s e

T
'

Teny

f)‘féi 885\4" ""ﬂﬁ l“w f”“e’{grzv\ X
Na{@ &3 273 &

L'k?./zf g-{ X

it

SO\)OHH@A 'Lo —5 AcM)

/ﬁ-@{/&.«'v& FAl

- A Theory of Asynchronous Processes
Mark B. Josephs, C. A. R. Hoare and He Jifeng

Ozford University Programming Research Group

February 11, 1989

Abstract. A theory of asynchronous processes (nondeterministic data flow net-
works) is presented. It consists of a mathematical model and a process algebra.
The intention is to provide a better theoretical underpinning to the Jackson Sys-
tem Development method. The model is so constructed as to be compatible with
the failures model of Hoare’s Communicating Sequential Processes. The process
algebra describes the laws that govern a collection of CSP-like operators, conve-
nient for constructing asynchronous process networks from their components, The
operators are defined in terms of the model and so their algebraic properties can be
verified. As in CSP, the laws are sufficiently complete to transform every network
to a sequential form. This is important for a design method like JSD, where the
resulting programs must be implemented on a traditional sequential computer:.

Categories and Subject Descriptors: F.1.0. [Computation by Abstract De-
vices]: General; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages-algebraic approaches to-semantics, denotational seman-
tics

General Terms: Theory

Additional Key Words and Phrases: Asynchronous processes, data flow networks,

JSD, CSP, failures model, process algebra

This research was undertaken on the Software Engineering Project at the Oxford Uni-
versity Computing Laboratory. The project is funded by the Science and Engineering
Research Council of Great Britain.

Authors' current address: Oxford University Computing Laboratory, Programming Re-
search Group, 11 Keble Road, Oxford OX1 3QD, UK.

1 Introduction

An asynchronous process is one which communicates with its environment
on buffered channels of unbounded capacity. This paper models such pro-
cesses as a subset of Communicating Sequential Processes [2, 3, 7], defined
by certain additional closure properties. Each asynchronous process is char-
acterized by its failures (traces and refusal sets) and its divergences, as in
CSP; but the refusal set is simplified almost out of existence. The closure
properties are expressed by insisting that the traces of a process can always

be reordered in certain ways.
The advantages of modelling asynchronous processes within CSP are

1. Many theoretical results concerning CSP, including some algebraic
laws, remain valid for asynchronous processes.

2. Systems with a mixture of asynchronous and synchronised communi-
cation become amenable to formal reasoning.

3. The relation between the model and the reality of processor networks
is well understood.

The disadvantage is that we cannot deal with traditional problems of fair-

ness.-

The objective of this study is to provide a better theoretical underpin-
ning to the Jackson System Development method [9, 5], which is currently
used to advantage in commercial and real-time programmmg prOJects Pos-
sible applications of the theory 1nclude

1. More expressive methods for specifying i'eciuiremerits.

2. More powerful transformation strategies for takmg the requirements
down to efficient 1mp1ementat10n

3. The solution of certain practical problems that have come to light in
the application and implementation of JSD.

This paper models the communication aspects of a JSD process network.
It formalizes the description in [5] of JSD processes communicating asyn-
chronously.

Summary

In section 2 we introduce and explain the definition of an asynchronous
process, in terms of its traces, its failures and its divergences; these musf
satisfy certain closure properties. The relationship between this and the
failures model of CSP is established. In section 3, we define for asyn-
chronous processes a collection of CSP-like operators. In each case it is
necessary to prove that these operators preserve the closure properties of
their operands, so that a network constructed from asynchronous processes
is itself an asynchronous process. The algebraic laws satisfied by asyn-
chronous processes are also investigated. The relationship with previous
work is summarised in the conclusion. :

2 - A Mathematical Model

2.1 Channels

Let In and Out name disjoint sets of input channels and output channels
respectively, connecting a particular process to its environment. Typical
channels will be denoted by a, b € In and ¢,d € Out. Data consists of val-
ues denoted by variables v, w € V. An input event a.v € In_Com records
the environment sending along channel a the value v to the process. An
output event ¢.v € Out_Com records the environment receiving on channel
¢ the value v from the process. For.an asynchronous process, each channel
acts as a buffer of unbounded capacity. Thus these events performed by
the environment precede or follow the actual receipt or transmission of the
value by the process. These latter events are hidden from the environment.
The set Com = In_Com U Out_Com consists only of the communications
with the environment. This is the alphabet of the process, in the sense of
CSP.

2.2 Finite Sequences of Events

A tracet € Com* is a finite sequence of events in which a particular process
might participate with its environment. After engaging in ¢, the environ-
ment may be unable to obtain further output from the process. Usually
this refusal arises because the output channels of the process are empty

and remain so, at least until the environment has supplied further input.
In this case, t is called a quiescent trace [13, 10]. However, a refusal may
also arise because the environment is always pre-empted by hidden events
(infinite chatter) from receiving data from the output channels. In this
case, ¢ is called a divergence {3, 7]. (We say that the process is capable
of diverging.) In either case, the trace ¢ is a failure of the process. We
will model an asynchronous process as a pair of sets, the set F of all its
failures and the set D of all its divergences. Clearly, the sets must satisfy
the condition D C F.

