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sumprary. A recursive program unit x is one which is defined to
be equal to f(x), where f(x) is expressed in the notations of some
programming 1anguage, and contains (recursive) occurrences of the
name ¥. Domain Theory is the branch of mathematics which
studies general conditions under which equations of the form

% = f(x) have a computable solution. Since recursion is the most
general method of writing short programs to evoke long
catculations, Domain Theory is fundamental to a study of Computing
Science.

Recursion in Programming

The purpose of a computer program s to control the calculations of a
general-purpose high-speed computer. Usually we want the program to be
very much shorter than the calcuiations which it evokes. For this reason, we
use a programming language which permits the definition of component units
of a program by some Kind of recursion. A recursive program unit X is
defined by a program text which actually contains its ownname X. in
general, mathematics forbids such circular definitions; but if the formula is
expressed wholly in the notations of a programming language, occurrences of
the defined name on the right hand side of the definition are executed as
recursive calls on the whole program unit, and this leads to calculations of
arbitrary length.

aM d@sh}lec{ ’
The simplest example of recursion is the program loop. Let b be the
condition which controts loop termination, and let P be the program text to
be executed on each repetition. The whole foop X can be defined by the
equation

X = if b then begin P ;X end

If b 1sfalse, X terminates immediately. If b is true, execution of P is
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followed by execution of the whole of X again. Ina high level programming
language, this spectal case of recursion is usually hidden by a specialised

notation such as
while b do P

and {t s Implemented very efficiently by a conditional and an unconditional
jump:
startloop: if not b then goto endloop;
P
goto startloop;
endloop ... . ‘

The efficiency of this implementation depends on the fact that the recursive
call on X occurs only at the end of the recursively defined program unit.
This {s a special case of recursion known as tatl recursion. In general, the
recursive call may occur in the middle of the program unit, perhaps several
times, for example

X=1if b then begin X; P; X; Q end

The efficient implementation of this more general form of recursion on a
computer requires an ingenious combination of jumps, links, stacks and
pointers. Disregarding efficiency, it is easier to explain how recursive
programs are executed by the following crude but simple technique, which
was used to explain the meaning of recursion in ALGOL 60 and has
accasionatly been used fo implement it in FORTRAN. In the program fragment
F(X), which defines the behaviour of the recursive unit X, replace every
recursive call on X by a command to print an apology and then stop

print “sorry, tt didn't work” ; stop;
The result of the substitution has the form

F(print apology; stop)
submit the modified program together with its input data for execution on
your computer. With a great deal of Juck it will actually work, because on

this occasion and for this particular input data there was no need for the
computer to make any recursive call on X, so it also bypasses the print
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statement which has replaced X. But if an apology messag%rs, take a
copy of the whole program that has just falled, substitute it for¥X Inanew
copy of F(X), and then submit this much Tonger program for execution.
Repeat this process of substitution and resubmission as often as necessary,
until the the program runs right throtugh without giving its message of
apotogy. If this happens after say 37 steps, the program which was actually
executed on this occaston was the resuit of 37 substitutions

FOCFCFC. ..., ( F(print apology ; stop))....... )
LWaWJ
37 times

In the case of unsuitable input data, or (more likely) a programming ervor,
the process of resubmission will never reach a successful conclusion: one of
the reasons for studying the mathematical properties of recursion is to learn
how o avoid this mistake.

Recursion is useful not only in the specification of lengthy cal%culationa. g/
Programming languages themselves are also large and complex, and , .
recursion s needed to describe net-only their notations (or syntax), hut also
their meaning (or semantics). The data structures stored in computers and
manipulated by programs are also very large and complex, and they too
require recursion for their definition, description and control. The vatue of
recursion as a means of understanding and controlling complexity lies in its
great simpiicity and generality. It has a clear mathematical meaning and
simple mathematical properties, which are explored in a branch of
mathematics known as Domain Theory. The value of Domain Theory for
Computing Scientists is that {t strengthens our tnderstanding of recursion
and our abtiity to use it effectively. '

Recursion in Mathematics

Now lef us see how the idea of rcursion appears in more traditional branches
of mathematics. Suppose-there-is-given-some mathematical function g) . vmw{s&w

The equation suler o -
Coswe. o

X = g(x) So Mt

Yo ob

may be regarded as an equation in one unknown X, whose solution can be
sought by sememathematieal=teehnique.destgned-forthis-purposesrequiregh
e . E)p A VWALRAAL —lTC,C/\’V\\ FLALL YOV LIAL S 230
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Any solution to this particular equation is called a fixed point of the
function ¢ because it remains unchanged when you apply ¢ to it. Asan
obvious consequence, 1t remains unchanged when you apply ¢ to it twice or
any number of times, including no times at atl.

