be so simply explained as universally quantified log-
ical implication between a program and its specification.

Logical implication is equally interesting as a relation between
two programs or between two specifications. If S and T are specifi-
cations,

[S = T]

means that T is a more general or abstract specification than 5,
and at least as easy to implement. Indeed, by transitivity of impli-
cation, any program that correctly implements S will serve as an
implementation of 7', though not necessarily the other way round.
So a logically weaker specification is easier to implement, and the
easiest of all is the predicate true, which can be implemented by
anything.
Similarly, if P and ¢} are programs,

F=d]

means that P is a more specific or determinate program than @}, and
it is (in general) more useful. Indeed, by transitivity of implication,
any specification met by @ will be met by P, though not necessarily:
the other way round. So a logically weaker program is for any given
purpose less likely to serve; and the weakest program true is the
most useless of all. ‘

The inifial specification of a complex product is usually sepa-
rated from its eventual implementation by one or more stages of
development. The interface between each stage can in principle be
formalised as a design document D. If this is also interpreted as a
predicate, the correctness of the design is assured by the implication




[D = 5]
and the correctness of the later implementation P by
[P = D].

The correctness of P with respect to .S (and the validity of the whole
idea of stepwise development) follows simply by transitivity of im-
plication:

If [P = D] and [D = S| then [P = S].

When a predicate is used as a specification, there is no reason
to restrict the mathematical notations available for its expression.
Indeed, any notation with a clear meaning should be available, be-
cause clarity of specification is the only protection we have against
subsequent misunderstandings of the client’s requirements, which
can often lead to disappointment or even rejection of a delivered
product.

Particularly important aids to clarity of specification are the sim-
ple connectives of Boolean algebra, conjunction (and), disjunction
(or), and negation {(not). Conjunction is needed to connect individ-
ual requirements such as “Temperature must be less than 30° and
more than 27°”. Disjunction is needed to provide useful options
for economic implementation: “For mixing, use either the pressure
vessel or the settling tank”. And negation is needed for even more
important reasons: “It must not explode™.

The freedom of notation which is appropriate for specification
cannot be extended to the programming language in which the ul-
timate implementation is expressed. Programming notations must
be selected to ensure computability, compilability, and reasonable
efficiency of execution. In a given programming language, there
is a limited collection of combinators available for construction of -
programs from their primitive components. Typical components in-
clude assignments, inputs and outputs; and typical combinations
‘include conditionals, sequential composition, and some form of it-
eration or recursion. Tt is for good reason that most programming
languages exclude the Boolean combinators and quantifiers of math-




ematical logic. For example, there i1s no programming language or
compiler that would enable you to protect against disaster by writ-
ing a program that causes an explosion and then av01d explosion by
just negating the program before execution.

A result of these practical restrictions is that, although we can in-
terpret all programs as predicates, the converse is obviously invalid:
not every predicate describes the behaviour of a program. For ex-
ample, consider the extreme predicate false. No observation satisfies
this predicate, so the only object that it could correctly describe is
one that gives rise to no observation whatsoever. From a scientific
viewpoint, such an object does not exist, and could never be con-
structed. The notations of a programming language must therefore
be defined to ensure that they can never express the predicate false,
or any other wholly unimplementable predicate.

This means that we must live with the danger of proposing and
accepting an unimplementable predicate as a specification. Indeed,
any general notational restriction that ensures computability (or
even just satisfiability) could seriously impact clarity and concise-
ness of specification, and so increase the much greater risk of failure
to capture the true requirements and goals of the project. Once
these have been correctly formalised, a check on implementability,
and on efficiency of implementation, may be made separately with
the aid of mathematics or good engineering judgement; and this will
be confirmed in the end by successful delivery of an actual prod-
uct which meets the specification. There is fortunately no danger
whatsoever of delivering an implementation of an unimplementable
specification.

3 The programming language

In this section we shall give a denotational semantics of our simple
sequential programming language in terms of predicates describing
the behaviour of any program expressed in that language. As ex-
plained earlier, the variables z,y,...,2 stand for the initial values
of the like-named global variables of the program, and oy ..., 2
stand for the final values.

Let e, f,..., g stand for expressions such as z+1, 3 xy+z, . that




can feature on the right hand side of an assignment. Clearly, their
free variables are confined to the undashed variables of the program;
and for simplicity, we assume that all expressions always evaluate
successfully to a determinate result. Generalising an example given
earlier, we define a simple assignment,

zi=e =4 2 =eAyY=yA...AZ =1z

The program which makes no change is just a special case
I =y z:==.

A multiple assignment has a list of variables on the left hand side,
and a list of the same number of expressions on the right; it is defined

z,y:=ef = t'=eANy=FfA... A =2

A clear consequence of the definition is that an implementation must
evaluate all the expressions on the right hand side before assigning
any of the resulting values to a variable on the left hand side.