Consider a process which is capable of outputting forever. This means
that the process can engage indefinitely in hidden events, in which the pro-
cess transmits new data along its output channels. These hidden events can
always pre-empt the receipt of data from those channels by the environ-
ment. We therefore conclude that a process which is capable of outputting
forever is also capable of diverging.

2.3 Reordering of Traces

It is sometimes possible to reorder a trace without affecting the behaviour
of a process. Consider the following three cases:

1. Suppose the environment sends to a process a value v along some
input.channel a and then sends it another value w along a different
input channel 6. This is recorded by the trace {a.v, b.w). Both values
will eventually become available to the process, but as a consequence
of buffering by the two channels the process will not be in a position.
to determine which value was sent first. Whatever the process does
next would still have been possible had the environment sent the value
-w first. We say that (b.w, a.v) reorders {a.v, b.w) and write

Vlr(b‘-w:a-v) C {a.v, b.w).

2, Suppose the environment receives from a process a value v along some
output channel ¢ and then receives another value w along a different
output channel d. This is recorded by the trace {c.v, d.w). Buffering
on the channels means that the process might have transmitted these
values in either order. In particular, the environment could have re-
ceived the value w first. Furthermore, the actual receipt of a message

4

by the environment cannot affect the behaviour of a process. We have
that

{(daw,c.v) C {e.v,d.w).

3. Suppose the environment receives from a process a value v along
some output channel ¢ and then sends to the process a value w along
an input channel a. This is recorded by the trace {¢.v,a.w). The
process did not require input to be available on channel a in order
for it to transmit v on channel ¢. The behaviour of the process might
therefore have been unaffected had the environment sent the value w
first. We have that '

{a.w, c.v) C {c.v,a.w).

A formal definition of s C ¢ is as the smallest binary relation on finite

sequences of events with the above three properties, together with

4. It is a pre-order, that is, a reflexive and transitive relation.
5. It is respected by catenation:

sCsAtCt=>sTtC st

Thus s C ¢ (s reorders t) means that s is obtainable from ¢ by moving
inputs before outputs, and by changing the interleaving of communications
on distinct channels. (The possibility of reordering traces was recognized by
Misra [13]. Chandy [6] has also defined a similar relation between traces.)
Exercise How might the reordering relation be extended to model lossy
input and output channels? O

2.4 Failures

Not all sets of failures define an asynchronous process; the set must satisfy
certain closure properties, defined with the aid of the reordering relation C.
For a set F' to define an asynchronous process we require that a reordering
of a failure is itself a failure:

F#PAN(sCtAteF=scF). (1)

5

Further closure conditions will be given later. _

Note that reordering a failure involves shifting input left and output
right. The only proviso is that a communication on a given channel may
not be shifted past another communication on the same channel. Thus each
failure may be reordered to one in which all input occurs before all output,
all communications on a given channel are contiguous, and the relative
ordering among input and among output channels is arbitrary. Failures
in this form resemble the history functions of Kahn [11]. They are the
minimal elements of the C relation, and serve as a kind of normal form.
Unfortunately, the Brock-Ackermann anomaly 1] shows that they do not
constitute an adequate semantics for asynchronous processes. In effect, our
model goes to the opposite extreme: each process is effectively defined by
its maximal failures, because the other ones can be restored by the closure
condition.

The following properties will be used later.

Proposit_ii)n 1 Let S C Com®* and C C Qut. If S 1s closed under C, then
sois {s | C | s € S}, where s| C removes from s all output events on all
channels in C. O

From the failures of a process it is possible to derive the set F of all its
traces. These are just the prefixes of its failures,

seFodteF.s<t.

To check that this definition is reasonable, we need to consider the case of a
process-that can output forever. Suppose such a process has engaged in any
sequence s of output events. If the process remains capable of outputting
indefinitely, then as we have already observed it is also capable of diverging,
The trace s is a divergence, which is a failure as required. (Misra [13] chose
instead to introduce infinite quiescent traces in modelling processes that

can always output.} ,
From the definition we have that ¥ is closed under both < and C:

Proposition 2 (e FA(s<tAateF=scF). O

Proposition33§tAteﬁ':>s€F. O

Two additional closure conditions are conveniently expressed in terms
of the traces F of an asynchronous process. First, because input channels
have unbounded capacity, a trace can always be extended by an input event:

seFP=>s"(av)eF. (2)

As a result In_Com* C F. Second, if a process is not capable of diverging,
then it must become quiescent after a finite sequence of outputs and no
inputs have been recorded:

s€ P =3te Out_Com’. s tEF. (3)

2.6 Divergences

The set I of divergences of a process must also satisfy certain closure
properties. Divergence cannot be avoided by reordering a trace:

sCtAteD=se€ D, (4)

A process that diverges after the environment has received data from it
may diverge before the environment receives that data:

s {evyeD=>seD, (5) .