Fixed points are very familiar in mathematics. For example, zero is the only
number which remains the same when you negate it. So zero is the fixed
point of the function which multiplies fts argument by minus one. It i3 also
a fixed point of halving, doubling, squaring, and taking the square root. Here
is a less trivial example. Consider the function g of real numbers which
adds a half of fts argument to theinverse.of fts argument. It is defined
formally by the simple non-recursive equation

gx) = x/2 + 1 /¥
Let us apply this function to the square root of two

g2y=V2/2 « 1/42
=(¥2+42)/2
=42

90 the square root of two Is a fixed point of this function ¢.

Now suppose we wish to calculate the numeric value of the square root of
two. The Newton/Raphson method just applies the function ¢ repeatedly to
some arbitrary starting value, say the number one. Here are the first few
steps

o= 1/2 + 1/1 = 3/2
o) = (37202 + 1/(3/2) = 3/4 + 2/3 = 17/12
Qg = 17/24 + 12/17 = 577/408

Let us stop here and square each of these numbers:

g2 =2+ 1/4
QalIN? = 2 + 1/144
golgt N2 = 2 + 1/332928

if we continue applying ¢ again and again, we get a serfes of fractions
which gel nearer and nearer to the square root of {wo, but can never ireach it,
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because the square root of two is not a fraction. However, we can get as

close as we Hke by applying g any number of times; and If we find we

haven't got close enough, we can apply 1t yet again. So by applying the .
function again and again, we have obtained an Infinite sequence of numbers, SeN RS
each of which is better than its predecessor, and which can approach

indefinitely close to the true fixed point, i.e. the square root of two, which

satisfies the equation

X = ¢(x)

This mathematical method of computing a fixed point by repeated application
of a function is very similar to the crude technigue of substitution used in
my previous explanation of recursion fn computer programs, where Bach sweeassw@
substitution is at least as iikely to succeed as its predecessor, and In some
circumstances perhaps will succeed even when its predecessor has proved

inadequate. Domain Theory Is the branch of mathematics which studies

general conditions under which the fixed point of a function can be comptted

or approximated in this way by repeated application of that function to some

suttable starting value. That is why Domain Theory is relevant to a proper
understanding of recursion in Computer Science.

’

Domat Theory B ‘
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An attempt to calculate the fixed 1oint of & function by applying it again and fi’/ocwrs L4
again may go wrong in three different ways: ‘3 b
I. There may actually be no fixed point for the function. Ina conventional Jaa%em

number system, there is no number which remains the same when you add one 4 {lw,\.
to 1t. So the successor function, which adds one to its argument, has no
fixed point. Domain Theor yf%-l&-t&e how fo design programming languages so

that all recursive definitiohs have a fixed point
— solves Tl w)\p Dmv\ b s\/\oww\a

2. There are functions which have fixed pofnts, but’ these cannot be
approached by iteration. For example zero Is the fixed point of the negation
function, which multiplies its argument by minus one. But if we try to
compute this fixed point by iteration starting with the number one, we
obtain the series
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and we never get anywhere nearer the true fixed point we want, namely zero.
The same thing happens if we St']/t with-any number other than the fixed
point zero ftself. Domain Theory Nor ovid@iﬁ single universally sujtable
starting point which ensures that this kind of non-convergence will not
occur,

3. Finally, there are functions which have more than ohe fixed point, For
example the square of zero is zero and the square of one is one. S0 both zero
and one are fixed points of the squaring function. For such cases Domain
Theor s US to specify in advance which of the alternatives we want, It

V‘%’ ------- * 150 third dreblenithat we will setvfe first.

b §oLwiwn ) qu
V Let us allow the s&IECtion between alternative solutions to be made in
MGaccordance with some fixed scale of comparison always giving the fixed

point which is the Jowest (or least) in this scale. But the scale must be
consistent. We cannot allow two different points each to be strictly lower
than the other. A consistent scale of comparison is known as a partial order,
in that it enjoys the following three properties

(1) every point is as low as itself (the reflexive property),

(2) if some point is as low as another, and this other point is as low
as some third point, then the first point is as low as the third (the
transitive property).

