TOWARDS A CALCULUS OF TOTAL CORRECTNESS
FOR THE DESIGN OF C-MOS SWITCHING CIRCUITS

C.A.R. HOARE, August 1987.

Summary. This note explores the possibility of extending some of the
mathematical methods that have been recommended for the design of
software to the design of hardware, in particular of synchronous

switching circuits implemented in C-mos. A hardware design can in
principle be translated into a simulation program, which with a certain
accuracy models the behaviour of actual C-mos circuits. The program may
be specified and proved correct with respect to a precondition and a
postcondition. More simply, assertional proof techniques can be applied
directly to the hardware design. The objective is to guide the design of
networks which are known by construction to be correct.

The paper starts with a general philosophical introduction to the role of
‘formal methods in design, which may be omitted. The next two sections
describe a mathematical theory of hardware design which is delightfully
simple, but seriously inaccurate to the actual behaviour of switching

circuits implemented in C-mos. These inadequacies are discussed
together with suggestions on how they may be remedied in future research.

0. Design philosophy. o

A specufloatlon of an engineering product or component is a predicate
describing the desired properties of its observable behaviour when put
into service. Observable values are represented by free variables
occurring in. formulae, equations, inequations, or other predicates. The
predicates may also include any definable concepts of the relevant
branches of pure or applied mathematics. A combination of, requ:rements
is expressed as a logical conjunction of the individual predicates.
Conjunction is the connective that permits a large and complex
specification to be structured from its smaner and simpler components

If correct operation of the product wiil depend upon proper condltions of
use, then these too can be expressed as a predicate, and correct behaviour
of the product is required only when this: precondition is true. Thus ifthe
environment or user fails to meet the specified precondmon the)
specn‘lcatlon is vacuously sa‘usfled without placmg any constraant on the

—_h

behaviour of the product. Thus the overall specification is expressible as
an implication, in which preconditions are listed as the antecedent and
the desired behaviour as the consequent.

When the specification has reached a sufficient degree of completeness,
an engineering project moves into the design phase. The outcome of the
design is also expressed in some formalised notation, often including
scale drawings. The design notation is usually quite different and much
more restricted and cumbersome than that of the specification. This is
because it does not directly describe the behaviour of the product, but
rather some technologically sound method for its manufacture.
" Nevertheless, if the technology is well understood, it is possible to
re-interpret the design as an indirect description of the range of
"behaviours of any-product made in accordance with the design. This
predicate is the strongest specification satisfied by the design. The
correctness of the design can then be proved before manufacture by
showing that the design predicate logically implies the original
specification; from the meaning of logical implication, it will follow that
every observation of every product manufactured in accordance with the
design will also accord with the specification. That is exactly what we
mean by correctness of a design. :

The approach expounded in the previous paragraph presupposed that the
completed design is available before the proof starts. For a non-trivial
project, this is much too late. Far greater value can be obtained from
proofs conducted throughout all stages in the progress of the design. Al
each stage, the designer plans to build a component of the product out of
several smaller sub-components. The method of assembly is decided, and
- each component is carefully specified. Before proceeding with the design
of the subcomponents, a proof should be given that the eventual assembly
of subcomponents. (meeting their individual specifications) will meet the
original specification of the complete component. This too is done by ,
interpreting even the incomplete design as a predicate. Such proofs can be
repeated at every stage, in the hope of eliminating one of the most serious
problems in large system implementation, namely the diagnosis and
elimination of errors detected after assembly of the manufactured
. components. This design philosophy is encapsulated in the slogan "design -
right - first time". - . T | : -

The specification and design of a single product to be implemented and
' remain .unchanged throughout its working life is difficult enough. Far more
difficult and important is the specification of the architecture of a range
of compatible products, capable of adaptation and evolution over a period
. of many decades, This is the problem that faces the major manutacturers.

of aeroplanes, automobiles and computers. 1t also faces the designer of
every large application or systems program, which must be structured
from the beginning as a member of the family of programs which itis
most likely to evolve into.

Fortunately, the structure of a family of products can be conveniently
explored and clearly formalised as a family of predicates. The most
general and persistent features of the architecture are expressed in highly
abstract terms by a general predicate; the morée specific details of
specialised subranges and individua! products are expressed as separate
predicates which can be proved to conform in an appropriate degree 0 the
more general ones. Clarification of the structure of the design space is a
serious intellectual chalienge; but it provides an opportunity to plan for
the multiple use, throughout the working life of the architecture, of the
early design steps, the partial implementations, their interfaces, as well
as the completed components.