Thus, if s is a divergence, so is s restricted to its input events:
Proposition 4 seD=s[IneD. 0O

The remaining two closure conditions are necessary for consistency with
the failures model of CSP (3, 7]. They also facilitate the algebraic treat-
ment of asynchronous processes presented in section 3. A process that can
engage in an unbounded amount of output before requiring input from the
environment is considered capable of diverging:

seFA(NReEN. 3t€Out_Com*. #t>nAs"teF)=>seD. (6)

A process that can diverge is so undesirable that we shall effectively treat
its behaviour as undefined. It is modelled as the totally chaotic process,
that is, it may do anything whatsoever or fail to do anything whatsoever:

seDAs<t=teD. : (7)

7

A surprising (and perhaps undesirable) consequence of this condition is
that any process which performs only output, and never waits for input, is
modelled as the totally chaotic process. '

Another way of regarding the divergence set is as follows. Misra [13]
introduces the concept of an operating region. An operating region repre-
sents a “precondition” which the environment guarantees to meet. If the
environment fails to meet the guarantee, the behaviour of the process is
undefined - a particular implementation of the process might behave in an
entirely arbitrary fashion. Our divergence set is therefore nothing but the
complement of Misra’s operating region.

In summary, we have characterized an asynchronous process by its fail-
ures F and its divergences D, which must satisfy conditions (1)-(7).

2.6 Refinement

Refinement involves replacing a process representing the specification of a
system by a more deterministic process representing the implementation.
Let P; = (F;, D;),i = 1,2. Py is refined by P, if Py D Py, that is, Fy 2 /7y
and Dy D D,. Refinement is a partial order with least element Chaos =
(Com*, Com*).

In section 3, the asynchronous processes denoted by the terms of our
process algebra will satisfy a further condition, namely, a process can ex-
hibit unboundedly nondeterministic behaviour only if it is also capable of
diverging. That is, a trace that is not a divergence can only be extended
by one of a finite set of output events:

s€F—D={cve Out_Com|s" {c.v) € F} is finite.

When restricted to such processes, refinement is a complete partial order.

2.7 Rélationship with CSP

In this section we show how every asynchronous process can be modelled as
a. CSP process, and every CSP process can be converted to an asynchronous
process. The whole section should be omitted by a reader not familiar with
CSP. _

In CSP, a failure is a pair (s, X) where s is a trace and X a set of events
(a refusal set). In our model of asynchronous processes the refusal set has

8

been simplified almost out of existence. However, for a given asynchronous
process P = (F,D), it is still possible to obtain the corresponding CSP
process P~ as follows.

The CSP process P~ has the same set D of divergences. Suppose s
is a divergence of P. Then {s,X) is a failure of P~ for any set of events
X because a process capable of diverging can refuse anything whatsoever.
Suppose instead s is simply a trace of P. Certainly after s no input event
can be refused, so X can only consist of output events. Moreover, if P were
to become quiescent after a further sequence t of output events, then after
s the environment would be able to obtain the first output event on any
channel ¢ recorded in ¢. More formally, (s, X) is a failure of P~ if and only
if the following condition is met:

seDv
(s€ FAXCOut_Com A
(3t € Out_Com*. .
sTteF AXN{cv€ Out_Com | {v) <(t] ¢)}=10)),

where ¢ | ¢ is the sequence of values on channel ¢ recorded in ¢.
The validity of this transformation is established by the following the-
orem.

Theorem 1 If P is-an asynchronous process, then P~ is a CSP process.
Furthermore, Chaos™ is the chaotic process of CSP and P 2 Q implies that
P¥2Q~in CSP. O

In fact, ~ is an isomorphism from the set of asynchronous processes fo
a subset of CSP. Any CSP process @ can be converted to another CSP
process @' by attaching an unbounded buffer to every input and output
channel. Because a chain of unbounded buffers is also an unbounded buffer,
it is the case that Q@** = Q*. An asynchronous process is essentially a CSP
process having the property @' = @Q:

Theorem 2 If P {s an asynchronous process, then (P~}* = P~. Con-
versely, if Q@ ts a CSP process salisfying Q* = Q, then there exisis an
unique asynchronous process P such that P~ = Q. O

A fuller treatment of this comparison will be given in another paper.

3 Process Algebra

In this section, we take an algebraic approach to asynchronous processes.
We investigate the properties of a collection of operators from which pro-
cesses can be constructed. The operators are defined in terms of the model
of section 2 and preserve the closure properties of their operands. All the
operators are continuous and so the meaning of a recursion u X.F(X) is
the least fixed point (1,50 F*{Chaos) of F.