Other consequences can be simply formulated as algebraic laws;
they have very simple proofs. For example

Ti=e = my:=ey
way::erf = ya$:=f:e-

All the definitions and laws extend to lists of more than two vari-
ables, for example

(Zﬂy = g)f) = (xﬁy!"'!z = :L',f,...,g).

In fact every assignment may be transformed by these laws to a total
assignment '

T,Y;e.0s2 3= &[0 g

where the left hand side is a list of all the free variables of the pro-
gram, in some standard order. In future we will abbreviate this to

v:i= f(v)
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where v is the vector (z,y,...,2) of program variables, and f is a
total function from vectors to vectors. Predicates will be similarly
abbreviated

P(v,v) instead of P(z,y,...,2,2,y',...,7).

Any non-trivial prograni is composed from its primitive compo-
nents by the combining notations (combinators) of the programming
language. The run-time behaviour of a composite program is ob-
tained by actual execution of its components — all, some, or some-
times even none of them. Consequently, at a more abstract level, a
predicate describing this composite behaviour can be defined by an
appropriate composition of predicates describing the individual be-
haviours of the components. So a combinator on programs is defined
as a combinator on the corresponding predicates.

The first combinator we consider is the conditional. Let b be a
program expression, containing only undashed variables and always
producing a Boolean result (true or false); and let P and () be predi-
cates describing two fragments of program. A conditional with these
parameters describes a program which behaves like P if b is initially
true, and like @ if b is initially false. It may therefore be defined

Pabp@ =4 (AP)V(-bAQ).
A more usual notation for a conditional is

if b then P else () instead of P b b Q.

The reason for the change to infix notation is that it simplifies the
expression of algebraic laws:

"PdbpbP = P
Pabpr@Q = @a4-bp>P
(debQ)dbbR = Pabb(Qabdbh)
_ = Pabp R
Pabp(Q<cbR) = (PabpQ)dcb(PdbbR)
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The first law expresses idempotence, the second gives a form of skew
symmetry, the third is an associative law, and the fourth states the
distribution of any conditional operator <tb> through the condi-
tional <dct>, for any condition ¢. All the laws may be proved by
propositional calculus; the easiest way is to consider separately the
cases when b is true and when it is false. In the first case, replace
P a4 b b Q by P and in the second case by (. The purpose of the
algebraic laws is to help in mathematical reasoning, without such
tedious case analyses.

The most characteristic combinator of a sequential programming
language is sequential composition, often denoted by semicolon.
(P; Q) may be executed by first executing F and then (). Its ini-
tial state is that of P, and its final state is that of (). The final
state of P passed on as the initial state of @; but this is only an
intermediate state of (P; @), and it cannot be directly observed.
All we know is that it exists. The formal definition therefore uses
existential quantification to hide the intermediate observation, and
to remove the variables which record it from the list of free variables
of the predicate.

P(v,v"); Quv,v') =4 Fv°P(v,v°) A Q(v°v').

Here, the vector variable v® stands for the correspondingly deco-
rated list of bound variables

(z%,4°%,...,2°.

These record the intermediate values of the program variables

(x)y!"")z)’

and so represent the intermediate state as control passes between P
and Q. But this operational explanation is far more detailed than
necessary. A cléver implementation is allowed to achieve the defined
effect by more direct means, without ever passing through any of
the possible intermediate states. That is the whole purpose of a
_more abstract definition of the programming language.
In spite of the complexity of its definition, sequential composition
obeys some simple, familiar and obvious algebraic laws. For exam-
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ple, it is associative and has II as its left and right unit. Finally,
sequential composition distributes leftward (but not rightward) over
the conditional. This asymmetry arises because the condition b is

allowed to mention only the initial values of the variables, and not
the final (dashed) variables.

(P;Q); R=P;(Q; R)
II;P =P = P;1I
(PabbQ@); R = (P;R)<b b (Q; R).

If e is any expression (only mentioning undashed variables), the as-
signment

T i=¢€

changes the value of z so that its final value is the same as the initial
value of e, obtained by evaluating e with all its variables taking its
initial values. So if P(x) is any predicate mentioning z, P is true of
the final value of = in just the case that P is true of e, i.e.,

zi=¢; P(z) = (32°:2°=e: P(x0))
= P(e).

But P(e) is just P with = substituted by e. This substitution effect
generalises to any expression:

(z:=e; f(z)) = fle).
For example

(z:=z+1; Bxz+y<z)) = Bx(z+1)+y <=z).

This convention permits a rightward distribution law for condition-

als:

ri=¢;{PabbQ) = (a:::_e;P)<I:z::=e;bb(x::b;Q).

‘Let P ;ﬁd Q be predicates describing the behaviour of programs. =

Their disjunction (P V @) describes the behaviour of a program
which may behave like P or like ¢, but does not say which it will be.
As an operator of our programming language, disjunction may be
easily implemented by arbitrary selection of either of the operands;
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and the selection may be made at any time, either before or after
the program is compiled or even after it starts execution. Disjunc-
tion is an extremely simple explanation of the traditionally obscure
phenomenon of non-determinism in computing science; and its sim-
plicity provides additional justification for the definition and manip-
ulation of programs as predicates.