(3) there is no distinction between points that are as low as each
other (the antisymmetric property).

Domain Theory does not require us to specify the order to be a total ordering.
There may be two points of which we do not wani, or are not able, to say
whether or not one is as low as the other. Such points are said to be
incomparable. For example, a racing skier may regard one point on a mountain
as lower than another if he can reach the lower point from the higher point
by a continuous ski run steeper than thirty degrees. Two different points at
roughly the same height on the same mountain are incomparable, because

b\(uzms there is not enough slope to enable a-paedrg skier to reach one from the other.
And two points on different mountains separated by a valley are always
incomparable because one cannot ski across the valley. In spite of the fact
that points may be Incomparable, Domain Theory will guarantee that among
the fixed points of a function there will always be a lowest point, which witl
be selected in accordance with our chosen scale of comparison,
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Consider now the identity function, which maps everything onto itself. Its
fixed points are solutions of the equation x = x. Since absolutely everything
satisfies this equation, the value selected as the solution of this vacuous
equation must be lower in our scale of comparison than everything eise
whatsoever. Such a solution is called the pottom of the partial order. it is
gasy to prove that there is only one point with the property of being as low
as or lower than every other point. For If there were two such points, each
of them would be at least as low as the other, and by the antisymmetric
property of our partial order, there is no distinction between points which
are as low as each other.

Both in mathematics and In computing we are interested in definitions and
formulae which generate an unbounded serfes of resuits. If every member of
a series is as high as or higher than {ts predecessor, we will call the series
a chain. Of any two members of a chain, one is higher than the other, sc a
chain contains a subset of the partial order which looks like a total order.
According to our definition, any series with only one member is a chain, and
{f one point s lower than a second, the series containing just these two
points is a chain. Finally, a chain remains a chain on removal of any number
of tts elements, but not all of them.

Any finite chain has a maximum element, namely the last element of the
serfes. But an Infinite chain does not have a tast element, so it does not have
a maximum, except in the case that it ends with an infinite series of copies
of the same value, for example

1,3,57,7,7,...

A simple example of a numeric chain with no maximum is the series of
fractions

L1 1/2, 1374, ,2-1/20

If you choose any member of this chain, there s always a higher one, and
then a higher one still, Each successive number {s closer to the number two,
and you can get as close as you like, But the number two does not appear in
the chain, and you can never reach it.
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However, the number two can be reached by the following more subtle
strategy. Consider any real number greater or equal to all members of this
chain of fractions, for example 3 or pi or 12.7. Such a number is called an
ypper bound of the whole chain. Take the sef of all such upper bounds, and
ask the question whether this set has a minimum member. In fact it does -
namely, the exact number two. This is the least of all the upper bounds of
the chain we started with, so it is called the least upper bound or Jub of the
chain. The general strategy, if a chain has no maximum member, is to fook
fnstead for a minimum point among all 1ts upper bounds . in the case of real
numbers, this strategy Is certain to succeed, provided that the set of upper
bounds is non-empty. The least upper bound is a good generalisation of the
concept of a maximum, since if a set contains a maximum element, this is
also its least upper bound; and the least upper bound has most of the
mathematical properties of the maximum.

All the definftions glven above are summarised in a single definition, that of
a domain. A domain is defined as a set with the following three properties:

(1) [ts members are ordered by a partial ordering
(2) 1t contains the bottom point in that ordering

(3) Every chain with elements drawn from the domain has a least
upper bound in the domain (but not necessarily in the chain).