3.1 Nondeterministic Choice
The process P; I P, behaves nondeterministically like Py or Ps.
Py Py = (FLUFy, DU D).

The nondeterministic choice operator is commutative, associative, idempo-
tent and has Chaos as a zero. Also note that refinement can be defined in
terms of nondeterministic choice:

(PNQ=P) & (P2Q).

3.2 Stop

We have already met the process Chaos which diverges immediately. Stop is
a process with a more deterministic behaviour. It represents the behaviour
of a deadlocked process: it will never output or diverge. Of course, its input
channels can always accept more data. Formally,

Stop = (In_Com*,).

3.3 Prefix

There are two forms of prefixing, which are described below.

Input prefix

The process a?z; P{z) will behave like P(v) once v has been input at a.
Let P(v) = (F(v), D(v)), for all v € V. Then, a?z; P(z) = (F’, D'), where

10

1. If ¢ is a divergence of P(v), for some v € V, then {a.v) "t is a
divergence of a?z;P(z), and so is every reordering of it:

teD o 3Jve V,te D). t'C{av)”

2. The process a?z; P(z) refuses to output until the environment satisfies
its demand for input on channel a. So () is one of its failures and so is
every sequence of inputs on all other channnels. Also, if ¢ is a failure
of P{v), for some v € V, then {a.v} "t is a failure of a?z; P(z), and
so is every reordering of it:

e Fle (Helno O’om*/\t’[‘{a}—())v
(Ave V,te Fv). ¢ C (a.v) " t).

Laws
As in CSP, prefixing with an input event is distributive, that is,

a?z;(P(z) N Q(z)) = (a?z; P(z)) N (a?z; Q(z)). [Law 1]

A process that waits for input on channel @ and then deadlocks cannot be
distinguished from the process Stop, since data is always accepted on any
input channel. Thus, input prefixing has Stop as its zero:

alz;Stop = Stop. [Law 2.]

On the other hand, a?z; Chaos cannot diverge before input is recewed on
channel a and so is distinct from the process Chaos.

If a process must wait for input on two different channels before it can
continue, it does not matter which of the two channels it waits on first:

alz;bTy; P(z,y) = bly;a?z; Pz, y). [Law 3.]

Output prefix

The process ¢lv; P is capable of outputting v on ¢ before behaving like
P. Because of buffering on the channel ¢, the visible effect of this output
might be delayed until after some communications on other channels. Let
P == (F, D). Then, clv; P = (F', D'}, where

11

1. If ¢ is a divergence of P, then {c.v) "¢ is a divergence of ¢!v; P, and so
is every reordering of it. Further, if P can diverge without the envi-
ronment ever receiving output from ¢, so can c¢lv; P (ie., the output
may be buffered by the channel, and then P may diverge before the
message is delivered). After divergence anything is possible, including
the environment receiving any value from e:

teD«wIteD. (ti{ct=0At<t)V(#C{cv) 1),

2. If P may refuse to output after ¢, then ¢lv; P may refuse to output
after {c.v) 7 ¢, where the prefix {¢.v) shows that the environment has
received the initial output v of the process from the channel ¢:

teFeoteD v(FteF.t'C {cv) "t}

Laws
As in CSP, output prefixing is distributive, that is,

clvi (PN Q) = (clv; P) 1 (elv; Q). [Law 4.]

We have defined output prefixing in a way that allows a process that is
capable of diverging to “corrupt” any values buffered by its channels, before
the environment has received them. As a result, output prefixing is strict,
that is, it has Chaos as its zero.

clvy; Chaos = Chaos. [Law 5.

This means that every recursion should be prefixed by at least one z'npﬁt

(outputs will not do).
The order in which a process transmits messages on distinct channels

does not determine the order in which the messages are received by the
environment:)

clvsdlw; P = dlw;clv; P, [Law 6.]
Here are some examples of output prefixing: .

X1. The process ¢l0; Stop outputs 0 once on channel ¢, and then deadlocks.

12

X2. The process ¢!0;cl0; Stop outputs O twice on channel c.
X3. The process p X. {a?z; clz; X) copies data from channel a to channel ¢.

X4. The process p X. (¢!0; X} is equivalent to Chaos.

In the last example the successive approximations to the fixed point are
Chaos, ¢l0; Chaos, ¢!0;¢l0; Chaos, etcetera. All of these are equal to Chaos,
and so is their fixed point.

3.4 Guarded Choice

The guarded choice operator is similar to the ALT construct of Occam [8].
A guarded process G is of the form

skip—P or alz—P{z).

If S is a finite set of guarded processes, a guarded choice (written [S])
is a process that selects one of the set in accordance with the following
rules. If input is available on a channel a, then any process guarded on
that channel may be selected. Whether or not input is available, any skip-
guarded process may be selected. If no input is ever available on any of the
input channels acting as guards, then selection of a skip-guarded process
(if there is one) cannot be indefinitely delayed. Thus the skip guard acts
like a hidden event in CSP, or a 7 event in CCS [12]. (Note that we could
if we so wished define an output-guarded process clv— P so that it was
equivalent to the skip-guarded process skip—clv; P.)