But there is usually a price to be paid for splitting a design into moduies
with clear general specifications and reasonably simple narrow
interfaces. The price is often exacted as an increase in the number of
components or lines of code, and a reduction in execution efficiency. If
the subassemblies are not intended for disassembly during use, the price
may be reduced by subjecting the design at some suitable stage to a series
of correctness-preserving optimisations, which disregard and over-ride
the original modular structure of the design. Such optimisations may be
applied automatically, as in many compilers for a high-level language, or
under human guidance. In either case, the validity of the optimisations
must be guaranteed by aigebraic equations or inequations, which are.
proved sound for the mathematical theory and notations in which the -
design is expressed. | -

An exampie of our design phrlosophy is provided by modern techniques for
the design of aigorithms and programs for a general- purpose computer. A
conventional sequential program is specified by a predicate, whose free
variables denote initial and final values of the variables manipulated by

the program. The precondition on the environment is permitted to mention

only the variables denoting initial values.

The end product of program des:gn is expressed in a very formal notation,
usually a programming language. The products described by the program
are rather intangible; they are the executions of the program. These
executions correspond so closely to the structure and content of the
:program that their elaboratron 1 entrusted to a mindless computer, and
'reqmre no further human mterventlon In addltlon to this: mechamcal

interpretation, there are now available mathematical methods for deriving
from the text of a program (expressed in certain restricted languages) the
strongest specification which will be met by every execution of the
program. The program can be proved correct before execution by showing
that this predicate implies the original specification. The correct

program can then be optimised if necessary by algebraic transformations
which are known to be valid for the programming language in which itis
expressed.

In practice, these proofs should be conducted piecemeal during the design
of the program. Suppose at some stage it is decided to implement a
component with specification R by the sequential composition (X;Y),
where X and Y are unknown, because they have not yet been designed.
Instead, they are carefully specified by means of an intermediate .
predicate S, which is intended to be true on termination of X and on
initiation of Y . The specification of X has S asits postcondition and

the same precondition as R ; the specification of Y has S asits
precondition and the same postcondition as R. Now it is obvious that if X
and Y meet their respective specifications, then their assembly ({X;Y)
will meet the overall specification R . That is a general, trivial, but

usefu! theorem of the theory of programming. The specification S
(together with appropriate resource aliocations for space and time) serves
as a provably complete specification of the interface between X and Y ;
if all goes well, no further communication will be needed between the
implementors of these two components. Similar technigues are available
for the other structuring features of a programming language.

Of course, nothing in these calculations‘wili ensure a good, efficient, or
even feasible design. For that, the designer needs experience, insight,
flair, judgement, invention. Formal methods can only stimulate, guide, and
discipline our human.inspiration, clarify design alternatives, assist in
exploring their consequences, formalise and communicate design
decisions, and ensure that they are correctly carried out.

1. A simp!_e story.

The objective of this note is to show how the proof-driven design methods
now available for computer programs may have a possible analogue in the -
design of a certain class of hardware circuit. In this section we tell a
simple story about the behaviour of the hardware. in section 3 we
describe its inadequacies, and in section 4 we will ry to suggest
extensions which may overcome the inadeguacies without introducing too
much extra complexity. - | S o

A switching circuit is designed to be used repeatedly. At the beginning of
each cycle of operation, some of the wires (the input wires) are connected
to power or to ground. This leads to a succession of switch changes
within the network. When these have stabilised, this cycle ends, and
certain other wires (the output wires) are found to be connected to power
or ground. A switching circuit is fairly symmetric, and the choice of

which wires are used for input and which for output may vary from one
cycle of operation to the next. We will postpone consideration of the
succession of cycles, and deal first with the combinational aspects, i.e.,
those which relate to just a single cycle of operation.

The specification of a combinational switching logic network can be
expressed very simply as & formula in propositional logic. The free

propositional variables have the same names as the wires connecting the

network to its environment. Each variable takes the value true if the
corresponding wire is connected to power when the circuit stabilises, and
the value false if it is connected to ground on stabilisation. For example,
we define

SNEG = (eEﬂa)'

as the sp'ecification of a network which stabilises only when e is the
negationof a. A specification of an exclusive disjunction is

SEXOR = (e=(azb))
These specifications are much simplified by treating input and output

wires symmetrically; we will describe later the dangers of the
simplification. ' :

The désign of a combinational network can be modelied formally as a set
of transistors. Each transistor is described by four components

(t.g.,{s,d})

where 1t is the transistor type (N or P)
g is the name of the wire connected to its gate
s and d are the names of the wires connected to its source
and drain. Because of symmetry, it is convenient to group
these in a set of just these two elements.