The purpose of the partial order is to define a scale of comparison for
selection between solutions of an equation when more than one such solution
exists, But in fact the same ordering also gives a method of solving the
other two problems mentioned earlier. It gives an easy criterion for deciding
whether a function has a computable fixed point, and for defining new
functions with the same property. It also guarantees that the desired fixed
point can be calculated by the method of {teration. These two topics will be
treated in the remaining sections of the paper,

Functions with fixed points

Our first task {s to find a sufficiently large and useful class of functions
which are certain to have a fixed point. A promising class of candidates are
those functions which tend to give larger results when they are applied to
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larger arguments.. More accurately, a function is defined to be monotonic If

it commutes with the operator which takes the maximum of a finite chain.
_ In-other words, if you apply the function to the maximum of any finite chain
T you get the same answer as if you appiy it to each member of the chain, and
then take the maximum of the results. For example, on non-negative real
numbers the operation of taking the square is monotonic: 1f you want the .
largest of the squares of numbers in a ,,set you only need to choose the C‘f\’\M\f\
largest member of the get and square it. Other monotonic functions on elraing )
non-negative/numbers are square root, cube root, and truncation, which gives
the greatest whole number equal or less than its real argument, For example
the truncation of the square root of two Is one, and so is the truncation of
one itself. But functions like sine and cosine are not monotonic, because
they go down as welt as up when thefr argument increases.

rL

A monotonic function 15 one that preserves the ordering of its operands: if

you heighten the operand you heighten the result - or at least you leave it

unchanged. Here is aproof. Consider any chain with just two elements. Call

the Tower of them X and the higher vy, so that y is the maximum of the

.y Chain. Apply f toboth x and y. Because f fsmonotonic, f(y) is the
sag\l\“ maximum of f(x) and f(y). So f(x) and f(y) are ordered in the same way
WA as X and Y. Apsimportanttonsequence~is that when a monotonic function is

ot \ applled o every member of a chain, the result fs still a chain.

monotonic. This fact is imporgant because it means that programming

language designers have to makKe sure only that the built-in facilities of the
language are monotonic in the domain ordering. Then any program written in
the language will also be monotonic tn the sense required to allow recursion .
to work successfully. "

¢
3\(\0"6’ Any new functions defined ingtéerms of other monotonic functions will aiso be "3/<

m

(,cnr\/\‘.'\(\\-’L
The definition of a monotonic function needs to be adapted to deal with U\)\)‘df\
infinite chains which may have a least upper bound but no maximum, A
function is defined to be continuous if it ef*rstr:ibate&«é/ver the operation of W
tal\mg the least upper bound of any chainaSince all maxima are least upper ' b JQ
B5ounds, all continuous functions are aiso monotonic, and so preserve the
ordering of their operands. For example, on non-negative real numbers Nvmw oP
squaring, square rooting, and taking the cube rootf all satisfy this definition {Jﬂe,\o\r\am
of continuity. However, the truncating function, which takes each integer to 6\ 'li‘{f\
ftself and each non-integer to the next lower integer, is not continugus, even “‘fam
though it is monotonic. This s simply shown: consider the same @n as @‘;}M

pefore \
‘j‘” O\H"Q\’ WoY (‘L,; & L AL ”\Q PWV\(‘/ [0 } N }b”
Hne,, «Q,m. f WFFW) b@wnc} oP O\F cﬂmw? V\GVL Se, ‘ i\gﬂ,
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C=1,11/2,13/4,...

If you truncate each member of this chain, you get a chatn contatning only the
number one:

trunc(CY =1, 1, 1,...
and the least upper bound of this is also one.

lubltrunc(C) = 1,
But {f we first take the least upper bound of the original chain we get two, |
and when you truncate two you get two. This is not the same as when we

performed the two operations in the reverse order

lub(trunc(C)) = 1

e

. trunc(iub(C)) = 2 ' oo Y ol ov
L eoconnple. S\{\,awf& ‘Uf\“&’/ VW\T)OV \m@ O(\ \\NL" o \ ,ﬂt
Scientists and engineers prefer to avoid such discontinuous functions, in the OV {\

hope that they do not occur in nature. Designers of Programming Languages
should also avoid such functions if they wish to allow free use of recursion.