With each guarded process G € S, it is convenient to associate a set
F(G) of failures and a set D(G) of divergences. If P = (F, D), then

F(skip—P)=F
D (skip—P) = D.
If P{v) = (F(v), D(v)), for all v € V, then
t' e Fa?z—P(z)) & Jve V,i e F(v). t'C {a.v) "¢
t' € D(a%z—P(z)) & Jve V,t € D(v). ' C{a.v) "¢,

We shall also write skipfree(S) to mean that S contains no skip-guarded
processes, and chan(S) for the set of input channels on which processes in.
S are guarded. Then, (S| = (F', D') where

13

1. If any guarded process of S can diverge, [S] can diverge in the same
circumstances:

D' = UGeS D(G)-

2. Since any skip-guarded process of S may be selected nondeterminis-
tically, all its failures are included in the failures of [S]. If there are
no such processes, [S] will refuse to output until at least one input is
available on at least one of the channels in chan(S). After input on
one such channel has occurred, the failures of [S] will include those
of any of the processes guarded on that channel:

t € F' & (t € In_Com* A skipfree(S) At | chan(S) = (}) Vv
(AGe 8. te 7(q)).

In future, the symbol O will be used to separate the guarded processes
in § whenever they are listed. — binds tighter than 0. So, for example,

[GoS]={{G}uS] and [GiOG.0Gs) = [{G1, Gz, Gs}).
X5. The process that merges input from channels ¢ and b onto channel ¢
is '
pX.[atz—elz; XObTy—ely; X

As in CSP, this is a fair merge; if the process supplying data to one of the
input channels indefinitely delays doing so, the merge process will success-
fully copy from the other input channel to ¢ for as long as required.

Laws
Guarded choice distributes through nondeterministic choice:

[skip—(P N Q) 18] = [skip— PO 8] N [skip— QOS] [Law 7.]

[a?z2—(P(z) N Q(z)) OS] [Law 8.]
= [a?z—P(z)08] N [e?z—>Q(z)OS].

If there are no guarded processes to choose between, the process deadlocks:

[] = Stop. | [Law Q.j

14

Choice with only one alternative is no real choice at all:
[skip—P| = P [Law 10.]
[a?a—P(z)] = a?z; P(z). [Law 11.]

A skip-guarded process may be selected nondeterministically at any time:

[skip—POS]| 2 P. [Law 12.]

In particular, [skip— ChaosO S| = Chaos. The offer of a guarded process
that deadlocks can be withdrawn in an implementation, because the re-
sulting process will only be an'improvement:

[skip—Stop1S] 2 [S] [Law 13.]

[a?z—Stop1S] 2 [S). [Law 14.]
The choice between skip-guarded processes is nondeterministic:

[skip— PDskip—QO S| = [skip— (PN Q)1IS]. [Law 15.]
In particular,

[skip— P Oskip—Q] = P11 Q. [Law 16.]

These laws permit every guarded choice to be reduced to one with at most
one skip-guarded process.

Nondeterminism also arises when the same input channel is used to
guard two processes:

[a?z—P(2)0aly—Q(y) OS] = [a?2—(P(z) N Q(2)})OS]. [Law 17)]

The following three rather complicated laws are also valid in Occam, as
described in [15]. The offer of a process guarded on an input channel can
be postponed until after a skip-guarded process has been selected:

[skip—[a?z—P(z) 05|00 aly—Q(y) OS] [Law 18]
= [skip—{a?z—(P(2) N Q(2)) 13510 S].

15

A deeply nested nondeterministic choice can be unnested by the law
[skip—{skip—P 015|015, ~ [skip—P O (51 U S;)]. [Law 1.9.]
The last of the three laws expresses a convexity property:
[skip—[S1] [skip—[S; U 2] 0183} = [skip— (8] 3 (5; U S5)]. [Law 20.]

In general we cannot substitute the guarded process a?z—b7y; P(z,y)
for 67y—a?z; P(z,y) in a guarded choice. For example, the process

[skip—¢l0; Stop [l a?z—bTy; Stop)

must eventually output 0 on channel ¢ if no input is available on channel a.
However, it only requires input to be available on channel 4 for the process

[skip—¢!0; Stop O b y—alz; Stop]

to be capable of deadlocking, Nevertheless, we do have the following two
laws. Suppose S consists only of guarded processes of the form

skip-+a?z; P(z) and bly—alz; Q{z, y),

so that @ € chan(S). Define S(z) to consist of the same guarded processes,
stripped of their input prefixes on channel a. Thus, each guarded process
~in S(z) is of the form

skip— P(z) and bTy—-Q(z, y).