All the program combinators defined so far distribute through
disjunction. This means that separate consideration of each case is
adequate for all reasoning about non-determinism. Curiously, dis-
junction also distributes through itself and through the conditional

Pabb(QVR) = (Pabb@Q) V (PdbdbR)

P; (QV E) = (P;Q) v (P; R)
(QVR); P = (@;P) M (R; P)
PV (QV R) = (PVQ v (PVR)
Pv(QabipR) = (PVQ) <«bp (PV R).

As a consequence of distribution through disjunction, all program
combinators also share the property of monotonicity. A function f
is sald to be monotonic if it preserves the relevant ordering, in this
case implication. More formally

[f.X = f.Y] whenever [X = Y.

(Here, X and Y are mathematical variables ranging over predicates,
and the line displayed above is true, no matter what predicates take
the place of X and Y). All program combinators defined so far are
monotonic in all arguments; for example

[X;Y = X'; Y"] whenever [X = X] and [V = Y7].

Monotonicity is a very important principle in engineering.- Con-
sider an. assembly which tolerates a given range of variation in its
working environment. Consider also some one of its components,
which also has a certain tolerance ¢. The tolerance of the whole
assembly can be expressed as some function f of t. The engineer

- usually assumes that f is a monotonic function, so that if the compo-
nent is replaced by one with a broader tolerance #/, then the tolerance
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of the whole assembly will in general also be broader, or at worst,
the same:

[t <t = £(1) < F(#)]

Problems arising from violation of monotonicity are in practice the
most difficult to diagnose and rectify, because they invalidate the
whole theory upon which désign of the assembly has been based.

When faced with the task of implementing a complex specifica-
tion S, it is usual to make an early decision on the general structure
of the product, for example as the sequential composition of two
program components. To formalise and communicate this decision,
each of these components is going to need separate specifications,
say D and E. The correctness of these specifications can be checked
before implementation by proof of tlie implication

[(D; E) = 5], (%)

where the sequential composition between specifications has the
same definition as between programs considered as predicates. Now
what remains is the presumably simpler task of finding two pro-
grams P and ¢ which implement the two designs, i.e.,

[P = D] and [@ = E].

Now all that remains is to deliver the product (P; @). By mono-
tonicity of sequential composition

[P; Q@ = D; Ej,
and the fact that
[(P; @)= 5]

follows by transivity from a proof of the correctness of the design
step (*). What is more, this proof was completed before the start
of implementation of P or Q. The technique can be repeated on the
components P and Q;.and because of monotonicity it extends to all
other program combinators. Their monotonicity is essential to the
general engineering method of stepwise design decomposition. Note
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that designs are expressed in a mixture of programming notations
(for decisions that have already been taken) and more general pred-
icates (for the parts that are specified but still need to be designed).
This is yet another advantage of the philosophy of expressing both
programs and specifications in the same logical space of predicates.

(N

4 Recursion

A final advantage of monotonicity is that it permits a simple treat-
ment of the important programming concept of recursion and of its
important special case, iteration; without this, no program can take
longer to execute than to input. Predicates over a given set of ob-
servational variables may be regarded as a complete lattice under
implication ordering, with universal quantification as meet and ex-
istential as join. The bottom of the lattice is the strongest predicate
false and the top is true. Here we will use bold font to distinguish
true (considered as a program predicate over free variables v, v’)
from italic {rue, which is a possible value of a Boolean expression &
(containing only free variables v).

Moving to a second-order predicate calculus, we introduce a vari-
able X to stand for an arbitrary predicate over the standard set of
first-order variables. Fortunately, all the combinators of our pro-
gramming language are monotonic, and any formula constructed by
monotonic functions is monotonic in all its free variables. Let G.X
be a predicate constructed solely by monotonic operators and con-
taining X as its only free predicate variable. Tarski’s theorem [10]
guarantees that the equation

X=G.X

has a solution for X; and this is called a fixed point of the function

G. Indeed, among all the fixed points, there is a weakest one in the-

implication ordering. This will be denoted by
ApX T GX).
It can be implemented as a single non-recursive call of a parame-

terless procedure with name X and body (G.X). Occurrences of
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X within (G.X) are implemented as recursive calls on the same
procedure.
The mathematical definition of recursion is given by Tarski’s con-

struction:
pX o GX =4 V{X: [X = GX]: X}

where \/ is the lattice join applied to the set of all solutions of
(X = G.X). The following laws state that the join is indeed a fixed
point of GG, and that it is the weakest such.

[G.(pX :: G.X) = (pX = G.X)]
[Y = pX : G.X]| whenever [Y = G.Y).