The proof that every continuous function f has a fixed point depends on a

construction which actually defines the required fixed point as the least mﬁ\wg

upper bound of a chain of approximations, whiehfin general are noft\jhm&g ovwf 0'?‘“‘W

Uﬂ@*\ themselves fixed points, butfprovide a path leading up to the fixed polit; Th 7y

the same way as the square oot of two is approached by a serjesof =~ ( 3\,\ Am\ww\

approximations ir)r__"trhe__ble_wltq}(gagpgggv;ﬁf:ﬂ_tﬁg*d/\kﬁhe path starts at the very
H“’,‘““”"bottom point in the domain. The next point up the path is obtained by ij:\e._o\fj ]
o Lels b applying the function f to the previous point. After n steps, the functfon f et

.\e/gm,%g o‘f has been applied n times to the starting point at the bottom. We shall prove

) Lo\ shortly that this path is a chain, in that ho step can lead downwards. So

A peowrsied there are only two possibilities. It may be that after a certain number of

Pwﬂrw\fﬂf steps the next application of f leaves you in the same place as before. All

RS L, P further steps will lead you back to this same point. So this point is already .,

MY a fixed point of the function f. Thatds-the-bad-news;~becatse-fHt~ A ten A"w&

CPWAL ﬁf)« gorresponds-to-a-recursive-program-that-will never-terminate: Fhe-good " b\
‘)!i\ rews-ts-that. the path may go on winding up forever, without ever reaching a

-’v] The fixed point. But now we get the reward for all the hard mathematics we have

:mziﬂﬂ a&{ 9%);W-géj-tr,&.c(,t’/&’aﬁ\/‘\f(?’; Ami‘%%;% W
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done. Coiling ourselves for one great Iea;>\we can jump right over all the
infinite number of points of the path, straight to its least upper bound.
Provided that the path is a chaln, our basic definition of a domain guarantees
the existence of this lub; and it turns out to be not only a fixed point of the
function, but among all the fixed points it is the one we want, namely the

least one. ‘
L5

Proof of the correctness of th}é construction falls into three parts:

I. we must show that each point on the path s at least as high as the
previous one. This ensures that the path is a chain, so that the least
upper bound exists.

2. we must show that application of  to the least upper bound of the
path gives back the same resuit.

3. we must show that every other solution of the equation x=f{x) is
higher than the least upper bound of the set we have constructed.

. To prove that all steps on the path lead upwards, we first show that the
first step leads up; and then for any step we prove that the next step leads
up, provided that the previous step did. By mathematical induction it will
follow that all steps iead upwards.

§.1. The first step starts at the very bottom of the whole domain. No
step can lead down from there. So the first step leads up. That was
gasy.

Suppose.) took
1.2 the previous step takg us up from point x to point fx. Then
the next step takes us from fX to f(fx). The start point of the next
step has been obtained by applying f to the start point of the previous
step, and the end point of the next step has been obtained by applying
f to the end point of the previous step. Since f s monotonic it
preserves the ordering of its arguments. Since we can assume that the
previous step was upward, we know the next step is upward too. By
induction, all steps are upward, and the path is a chain.

2. The second of our three tasks is to show that the least upper bound of the
path is a fixed point of f. So lets see what happens when you apply  fo it
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Since f {s continuous, when you apply f to the least upper bound, you will
get the least upper bound of the result of applying f to the individual points
in the path. But each time we apply f to a point on the path we just get the
very next point on the very same path. As a result, we get back every point on
the path, except possibly the very first point, which is the bottom of the
whole domain. So the resulting path is also a chain. To add or remove the
bottom point does not change the least upper bound of a chain. S0 when we
apply f to the whole path, we remove {ts bottom perhaps, but we do not
change tts least upper bound. That proves the most fmportant theorem, that
all continuous functions on a domain have a fixed point.

3. Our final task s to show that any other fixed point of f - let'scall it y
- is actually above the top of the path we have constructed. So we assume

that f{y) =y and from this prove that y is an upper bound of gvery point on
the path we have constructed. From this if follows that y 1s as high as the
least upper bound of the whole path. Again, we use mathematical induction.

3.1 To start with, the bottom point of the path is the botiom point of
the whole domain, Everything is an upper bound of that, and so is v,
That was easy.