Under these circumstances we may distribute input prefixing through guarded
choice:

alz;[S(z)] = [S]. . [Law 21.]

Our final law for guarded choice allows a process P{z,y), guarded first on
channel a and then on channel b, to be re-offered (guarded on channel a)
after a process guarded on channel & has been selected:

[a?z—[b?y—P(z, y)(15:(z)] [Law 22.]
O b?z—(skip—Q(2) 0 S(2)] -
[15s]
= [a?z—[b?y—P(z,y) OS5 (z)]
C1622—[alz—P(z, 2) Oskip— Q(z) 0 5:(2)]
DSs].

16

The processes Chaos, ¢lv; P and [S] are said to be in pre-normal form
[15]. (Observe that Stop, input prefixing and nondeterministic choice can
be regarded as special cases of guarded choice, by Laws 9, 11 and 16,) The
remaining operators that we shall introduce satisfy enough algebraic laws
that any process constructed from them can be transformed into pre-normal
form,

3.5 After

The process P/a.v behaves like P after v has been communicated by its
environment on input channel a. The value v remains buffered by the
channel until P is ready to use it. Since @ has unbounded capacity it can
never refuse input and so P/a.v is always defined (which in CSP is not

always so). - : _
Let P = (F,D). Then, P/a.v = (F', D') where

te D& (aw)”teD,
te F'a (av) "tEF.

Laws
After is distributive and has both Chaos and Stop as fixed points. Because
distinct channels buffer their data independent of each other,

(P/a.v)/bw=(P/bw)/a.v. [Law 23.]

The value made available to a process which is waiting to input on channel
a is just the one buffered by the after operation:

(a?z; P(z))/a.v = P(v). [Law 24.]
After distributes through prefixing on channels other than a:

(b2z; P(z))/a.v = b?z;(P(z)/a.v) [Law 25.]

(clw; P)/a.ww = clw;(P/a.v). [Law 26.]
After distributes through guarded choice, so that

(8]/a.v = [97]. [Law 27.]

17

Here ' is formed by substituting for each guarded process G € S the
guarded process G/a.v defined by

(skip—P)/a.v = skip—(P[a.v)
(a?z—P(2))/a.v = skip—P(v)
(672—P(z))/a.v = b7z—(P(z)/a.v).

Finally, the following law allows us to expand the set of guarded processes
in a guarded choice:

[8] = [a?z—([S})/a?z) OS] [Law 28.]

Future laws are greatly simplified by defining P/a.v to be equal to P
when a is not an input channel of P. This represents the fact that events
that are not in the alphabet of a process are ignored by that process.
Exercise Consider the process a?z * P(z) defined by

alz x P(z) = alz; Q(z)

where Q(v) = [skip—{P(v)/a.v)0a?z— Q(z)]. Prove the following laws
from those stated so far:

1. a?z * a?y * P(y) = aly * P(y).
2. a?z;67y % P(z,y) = b7y * a?z; P (2, y).
3. alz % b7y x P(z,y) = b2y % alz = P(z,y).

The third law is surprisingly difficult to prove. The interest of the definition
of % is that it models the important state-vector inspection of JSD. O

3.6 Parallel Composition

The operators defined so far assume that all operands are processes with
the same alphabet. Asin CSP, parallel composition is an operation between
processes possibly with different alphabets, whose union is the alphabet of
its result. : |

We define a rather complex form of parallel composition Py || P;, under
the constraint that the output channels of P; and P, are disjoint. The

18

components P; and P; may communicate with each other along any channel
¢ which is an output channel of one and an input channel of the other. In
Py || Pz, the output on ¢ is retained so that ¢ may be connected to yet
other input channels. {(Hiding of output, as in CSP, is defined as a separate
operation described in the next section.) If Py and P, share an input
channel a, then both P, and P, will input all messages sent to P; || P,
on a. Input by P; and P, on a does not have to be synchronised: an
implementation must copy all messages sent on ¢ into two buffers, so that
they can be consumed at different speeds by P, and P;.

Let P; = (I, Outy, Fy, Di), InnOut; = @, 1 = 1,2, with Out;NOuty = §.
Let T be the set of those traces consistent with both P; and P,, that is,

s€T & sl (InU Outy) € Fy A s | (Ing U Outy) € Fy.
Then, Py || Py = ((Iny — Outy) U {Ing — Outy), Outy U Outy, F', D'), where

1. If s is consistent with both P; and P,, and one of them may diverge
or they can continue to output indefinitely, then s is a divergence of
Py || P2, and so is every reordering of it. After divergence anything is
possible.

teD odsd<thseT.d§CsA
(S [(Inl U Outl) = D1 Vs l“(Ing U Outz) € D2 vV
(Vn € N. Ju e (Out;.Com U Out,_Com)*.
#u>nAs ue D))

2. If ¢ is consistent with both P; and P, refusing to output, then it is a
failure of P; || P;, and so is every reordering of it.

teF oteDv
(FteT.H'CtA
t[(InIUOutl)EFl/\t[‘(IngU Outg)er).