A simple common case of recursion is the iteration or while loop.
If b is a condition,

while 6 do P

repeats the program P for as long as b is true before each iteration,
More formally, it can be defined as the recursion

(uX = (P; X) < b b 1I).

An even simpler example (but hopefully less common) is the infinite
recursion which never terminates

pX.X.
This is the weakest solution of the trivial equation
X=X

and is therefore the weakest of all predicates, na.mely true. In en-
gineering pra.ctlce, a non-terminating program is the worst of all
programs, and must be carefully avoided by any responsible engi-
neer. That will have to suffice as justification for practical use of a
theory which equates any non-terminating program with a totally
unpredictable one, which is the weakest in the lattice ordering.
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Consider now the program
(X = X); z,y,...,2:=3,12,...,17

which starts with an infinite loop. In any normal implementation,
this would fail to terminate, and so be equal to (pX :: X). Unfor-
tunately, our theory gives the unexpected result

=3 AyY=12 A...A & =11,

the same as if the prior non-terminating program had been omitted.
To achieve this result, an implementation would have to execute the
program backwards, starting with the assignment, and stopping as
soon as the values of the variables are known. While backward ex-
ecution is not impossible (indeed, it is standard for lazy functional
languages), it is certainly not efficient for normal procedural lan-
guages. Since we want to allow the conventional forward execution,
we are forced to accept the practical consequence that the program

(pX 2 X); P
will fail to terminate for any program P; and the same is true of
P; (pX = X).

Substituting (X :: X) by its value true we observe in practice of
all programs P that

true; P = true
P; true = true.

These laws state that true is a zero for sequential composition.
But these laws are certainly not valid for an arbitrary predicate
P. As always in science, if a theory makes an incorrect prediction
of the behaviour of an actual system, it is the theory that must
be adapted; and this usually involves an increase in complication.
That is what requires and justifies introduction of new concepts and
variables, which cannot perhaps be directly observed or controlled,
but which are needed to explain what would otherwise be anoma-
lies in more directly observable quantities. All the discoveries of
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fundamental forces and particles in modern physics have been made
in this way.

In the case of computer programs, the anomaly is resolved by
investigating more closely the phenomena of starting and stopping
of programs. The collection of free variables describing programs
is enlarged to include two new Boolean variables, which are never
allowed to appear in the tekt of the program:

st, which becomes true when the program-has been started,
and is false beforehand.

st’, which becomes true when the program has stopped, and
remains forever false in case of non-termination (and «
fortiori, if program is never started).

While st’ is false, the final values of the program variables are un-
observable, and the predicate describing the program should make
no prediction about these values. Similarly, while st is false, even
the initial values are unobservable. These considerations underlie
the validity of the desired zero laws.

We still maintain the convention that no observation will be made
of the variables while the program is running, so we never observe
that st is true and st' is false, except in the case of non-termination.
This is the essential abstraction from details of execution time, which
permits a separation of concerns between correctness and efliciency
in reasoning about program behaviour. It also permits programs
written for the IBM 704 in 1960 to run correctly on supercomputers
for the present day, in spite of a vast difference in speed.

The variables st and st’ are useful also in specifications of compo-

nents of larger programs. The correctness and even the termination
of a component with specification @ is often dependent on some

assumed properties of the initial values of the variables. This as-
sumption is described by a precondition P, which will be true before
the program starts. The specification can then be written

(stAP)= (st' AQ)
or in words “If the program components start in a state satisfying

P, it will stop in a state satisfying Q.”
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The responsibility for ensuring that P is true at the start is
thereby delegated to the preceding part of the program. If the
assumption is violated, no constraint whatsoever is placed on the
designed behaviour of the subsequent program; it may even fail to
terminate. Successful teamwork in a large engineering project al-
ways depends on appropriately selected assumptions made by the
individual designers, and the corresponding obligations undertaken
by their colleagues. So it is worth while to introduce a special no-
tation

(P, Q) =df (St AP = st'A Q).

This is the primitive notation used by Morgan in [14]. The clear
distinction of precondition P from postcondition ¢} is a distinctive
feature of VDM [13].

Another advantage of explicit mention of starting and stopping
is a solution of the postponed problem of undefined expressions in
assignments. For each expression e of a reasonable programming
language, it is possible to calculate a condition De which is frue in
just those circumstances in which e can be successfully evaluated.
For example

D17 = Dz = true
Die+ f) = DeADf
D(e/f) = DenDfA(f#0).

Successful execution of an assignment relies on the assumption that
the expression will be successfully evaluated, so we formulate a new
definition of assignment

zi=e = (De,2'=e A y=y A ...A2'=2).

Expressed in words, this deﬁﬁition states that
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either the program has not started (st = false) and nothing can
be said about its initial and final values

or the initial values of the variables are such that evaluation
of e fails (=De), and nothing can be said about the final
values

or the program has terminated (st’ = true), and the value of
z' is e, and the final values of all the other variables are
the same as their initial values.