3.2 We now assume that y is as high as some point on the path, and
try to prove that it 1s as high as the next point too. Apply f both to
the point on the path and to the fixed point y. Because f is
monotonic, these two results are also ordered. The lower of them fs
the very next point on the path, whereas the higher of them is f(y).
But y is by definitfon a fixed point of f, so f(y) equals y. So the
next point of the path is also bounded above by y. Therefore, by
induction, all points on the path have y as an upper bound. Since v
was an arbitrary fixed point of f, we have proved that the least upper
bound of the path is the least of all fixed poin{s of f.

This third proof was perhaps the most difficult; it shows that among all the
fixed points of f we have got the one we wanted, namely the one which is
lowest in the specified scale of comparison.

Conclusion

Of course, Domain Theory has many other interesting theorems, which extend
the usefulness of the fundamental theorem we have just proved. For
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- example the cartesian product of two domains is a domain. This enables a

Smuﬁmeﬂl& ecursivefequations. Even more remarkable, the space of all continuous
=" fUNCEioNS from one domain to another (or to itself) is also a domain. This

airof prigram units to be defined as the foint solution of a pair of mutually

permits procedures with parameters to be defined by recursion. Finally, the
concept of a domain can be slightly extended to ensure that the least upper
bound of a chain of domains {s also a domain. This allows data structures to
be defined by recursion. The crowning achievement of Domain Theory, due to
Dana Scott, is to show that domains also can be validly defined by recursion.
This allows procedures to be passed freely as parameters or results of other
procedures, and even of themselves, This is the theorem which lies at the
basis of an untyped functional programming language like the lambda
calculus. It forms the foundation of the type system for newer functional
languages lke ML or Miranda. |t is the basis for the denotational semantic
technique for formal definitfon of a wide variety of programming languages,
including procedural ones. Such semantics are an essential prerequisite for
the definition and proof of the correctness of the implementation of the
language, and of every program written in the language. So it is of
fundamental importance in Computing Science. Yet, until Dana Scott
discovered it, mathematicians generally believed that such a domain could
not exist. Now they are willing to accept it as a proof that even Computing
Science exists.

Quite apart from its usefulness, Domain Theory is a wonderfully simple and
elegant branch of mathematics, which is equally rewarding for study by pure
mathematicians as by applied mathematicians, including Computer
Scientists.
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APPENDIX

This appendix introduces some of the traditional mathematical
notations of domain theory, and uses them to give a formal
proof of the fundamental theorem, namely that every
continuous function on a-domain has a fixed point and one
which is Iowerﬁhan every other fixed pomtun the domain

(ordermg

We will use the symbol ¢ for the domain ordering; xc vy
means that x is equal to y or lower than y in the order .
A relation g is called a partial order if it is reflexive,

transitive, and antlsymmetmc Each of these properties is
defined by 2 f ormula as-follows: vy L'\A_(,L*\ amb{ L
Fonang.- GV &‘\.fl}i,. W\szx.\gvg OP ‘s'{/\a,}k di.{yx,f\.f\a.,{}\f\, .

(a) £is reflexive means

xcx, forall x
(b) c is transitive means

if xgy and ycz then xecz forall x, vy and z
(c) £ is antisymmetric means

if xry and yg X then x=v, for all X and y.

In what follows we will assume that ¢ is a partial order:

Theorem 0: for all x and vy, -
X =y exactly when (xcy and ycx)
Proof:

If x =y, thenreflexivity of ¢ {(a)gives xgy and yc
If xcy and ycx, equality of x and y follows by

=4

\ T
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antisymmetry of ¢ (c). So one of these assertions is true
exactly when the other is.-

!
Theorem 1: To prove that x =y, all you need is to prove L9

(x) xcz exactly when yr z, fg’ﬂqﬂfé?ﬂ

Proof: Substitute ¥ for z in the line marked by (%) to get
XC X exactly when ycx.

But by reffexivity of ¢, X g X is always true. It follows that
yCX.

Similarly, substituting y for z in (x) we prove
Xcy.

Equality of x and y follows from the last two lines by
antisymmetry of ¢ (¢).