Laws :
We shall not make explicit the alphabets of processes in our laws; for ex-

ample the law

P || Chaos = Chaos [Law 29.)

19

states that Chaos is a zero, even though the two occurrences of Chaos may
be associated with different alphabets.

Parallel composition is commutative, associative and distributive. The
following law states that it is immaterial as to whether two processes in
parallel wait independently or together for input to become available on a
shared channel. '

(a?2; P(x)) || (a?y; Q(¥)) = a?2:(P(2) || Q(2))- (Law 30.]
If the two processes are waiting for input on different channels a and b
(neither channel being an output channel of the other process), either input
may take place. Subsequently, the corresponding process uses the input
value, while the other saves it up (by the after operation} for later use.
Our convention that P/a.v = P when a is not in the alphabet of P means
that we do not have to distinguish this case. '

(a?2; P(2)) || (67y; Q(y)) [Law 31.]

= [a?e—(P(z) || (67y;(Q(v)/a.2)))
O b27y-+((e?z; (P(=)/b.4)) || @(y))]

a, b not output channels.

If one process is waiting for input from the environment on channel e and
the other process is waiting for input from the first process on channel ¢,
then only input on channel ¢ may take place.

(a?2; P(2)) || (c?4: Q(y)) | [Law 32.]
= a?z;(P(2) [| (c?y;(Q(y)/a.2)))
¢ an output channel.
If each process is waiting for input from the other, we have deadlock.
(e?z; P(z)) || (d?y; Q(y)) = Stop [Law 33.]
¢, d output channels.

If one of the processes is prepared to output, this may happen straight
away. The message is buffered by the other process for future consumption
if it is in the alphabet of the process and is ignored otherwise.

(elv; P) || @ = clo; (P || (Qfe.v)). [Law 34.]

20

Finally, we consider the general case in which each process is a guarded
choice:

[Su] I [Sa] =[S, . [Law 35.]

defined as follows. Consider those guarded processes in 5; U S; that are not
guarded on a channel which receives its data from an output channel of the
other process. Corresponding to each of them is a guarded process in S,

namely

1. Corresponding to skip—P € Sy is
skip=»(P || [S2]).

2. Corresponding to skip—P € 5, is
skip—([S1] || P).

3. Corresponding to a?z—P(z) € Sy is

a?z—(P(z) || ([S:]/a-x)).
4, Corresponding to a?7z—P{z) € S; is
o {([S/a.9) | P(2).

(The expansion theorems of CSP and CCS are equally complicated.)

A parallel composition in which, each process sends messages to the
other can give rise to divergence. In the following example, the value 0 is
sent back and forth between the two processes. Although each process is
individually free from divergence, when composed in parallel they diverge,
because they are always willing to output.

X6. The process (¢l0;u X.(a?z; elz; X)) || 12 Y.(c?y; aly; ¥) is equivalent
to Chaos.

Parallel composition can be used to describe feedback loops, as follows.

X7. The process P || p X.(¢?z; alz; X) feeds output on channel ¢ of P
back as input to channel a of P.

21

3.7 Concealment of Output

A trace of the behaviour of a process with concealed output is obtained
by simply removing the record of all concealed events. This leads to the
following simple definition. Let P = (In, Out, F,D) and C € Out. The
process formed by concealing output from channels in C is defined by

P\C = (In, Out — C, F', D)
where

teD odteD. t'=1tT

e}
teFMoJteF.t'=t]C.

Laws
Concealment is distributive and has both Stop and Chaos as fixed points.

Concealing nothing has no effect:
P\@ = P. [Law 36.]

The order in which channels are concealed is irrelevant: if C; N C; = 0,
then

(P\C)\C: = P\(CLU C3). [Law 37.]
Input is never concealed:

(a?z; P(z))\C = a?z;(P(z)\C) [Law 38.]
and, more generally,

[S\C = [S] [Law 39.]
where each guarded process in S

skip—P or a?z—P(z)
has a corresponding guarded process in S’

skip—(P\C) or alz—(P(z)]\C).

22

Output on a concealed channel is removed:

(clv; P\C = P\C if c€C. [Law 40.]
QOutput on a non-concealed channel is unaffected:

(dlv; PY\C = dlv; (P\C) ifd¢g C. [Law 41.]

There is no need to define concealment of input channels. You would
never want to do so, unless that input channel has been connected to the
output channel of some other process; and by the definition of parallel com-
position, the channel remains only as an output channel of the composite

process.
Exercise (Brock-Ackermann anomaly) Consider the two processes

P;,1 =1,2, defined by
P; = ((Merge/b.5/b.5) || Copy:)\{c},
where

Merge = [a?z—clz; Merge bTy—cly; Merge]
Copyy = clz;dlz; eTy;dly; Stop
Copys = ¢7z:¢?y;dlz;dly; Stop.