Fortunately, this is the only new definition that is needed; the
definition of conditionals, recursion, and sequential composition re-
main unchanged, and all laws (except those involving assignment)
remain valid. In fact, the laws involving assignment also remain
valid, provided that their variables range not over arbitrary predi-
cates, but only over predicates expressed in programming notations.
For this restricted class of predicates (hereafter called programs), we
will have to prove the unit laws

ILP = P = B, ~ for all programs P
as well as the new zero laws
P;true = true = true; P, for all programs P,

In compensation, the zero laws give an assurance that no programs
can be equal to the unimplementable predicate false, which does not
satisfy them. ,

It is quite easy to check that the zero and unit laws are valid for

the simple case of programs that are assignments, even when these )

are interpreted according to the new definition. This proof can be
extended by structural induction to more complex kinds of program.
A simple example of a lemma needed in this proof is:

If P and @ satisfy the laws
' P true = true = Q;true

then so do (P;Q) and (P <t b b Q).
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The proof of this theorem is also quite simple:

(P;Q);true = P;(Q;true) = P;true = true
(P<bb@)true = (P;true)<.b 1> (Q;true)
= trued b >true = true.

Unfortunately the required additional theorems for the left zero law
and for the recursion operator u are much more difficult to prove.
The relevant mathematics is worked out in the next chapter.

5 The Algebra of Programs.

In this section we confine attention to that subset of predicates which
are expressible solely in the limited notations of a simple program-
ming language, defined syntactically in table 1. The semantic def-
initions have been given in the previous section, and provide the
basis for proof of a number of algebraic laws. Hitherto, these have
been laws which are valid for arbitrary predicates; but now we can
prove additional laws, valid only for predicates which are programs.
To emphasize the algebraic orientation, we shall use normal equal-
ity between programs in place of the previous universally quantified
equivalence

P=@ for [P=Q]

Algebraic laws in the form of equations and inequations have
many advantages in practical engineering. As in more traditional
forms of calculus, they are useful in calculating pararneters and other
design details from more general structural decisions made by en-
gineering judgement. There are good prospects of delegating part.
of the symbolic calculation to a mechanised term rewriting system
like OBJ3[15]. And finally, a theory presented as a set of equations

. is often easier to teach and to learn than one presented as a math-
ematical model. . Differential calculus is much more widely taught
and used than the foundationary definitions of analysis on which it
is based.
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<program> :: = true
<variable list> := <expression list>

<program> < <boolean expression> [> <program>

<program> V <program>

]
|
| <program> ; <program>
|
| <recursive identifier>

|

g <recursive identifier> :1 <program>

In the form (pX ::- P), X must be the only free recursive
identifier in P.

Table 1 Syntax.

That is why each of the formal definitions given in the previ-
ous section has been followed by a statement of its most important
algebraic properties. Proof of these properties is rightly the respon-
sibility of a mathematician; that is the best way of helping engineers,
whose skill lies in calculation rather than proof. The goal is to com-
pile a complete collection of laws, so that any other true law that
may be needed can be derived by symbolic calculation from the orig-
inal collection, without ever again expanding the definition of the
notations involved.

A valuable aid to the achievement of completeness is the defini-
tion of a normal form. This is an expression that uses only a subset
of the primitives and combinators of the language, and only in a
certain standard order. For example, the conjunctive normal form
of Boolean Algebra has conjunction as its outermost combinator,
disjunction next, and negation as its innermost operator. The al-
gebraic laws must be sufficient to ensure that every program in the
language can be transformed by calculation using just these laws
to a program expressed in normal form. There is often a simple
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test of equality between normal forms; so reduction to normal form
generalises this test to arbitrary expressions of the language.

The laws may be classified according to the role that they play
in the reduction to normal form.

1. Elimination laws remove operators which are not allowed in
the normal form. Such laws contain more occurrences of the
operator on one side of the equation than on the other.

2. Distribution laws ensure that the remaining operators can be
rearranged to a standard order of nesting.

3. Association and commutation laws are needed to determine
equality of normal forms which unavoidably admit variation in
their written representation.

For purposes of exposition, we will define a series of normal forms,
of increasing complexity and generality, dealing successively with
assignment, non-determinism, non-termination, and recursion. For
each kind of normal form, we establish the zero and unit laws

P;true = true = true;P

P 1 = P = [P

for all P expressed in that normal form.

5.1 Assignment Normal Form

The first in our series of a normal forms is the total assignment, in
which all the variables of the program appear on the left hand side
in some standard order: :

Tyly.eus® 1= e_)fa” 1 g

Any noﬁ;tétal assignment can be transformed to a total assignment
by vacuous extension of the list, for example:

z,y = e,f) = (z,9y...,2 1= e,f,‘._..,z).

As mentioned before we abbreviate the entire list of variables
(z,y,...,2) by the simple vector variable v, and the entire list of
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expressions by the vector expressions g(v) or A(v); these will usually
be abbreviated to ¢ or h. Thus the normal form will be written

v =g or v := hv).