The first example of a circuit has four wires (a,b, ¢, and e) and two
transistors, one of each type.

NEG = {(N,a,{c,e}),(P,a,{b,e})}

‘The next example has the same wires, and two transxstors connected in &
different way

TMG = {(N,c,{a,e}),{(P,b,{a,e})}

The third example is obtained by combining the two previous ones, and
joining up wires with the same name; mathematically, this is achieved by
the simple expedient of taking the union of the two sets of transistors

EXOR = NEG u TMG

It is usual to display a picture of the network as foliows. A wire is drawn:
as a possibly branching line, with branch-points indicated by a dot; its -
' name is found nearby. A transistor of type N is drawn in any orientation
as shown in figure .1(a), with three wires attached. A P-transistor is

drawn as in figure 1({b). The other networks defined above are also drawn

in figure 1. The geometrical configuration of fransistors and wires may
correspond to their relative posmons when printed onto the surface of
silicon. : :

. But here we are not concerned with such implementation details. Rather,
~ our task is to interpret the network design as a predicate describing the
behaviour of any implementation of it. The behaviour of a single
N-transistor

(N_,g_.,{s,d})

oo
d o |d

(Q) N - trans;storq (L)) P-—- tra.nsf,s}:or

is as follows. If on reaching stability the value of the gate g is true, a
connection is made between s and d, as a result of which they must end
with the same voltage. If the gate is false, the values of s and d are

arbitrary — they are free to be determined by other transistors
connected to the same wires. This behaviour can be expressed by defining
the strongest (i.e., exact) specification of an N-transistor to be the
proposition

g=(s=d)
The behaviour of a single P-transistor is similar, except that it is the

falsity of the gate that ensures connection and therefore equahty of the
~ source and drain , :

The behaviour of a network of transistors is nothing but the propositional -
conjunction {(and) of the specifications of all its components. Thus we
calculate

BINEG) = (a = (c=€e)) A (~a = (bse.))
which simplifies 1o
= (e V‘:‘(lf a then c else b))
B(TMG) = (¢ = (a=e)) A (-b= (asg))
=(cv -b)=s(e=a)
BEXOR) = if bz c then (o= a)nle=c)
else e={azc) o
We introduce two épecial wire names, true which ié always co.nnectéd to
-power, and false which is always connected to ground. These may be used
~ as wire names in the description of transistors and networks. For

example, substitute true for b in NEG and false for ¢ to obtain |

{((N,a,{false,e}),(P,a,{e,true})}

The behaviour of this network is described by making the same
substitution in B(NEG). This then simplifies to

e=-4d
which is the specification SNEG of a negation circuit.
The proof technique described above can be extended to bi-directional
designs, which are capable of taking their input on occasion from the
output wires, and then will present their output on the input wires. For

example, a bi-directional exclusive or network can be constructed from
EXOR by add:ng two more transnstors

EXOR2 ='EXORL’5{(P,e,{b,a}),(N,e,{c,a})}'. -

The reason for the extra transistors is indicated in 3.1. The method may

also be applied to sub-networks in'which the external connections are - -

designed to be used sometimes for input, and sometimes for output, and
- sometimes for neither.

This method is very conducive to proof during design. A specification

falls naturally into parts conjoined by A . Each part is implemented as a,
separate network; and when these are joined together in the standard way,
they will meet the whole of the original specification. But if the
specification R is not conveniently partitioned, it will be necessary to
introduce a planned split in the design. Suppose it is suggested that one of
the components should meet the specification Q. Then the remaining
part of the specification to be met by the other components ¢can be simply
calculated as (Q = R). Similar but more complicated calculations, using
the weakest prespecification, are available for the design of programs.
Unfortunately, the simplicity of the hardware development method
described above is delusory, as will be explained in section 3.