P ’ ] L‘ ‘Q/

/A( partial order of a domain has a bottom element satisfying the
definition
(d) x is a bottom of = means

Xxcy forall yv.

Theorem 2: A partial order has at most one bottom element.

Proof: suppose x1 and x2 are both bottom elements. Since

15

Q. E. D.

Q. E. D
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x1 is a bottom, we substitute it for x, and x2 for y in the
definition of a bottom (d), getting

X1l gx2
Similarly, since x2 is a bottom,
X2 ¢c xl._
Now the antisymmetry of ¢ allows us to to conclude
xl =x2
If any two things with some property can be proved identical,
then there exists only one thing with that property.

Q. E. D.

In view of this theorem we will use a single symbol 1 to
denote the bottom of the partial order.

A point y is said to be the least of a set T if

y isin T, and ycz forall z inthe set T.

Theorem 3: No set can have more than oné feast member.
Proof: similar to the proof of uqiqueness of 1.
A point z is said to be an upper bound of a set S if
XcCaz, for all x in the set S
Now let T be the set containing all upper bounds of S, and

let y be the least member of T. Then vy is said to be the
least upper bound of -S. Since there is at most one such point,
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we introduce the notation [ub(S) to denote it. Translating the
definitions given above into symbols we get the defining law for
feast upper bounds: '

(e) 1ub(S)cz means the same as

(xgz forall x in S

In the following theorems we will assume that fub(S) exists.

Theorem 4: x c lub(S), forall x in S.
Proof: Substituting lub(S) for z in the definition of lub (e):

lub(S) c lub(S) means the same as

(xclub(8) forall x in §)
But, by reflexivity of ¢, 1ub(S) g lub(S) is always true. So the
theorem, which has the same meaning, is also always true.

Q. E. D.
Let (w,z} be the set containing just w and z. If W = z,
it has only one member; otherwise it has exactly two.
Theorem 5: lub(w,z} = z exactly when wr z.
Proof: By theorem 0
fub{w,z} = z

exXactly when

(lubf{w,z) c z and zc lub{w,z))
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which holds exacily when .
lub{w,z} c z
bécause z isin (w,z}, and theorem 4 tells us that
z ¢ lub{w,z} is always true.
Now substitute {w,z} for S in the definition of lub (e‘):
{ub{w,z} z z means the same as
(xgz forall x in {w,z})

Since w and z are the only members of {w,z}, this means
the same as

wcz and zc z,

which by reflexivity of ¢ holds exactly when

wvLCZz,

So the theorem has been proved by a cham of equwalences __
leading from lub{w,z}/to wcz. v

Let Su (L) be the set obtained by including 1 into S . |

Theorem 6: [ub(S u {1}) = lub(S)

Wl G pi G
Proof: x £z, for all x in (Su (1}) Y

means the same as
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({xcz forall x in S) and Lcz).
Since Lz forall z (d), this holds exactly when
xcz forall x in S

Using the definition of Iub once on each of these equivalent
assertions, we find that

fub(Su () cz.
holds exactly when
fub(S) c z

Since we have proved this for any z, theorem 1 allows us to
conclude

fub(S u (1)) = lub(S)

A set S is said to be a chain if
S is nonempty, and

for any pair x,y of its members, either x gy or ycx.

Theorem 7 Every nonempty subset of a chain is a chain.

Proof: trivial.

Theorem 8: If wc z then the set {w,z) is a chain.

19

Q. E. D.
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Proof: trivial.

The time has come to combine all the definitions we have given
so far into a single definition, that of a domain. A set D is
defined to be a domain if it has the following properties:

(1) its members are related by a partial order ¢

(2) it contains a member | which is the bottom of the
partial order c

(3) for every subset S of D,if S is a chain then the least
upper bound lub(S) is a member of D (though not necessarily

of §).

A function f-from one domain to another (or to the same
domain) is defined to be continuous if

fC1ub(S)) = lub( £(x) | xeS } for all chains § .

In future, we will talk only about a continuous function f .

Theorem 9: If .w £ z then f(w) g f(z)

Proof: wcCzZ by assumption
Therefore lub{w,z} = z by theorem §
Apply f to both sides of this equation: |

f(lub(w,z}) = £(z).