The law that eliminates sequential composition between normal
forms is

(v == g; v :=h(v)) = (v:= h(g)).

The expression h(g) is easily calculated by substituting the expres-
sions in the list g for the corresponding variables in the list v. For
example

(¢,y = x+1,y—1; 2,y = y,7)
=(z,y = y—1,z+1).

We now need to assume that our programming language allows
conditional expressions on the right hand side of an assignment.
Such an expression is defined mathematically

edebf = e ife
= f if —e.

The definition can be extended to lists, for example

(el,e2)<dc b (f1,f2) = ({el e fl1),(e2<c b f2)).
Now the elimination law for conditionals is

(v :=g)dcb(v:="h) = v :=(gdcbh)

Finally, we need a law that determines when two differently writ-
ten normal forms are equal. For this, the right hand sides of the two
assignments must be equal: '
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(v :==9¢) = (v:i=h) iff [g=Ah]

Of course, if ¢ and h are expressions of an undecidable calculus, the
algebra of programs will be equally incomplete. This means that a
kind of relative completeness has to be accepted as the best that
can be achieved in a calculus of programmming.

5.2 Non-determinism

Disjunction between two semantically distinct assignments cannot
be reduced to a single assignment, which is necessarily determin-
istic. We therefore move to a more complicated normal form, in
which the disjunction operator connects a finite non-empty set of
total assignments

(v i=F)V (vi=g) V...V (v:= h)

Let A and B be such sets; we will write the normal form as \V A
and \/ B. All the previous normal forms can be trivially expressed
in the new form as a disjunction over the unit set

V{v = g}.

The easiest operator to eliminate is disjunction itself; it just forms
the union of the two sets: '

(VA)v(VB) = V(AUB).
The other operators are eliminated by distribution laws
(VA 4bB(VB) = V{PQ: PEAAQEB: (Pab>Q))
(VAx(VB) = V{PQ: PcAAQEeB: (F;Q)}

The right hand sides of these laws are disjunctions of terms formed
by applying the relevant operator to total assignments P and @,
‘which have been selected in all possible ways from A 'and B. Each
of these terms can therefore be reduced to a total assignment, using
the laws of 5.1. Thus the occurrences of ; and <tbb> in the right
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hand sides of the laws given above are also eliminable. Similarly,
the distribution law for composition gives an easy proof of the zero
and unit laws from the same laws for their component assignments;
for example

(V A); V{true} V{P: P€A: P;true}

V{true}

oo

The laws which permit comparison of disjunctions are

VA= R] iff YVP: PE€A: [P= R
[vi= f=>v:i=gV...Vv:=5h]iff [felg...,h}].

The first law is a tautology; it enables a disjunction in the antecedent
to be split into its component assignments, which are then decided
individually by the second law.

5.3 Non-termination

The program constant true is not an assignment, and cannot in
general be expressed as a finite disjunction of assignments.. Its in-
troduction into the language requires a new normal form

true b > P

where P is in the previous normal form. It is more convenient to
write this as a disjunction

bv P.
Any unconditional normal form P can be expressed as
- falseV P
and the constant true as
true V I .

The other operators can be eliminated by the laws
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(bV P)V (cV Q) = (bVe)V(PVQ)
(bvP)ddb(evVQ) = (bddbc)V(PadpQ)
(5V P);(cV Q) = (bV(P;e)) V(P;Q).

The third law relies on the fact that b and ¢ are conditions (not
mentioning dashed variables), and P and @ are disjunctions of as-
signments; from this, it follows that

[b; ¢ = b]
and [b;Q = b].
The law for testing equivalence is

[(bvP) = (ev@Q)] iff [b=¢] and [P=cV Q]

5.4 Recursion

The introduction of recursion into the languages permits construc-
tion of a program whose degree of non-determinism depends on the
initial state. For example, let m and n be non-negative integer vari-
ables in

whilem>0 A n>0do{m :=m—-1 V n:=n—-1).
Informally, the effect of this is described

(myn = 0,n)V(m,n == O,n—1)V...V(m,n := 0,1)
V (m,n = m,0)V(m,n = m—-10)V...V{(m,n := 1,0).

But there is no finite set of assignments whose disjunction can re-
place the informal elipses (...) shown above, because the length of
the disjunction depends on the initial values of m and n.

The solution is to represent the behaviour as an infinite sequence

of expressions |
: S:{i:iGN:S;}.
Each S; is a finite normal form, as defined in 5.3; it correctly de-

scribes all the possible behaviours of the program, but maybe some
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impossible ones as well. So we arrange that each Sy, is potentially
stronger and therefore a more accurate description than its prede-
cessor 5;:

[S;.H = Si], for all 2.