2. Abstraction

A large program is usually designed'as a collection of somewhat
independent parts. Some of these parts will be written as procedures,
which will be used repeatedly throughout the program, possibly with
different parameters at each call. A similar facility for declaration of

~ sub-assemblies is very necessary in hardware design. For example, a
general design for the familiar NOR circuit can be declared in the form of
a procedure (see Figure 2) ,

NO'R(a,b,z) = locx.{(P,a,{true,x}),(P,b,{x,z}),
(N,a,{z,fals_e}),(N,b,{z,false})}

where X is declared as a local wire (explained below)
a,b, and z are formal parameters, varied on each call.

To illustrate the calls of this procedure, a SR flipflop can be defined n
terms of two NORs - '

SR = NOR{j,y,z) u NOR(k,z,y)

In a conventiona! procedure body, it is usual to declare local variables

- which are used in the procedure body but nowhere €lse in the program. The

effect is that each call of the procedure uses a fresh instance of such a
variable, distinct from any variable used in the other calls, or elsewhere.
The distinciness-of the-local variables of each procedure call. makes the
procedure re-entrant, so that it can be called recursively or even
concurrently by simultaneously active processes.

In hardware, every call of a procedure is concurrent with every other call,
so local wire names are an indispensible feature of hardware procedures.
For example, the wire name x is declared as local to the NOR procedure,
so that each of the two calls of NOR within the definition of SR uses a
distinct and separate wire name in place of x . In the mathematical
definition of a network, | have chosen to indicate locality of a wire name

by the declaration :

loc x.

Pictorially, it is iridicated by enclosing the network in a box',' whose
boundaries are crossed only by wires in the parameter list, and notby -
local wires. : :

The name and value of a wire local to a procedure is inaccessible and
irrelevant to the environment of the procedure call. For this reason, the
name should not appear in any description or specification of the
procedure. Avoidance of local wire names will usually simplify the
specification, and so make it easier to use. So we need o find a method of
defining the behaviour of a network with a localised wire name. As
explained above, we cannot know, or even want to know, the actual value

of the local wire. All we know is that on each occasion of use there exists
such a value. This is stated by quantifying over the two possible values of
the wire, true and false

B(locx.C) = Ix.(x =true vx = false) AB(C)

In future, we will assume without explicit mention that a quantified
variable ranges over just the two values true and false. Thus we can
calculate the behaviour of NOR °
B(NOR(a,b,z)) = dx.(-a = (x=strue)) A (b =(x=2))
Af{a= (z=fase))r (b > (z=false))

By prqposttional logic, this reduces to
.[Ex.(-‘a:x)/\(ﬂb#(sz))] A{{(avb)=-2)
Expand the quantification by substitution of true and false for x
[({~a=strue)A(-b=>(true=z)))
v(-asfase)a(-b=(false=2z)))]
A{{avb)=-2)

This reduces to

ZE(-!a Aﬂb)

which is just the long-awaited specification of the logical NOR function.

The behaviour of each call of the procedure can be discovered by
substituting the actual argumerits of the call for the parameter names in
~ this specification. Thus the behaviour of the SR flipflop i1s

B(SR)= (z2(1n-y))Aly=(=kaa2))

10

11

which can be rewritten in propositional logic to
(jak =>-2yAaZ)
AljAa~Kk =>YyAa-z)
AlAjAK => ~yAzZ)
A~jAak =>(yzz))

In the fourth case when both j and k are false , this specification

states merely that y and z take different values. However, the actual
valuestaken are left undetermined. This can be an accurate description of
the behaviour of the hardware: the C-mos circuit is also non-deterministic
when the signals | and k go false at about the same time. More usually,
if] goes false earlier z will remain true, and if k goes false earlier y

will remain true. This factis very importantin-the design of storage -~ —-
elements; but it cannot be described in the simple story. The point is
discussed again in 3.4.

3. What goes wrong.

The theory outlined above appears to give a very simple and effective
method for correct design of switching networks. Unfortunately, it does
not apply to the design of networks for implementation in current C-mos
technology. In practice, there are at least five things that can go wrong
with designs produced in this way, and five other deficiencies in theory.