By theorem 8, {w,z} is a chain and so by the assumption that
f is continuous

20
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f{lub{w,z}) = lub( f(x) | x e (w,z) }
= lub{ f(w), f(z)} - by settheory.
By transitivity of equality,
fub{ f(w).f(z) } = £(z).
The desired conclusion follows by application of theorem 5 in
the other direction.
Q. E. D.

A function from one domain to the same domain may be applied
repeatedly. The result of applying it n times to an argument
x is denoted f™(x). This is defined formally by induction on
n:

fo(x) = X, for all x

4 (x) = £(fM(x)), forall x and n.
In future the letters n, m, and k will stand for natural
numbers, i.e., non-negative integers.
Theorem 10: (1) cf™t1(1) forall n.
Proof: by inductionon n. -

!

If n=0, fOL)=1 by definition of f0

Le i) by definition of L

Therefore fO(J_) C fI(J_) : by substitution of equals.
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Now assume f8(1)c f2*1(1). By theorem 9, a continuous
function can be applied to both sides of this inequality, giving

£(E0(L)) e fEm+ (L))
Substitute the definition’of 1 (x) twice:

polg) o p(ne el

This is a copy of the theorem, with n+1 replacing n; so the
theorem follows by induction.

Theorem 11: fM(1) ¢ f™*K(1), for all ‘m and k.

Proof: by induction on k. |

If k=0, fM(1)¢g tm+0(1)  follows from the reflexivity of ¢

Assume (1) c fm"'k(l). By the previous theorem
fm.+ku_) crmik+leyy

From the last two lines by transitivity of c
(1) g rmrkeliy),

Consider now a set S defined as the resull of applying { any

number of times to the bottom element of the domain,
S=(r1(1)Ing0)

= (L, f(L), £CRCL)), ..., £1L), ... )

22

Q. E. D.

Q. E. D.
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1t will be clearer to work with the second form of this
definition in spite of the informal dots.
Theorem 12: S is a chain.
Proof: S is certainly non-empty, because it contains 1 .
Now let x and y be members of set S. Then by definition
of §,there are numbers m and n such that

x =fM(]) and y =f2(1).
Since m and n are numbers, either m <n or n<m. In the

first case, thereisa k suchthat m + k = n, and so by the
previous theorem

PR (L) e £ (L)
ie., Xcv.
In the second case, similar reasoning shows that y c x. Since

any pair of members is comparable, S satisfies the definition of
a chain.

Since S is a chain, it has a least upper bound 1ub(S), which
the following theorem shows to be a fixed point of S .

Theorem 13: f(lub(S)) = lub(S) - . - .
Proof: by the definition of S

f(1ub(S)) = f(tub(L, £(L), FIECL)), ..., £ (L), ... )).

Because f is continuous, it distributes inside lub:

23

Q. E. D.
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F(Lub(S)) = lub (1), £(F(L)), £F(E(L))), .. Ly )

By theorem 6, the insertion of 1 into a set does not change its
least upper bound, so

£(Iub(S)) = tub (L, £(1), £(6(L)), ...+ 1y .. ).

- Lb\b(§> l)b (i.t. GA/\‘L{’L{:\,\ OP (EQ \/ |

... The-right-hand-side of ‘the equation-isithe exact-definition of S
Q. E. D.
Theorem 14: If f(y)cy then fML)cy.
Proof: by induction on n.
Ifn=0, %) =1c y., as proved before.
Assume (1) cy.

By theorem 9 we can apply  to both sides of an inequality,
getting

FE™(L)) c fy) .

By assumption, f(y) cy, so transitivity of ¢ gives
(MW cey.

Applying the definition of rn+1‘ R
ey

That completes the induction step and the proof.
' Q. E. D.
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[t remains only to prove that among all the fixed points of f
fub(8) is the very least.

T’he_:orem 15: If f(y)=y then lub(S)cy

Proof: by the assuﬁption and reflexivity of cC
fylcy.

By the preyious theorem
) cy forall n.

Since every member of S has the form (1), for some n :
Xy for all x in §

By one final glorious application of the definition of the least
upper bound

lub(S)cy.
Q.E. D.