This is called the descending chain condition. It allows the later
members of the sequence to exclude more and more of the impos-
sible behaviours; and in the limit, every impossible behaviour is
excluded by some S;, provided that ¢ is large enough. Thus the ex-
act behaviour of the program is captured by the intersection of the
whole sequence, written

(AS)

For the example shown above, we define the infinite sequence S as
follows

168k =4f tdk>ibi—k

So = m+n=>0

S = m+n>1V (mn = m,0)
vV (myn = 0,n)

Sa = m+n=2

V (m,n = m,0) V (myn := mo6l,0)
V (m,n = 0,n) V (m,n := 0,nE61)

S; = m+n>i
V (Vicimon = mOE,0)
V Vicimon == 0,n k).

Each .9; is in finite normal form. It describes exactly the behaviour
of the program when {m +n) does not initially exceed ¢, so that the
nuimber of iterations is bounded by ¢. The exact behaviour of the
program is described by any .S; with ¢ greater than the sum of the
initial values of m and n. It follows that the predicate describing
the behaviour of the whole program is equal to the required infinite
disjunction.
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AS = Vi(myn = m8k,0) VvV V(m,n = 0,n0k).

The laws for recursion will provide a general method for calculating
the successive approximations S; which describe the behaviour of

any particular loop.

The main justification, of the descending chain condition for &
is that it permits distribution by all the operators of the language
through intersection:

AS)AP = A{S:VP)
(AS)dbbP = A(SiabpP)
PAa4bb(AS) = ANPabBS)
(AS; P A:(Si; P)
P;(AS) = AP 5).

The last two laws require that P also should be expressed in normal
form. Operators that distribute through intersections of descend-
ing chains are called continuous. Every combination of continuous
operators is also continuous in all its arguments. '

Another advantage of the descending chain condition is that a
descending chain of descending chains can be reduced to a single
descending chain by diagonalisation

AN Skt) = A; S

Together with continuity, this gives the required elimination laws
for the three operators of the language

ASHVAT) = A(SVT)
(AS)<4b > (AT) = A(Si<bbT)
ASHAT) = ALSsT.

The occurrence of the operators on the right hand side of these laws
can eliminated by the laws of 5.3, since each S; and T; is finite.
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The continuity laws ensure that descending chains constitute a
valid normal form for all the combinators of the language; and the
stage is set for treatment of recursion. A recursive program is writ-
ten

pX n FX

where F.X contains X as its only free recursive identifier. X is cer-
tainly not in normal form, and this makes it impossible to express
F.X in normal form. However, all the other components of F.X are
expressible in normal form, and all its combinators permit reduc-
tion to normal form. So, if X were replaced by a normal form (say
true), (F.true) can be reduced to (possibly infinite) normal form,
and so can F.(F.true), F.(F.(F.true)),... Furthermore, because F’
is monotonic, this constitutes a descending chain of normal forms.
Since F is continuous, by Kleene’s famous recursion theorem, the
limit of the chain is the least fixed point of F'

(uX = F.X) = A{n: Ft.true}.
For each n
F™ true

can be expressed in normal form, say

/\m Sﬂm ’

By diagonalisation, the right hand side of this equation can be ex-
pressed in normal form. First, all innermost recursions are replaced
in this way and then the replacement can be repeated on the new
innermost recursions, until all recursions have disappeared. The -
whole program is now in normal form.

The only remaining worry is that it is an infinite normal form,

so the rediiction can never be completed. Nevertheless, every one of

the finite approximations can in principle be calculated in a finite
time. From a mathematical point of view, the principle is good
enough. No-one would wish to perform the calculations in practice,
even with the aid of a computer. :
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6 Operational Semantics

The previous chapters have explored mathematical methods of rea-
soning about specifications and programs and the relationships be-
tween them. But the most important feature of a program is that
it can be automatically executed by a computing machine, and that
the result of the computation will satisfy the specification. It is
the purpose of an operational semantics to define the relation be-
tween a program and its possible executions by machine. For this
we need a concept of execution and a design of machine which are
sufficiently realistic to provide guidance for real implementations,
but sufficiently abstract for application to a variety of real comput-
ers. As before, we will derive this new kind of semantics in such a
way as to guarantee its correctness.

In the most abstract view, a computation consists of a sequence
of individual steps. Each step takes the machine from one state m
to a closely similar one m'. Each step is drawn from a very limited
repertoire, within the capabilities of a simple machine. A definition
of the set of all possible steps simultaneously defines the machine
and all possible execution sequences that it can give rise to.

The step can be defined as a relation between the machine state
before the step and the machine state after. In the case of a stored
program computer, the state can be analysed as a pair (s, P), where
s is the data part ascribing actual values to the variables z,y,..., z,
and P is a representation of the program that remains to be exe-
cuted. When this is II, there is no more program to be executed;
the state (¢, II) is last state of any execution that contains it, and ¢
defines the final values of the variables.