Show that

Py = [dI5—[dI5—Stop 1 a?z—dlz; Stop)]
O a?z—dlz; [d15—Stop O a?y—dly; Stop)
P, = [d!5—d!5; Stop
0O a?z—(d!5—dlz; Stop O d!z—d!5; Stop T aTy—dlz; dly; Stop].

It should be evident that P, is strictly more deterministic than P;, even
though the processes have identical input-output histories. In a naive the-
ory which identifies the two processes, an anomaly arises when each value
output from d is incremented by one and supplied as input to ¢. P; permits
a 5 followed by a 6 to be output from d, whereas P; does not. [

23

4 Conclusion

A mathematical model has been provided for asynchronous processes. This
is based upon the concept of a failure, Misra [13] has also considered the
same kind of processes and has stated less formally many of our closure
properties. Thus, section 2 of this paper can be regarded as a formalization
of Misra’s work. Misra’s ideas have also been formalized in a different way
by Jonsson [10]. Misra and Jomsson introduce infinite quiescent traces.
This is a complication that we have been able to avoid; we observed that a
process that can produce output forever must also be capable of diverging.
We have treated divergence in a way that is compatible with the failures
model of CSP [3]. While a process remains within its operating region [13]
it should not in any case be capable of diverging.

Previous theories of asynchronous processes, such as those of Park {14],
Broy [4] and Staples and Nguyen [16], have been based on Kahn’s model [11]
of deterministic processes. The Brock-Ackermann anomaly [1} has made
these theories rather complicated. However, Misra [13] and Jonsson [10]
observed that a simple solution to the anomaly is to take into consideration
the traces of a process.

A second contribution of this paper has been the exploration of an
algebra for asynchronous processes. We have considered a number of useful
(SP-like operators by which processes can be constructed from smaller
components. Associated with these operators is a rich set of algebraic
laws. The algebra provides a convenient way of specifying and transforming
networks of processes. Indeed, sufficient laws have been provided to permit
the transformation of any network of processes into a single sequential
process. Because all our operators have been defined in terms of the model,
it is possible to verify that they do in fact possess their stated algebraic
properties.

Acknowledgements

We are most grateful to Michael Jackson and John Cameron for helping us
to understand JSD. Ralph Back and Bengt Jonsson were kind enough to
introduce us to relevant literature. Thanks are due to Bengt and also to
Geoff Barrett for their comments on this paper.

24

References

[1] Brock, J.D.., and Ackermann, W.B. Scenarios: a model of non-
determinate computation. Lect. Notes in Comp. Sei. 107 (1981), 252-
259.

[2] Brookes, S.D., Hoare, C.A.R., and Roscoe, A.W. A theory of commu-
nicating sequential processes. J. ACM 81, 7 (1984), 560-599.

[3] Brookes, 8.D., and Roscoe, A.W. An improved failures model for com-
municating sequential processes. Lect. Notes in Comp. Sei, 197 (1984),
281-305.

[4] Broy, M. Semantics of finite and infinite networks of concurrent com-
municating agents. Distributed Computing 2 (1987), 13-31,

[5] Cameron, J.R. An overview of JSD. IFEE Trans. Soft. Eng. 12, 2
(1986), 222-240.

[6] Chandy, K.M. Theorems on computations of distributed systems.
Caltech-CS-TR-88-6 (1988).

(7] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall In-
ternational, London (1985).

[8] INMOS Ltd. Occam 2 Reference Manual. Prentice-Hall International,
London (1988).

[9] Jackson, M.A. System Development. Prentice-Hall International, Lon-
don (1983).

[10] Jonsson, B. A model and proof system for asynchronous processes.
Proc. fth ACM Symp. on Principles of Distributed Computing (1985),
49-58.

[11] Kahn, G. The semantics of a simple language for parallel programming.
Information Processing 74: Proc. IFIP Congress, North-Holland, New

York (1974), 471-475.

[12] Milner, R. A calculus of communicating systems. Lect. Notes in Comp.
Sci. 92 (1980).

25

[13]

Misra, J. Reasoning about networks of communicating processes. Un-
published. Presented at INRIA Advanced Nato Study Institute on Log-
ics and Models for Verification and Specification of Concurrent Sys-
tems, La Colle-sur-Loupe, France (1984},

Park, D. The “fairness” problem and nondeterministic computing net-
works. Foundations of Computer Science IV Part 2, Amsterdam, Math.
Centre Tracts 159 (1982), 133-161. '

Roscoe, A.W., and Hoare, C.A.R. The laws of occam programming,
Theor. Comp. Sci. 60, 2 (1988), 177-229.

Staples, J., and Nguyen, V.N. A fixpoint semantics for nondetermin-
istic data flow, J. ACM 32, 2 (1985), 411-444.

26