It is extremely convenient to represent the data part of the state
by a total assignment

TyYe..nz 1= kol .,m

where k,I,...,m are constant values which the state ascribes to
z,Y,...,2z respectively. We also introduce an improper machine
state 1, representing a machine that cannot be used (perhaps be-
cause some previous program never terminates); it is identified with
program true. If s is an initial state interpreted as an assignment,
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and if P is any program interpreted as a predicate, (s; P) is a pred-
icate like P, except that all occurrences of undashed program vari-
ables have been replaced by their initial values. It is therefore a
description of all the possible final data values of any execution of
P started in s. If t is any other data state

[(10) = (s; P]

means that the final state (¢,1I) is a permitted result of execution
of P. Furthermore,

[t;Q = s; P]

means that every result of executing @ starting from data state ¢ is
a permitted result of executing P from state s. If this implication
holds whenever the machine makes a step from (s, P) to (¢,Q), the
step will be correct in the sense that it does not increase the set of
final states that result from the execution; and if ever a final state
is reached, that will be correct too.

The symbol — traditionally denotes the execution step relation.
We define it by giving the necessary and sufficient condition for its
correctness:

(5, P) = (t,Q) =¢ [(£Q) = (sP)].
* The following theorems are now trivial

(s,z =€) — ((z = (s;¢)),1D)

The effect of an assignment z := e is to end in a final state, in which
z is assigned a constant value (s;e) i.e., the result of evaluating e
with all variables in it replaced by their initial values.

(s,(IQ)) — (5,Q)

Allin fro'ri‘t"of a ptograﬁ Q is immediately discarded.
(s, P; R) - (£, @Q;R), - whenever (s, P) — (¢,Q)
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The first step of the program P; @ is the same as the first step of P,
with @ saved up for execution (by the preceding law) when P has
terminated.

(3, PV Q) — (s, P)
(s, PV Q) - (5,Q)

The first step of the program (P V @) is to discard either one of
the components P or (). The criterion for making the choice is
completely undetermined.

(,PabpQ) — (s P) whenever s; b

(s, Pab @) — (5Q) whenever s; b

The first step of the program (P <1 b i @) is similarly to select one
of P or , but the choice is made in accordance with the truth or

falsity of (s; 5), i.e., the result of evaluating b with all free variables
replaced by their initial values.

(s, 0 X : F.X) — (s, F(pX :: F.X))

Recursion is implemented by the copy rule, whereby each recursive
call within the procedure body is replaced by the whole recursive
procedure.

(s, true) — (t,Q) for any t,Q
(L, P) - (t,Q) for any ¢,Q.

For the undefined state 1 and the undefined program true, any
transition is possible.

There is one law that is deliberately missing from the above hst,
namely the vacuous law

(,P) = (s,P).

This law would permit an implementation at any time to make an
infinite sequence of steps, each of which leaves the machine state
unchanged. Traditionally, in the definition of operational semantics,
the possibility of infiniteé computations is ignored.
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Conclusion

This paper has recommended three distinct approaches to the con-
struction of theories relevant to computing — the operational, the
algebraic, and the observational. They have each an important dis-
tinctive role, which can and should be pursued independently by
specialists. But the full benefits of theory are obtained by a clear
and consistent combination of the benefits of all three approaches.
The method of consistent combination has been illustrated by ap-
plication to a very simple programming language for expression of
sequential algorithms with possible non-determinism. This is only
a small part of the total task of clarifying the foundations of Com-
puting Science.. "

We will need to build up a large collection of models and al-
gebras, covering a wide range of computational paradigms, appro-
priate for implementation either in hardware or in software, either
of the present day or of some possible future. But even this is not
enough. What is needed is a deep understanding of the relationships
between the different models and theories, and a sound judgement
of the most appropriate area of application of each of them. Of
particular importance are the methods by which one abstract the-
ory may be embedded by translation or interpretation in another
theory at a lower level of abstraction. In traditional mathematics,
the relations between the various branches of the subject have been
well understood for over a century, and the division of the subject
into its branches is based on the depth of this understanding. When
the mathematics of computation is equally well understood, it is
very unlikely that its branches will have the same labels that they
have today. The investigations by various schools, now labelled as
CSP, CCS, ACP, Petri Nets, etc., will have contributed to the un- -
derstanding which leads to thelr own demise.

The establishment of a proper structure of branches and sub—
branches is essential to the progress of science. Firstly, it is essen- .
tial to the efficient education of a new generation of scientists, who
will push forward the frontiers in new directions with new methods
unimagined by those who taught them. Secondly, it enables individ-
nal scientists to select a'narrow specialisation for intensive study in a
manner which assists the work of other scientists in related branches,
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rather than just competing with them. It is only the small but com-
plementary contributions made by many thousands of scientists that
has led to the achievements of the established branches of modern
science. But until the framework of complementarity is well under-
stood, it is impossible to avoid gaps and duplication, and achieve
rational collaboration in place of unscientific competition and strife.
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