3.1 Asymmetry

The logical formula describing the behaviour of a transistor is completely
neutral with respect to the direction of input and output. For example, if
opposite values are supplied to the source and the drain, the formula
(g=>(s=d)) leads to the conclusion that the gate will be false on
stabilisation. But in fact a C-mos transistor cannot change the value on
its gate in response to true or false connections made to its source and
drain. That explains the need for the extra two transistors in the des:gn
of the bi- dxrectlonal exclus;ve disjunction EXOR2 :

3.2 Weak propagation

The whole theory is based on the presupposition that wires take only two
values, frue and false . Thus the N-transistor

(N, true, {true,d})

should ensure the truth of d . Unfortunately a C-mos N-transistor is not
good at transmitting true between-source and dfain; in practice, an
intermediate value is generated, which we will cali "weakly true" .
Similarly a P-transistor

(P, false,{false,d})

will make d dniy "weakly false". These.weak signais'are not capable of
controlling the behaviour of other transistors.

3.3 Short circuits

The proof method given above does not protect against the danger of
connecting power directly or indirectly to ground. Such a connection is
known as a "short", short for short circuit. Consader for example the
N-transistor

(N, true, { true , faise })

The predicate describing its behaviour is

true = (true = false)

which reduces just to the false proposition. Since in the propositional
calculus false implies everything, this transistor will miraculously

satisfy every possible spegcification.. But of course there never could exist
any product whose behaviour was described by the false proposition. Any
theory which assumes the possibility of what is 1mpcss;bie must be at
best unrealistic and at worst dangerous

in prac’{ice, the transistor connected as shown above is an immediate
" short; not only is it useless, but it will render useless the entire chip on
which it is printed. In more complicated networks, such shorts may
depend on particular unexpected combinations of input values, which occur
only after the chip has gone into service.

13

3.4 Charge

The gate of a C-mos transistor has significant electrical capacitance,
which can store a charge from one cycle of operation of a circuit to the
next. This property is essential to the the design of storage, registers,
and certain kinds of high-speed combinational circuitry which take
advantage of precharging. Such networks cannot be treated at all by the
simple methods of the previous sections.

3.5 Simulation

A widely used technique for checking a network prior to production is to
translate the design into a computer program, and simulate its behaviour
on test cases by running the program on the corresponding input data.
Apart from assisting in the discovery of errors, a simulation program can
help in convincing an engineer of the validity of the logical theory on
which a design is based; it can also serve as a "prototype”, giving an early
check on the appropriateness of the original specification. For small
circuils, it can even establish correctness by iesting on every possible
combination of input values.

For simulation of C-mos switching circuit designs, it is most convenient
to use a logic programming language like PROLOG. This is because the
proposition

g=>(s=d)

which describes the behaviour of an N-transistor translates dlrectly into
four Horn clauses)

sifdandg difsandg.
-notsifnotdandg notd if nots and g.

The complete program is obtained by assembling these clauses for all the
transistors. :

Unfortunately, this technique does not work for the simple story, because
-PROLOG does not implement negation in the required manner.

- 3.6 Design rules
There are other reasons for the weakening of electrical signals passing

along wires, which are forbidden by the design rules for silicon. For
example, there is a limit on the number of transistors that can be safely

connected by a single wire, and on the number of transistors through which
a signal may be passed without amplification. Furthermore, the
propagation of signals through transistors takes time, and a circuit will

fail unless an appropriate delay is interposed between input and an
attempt to access the output of a network.

These concerns are best separated from concerns of purely logical
correctness of circuit behaviour. They can be treated independently by
syntactically checkable design rules, appropridte for current

manufacturing processes. By ignoring such issues, a mathematical theory,
and the designs which result from its use, are more immune to changes in
technology.

3.7 Top-down desigh

The definitions given in this paper have shown how to franslate a
pre-existing circuit design into a predicate which describes the behaviour
of any circuit manufactured in accordance with the design. The translated
text is in general larger and more complex than the original; so this
method is applicable only to small designs. In any case, as explained in
section 0, the bottom-up approach is far less valuable than a topdown
approach, which starts with a specification (usually quite simple) and
transforms it methodically into a more complex design, whose correctness
is assured by its history of construction. The real advantage of a formal
method will be apparent only when it is used for rapid and routine
production of complex designs, which are also more efficient than those
which could have been produced by unaided intuition or invention.

In view of the other deficiencies of the simple story', its use as a basis for
a top-down design methodology is likely to lead to wholly unrealistic - '
results. : '

3.8 C_ontinuolus_'mbdels

In the interests of tractability, calculations and reasoning about

- correctness of logic design are based on a model with relatively small
number of values for quantities such as voltage, capacitance, and .
resistance (in the simple story just true and false). But of course, ina
real circuit these quantities range over a complete continuum. In view of
the dangers of oversimplification (amply illustrated above), it would be

very desirable'to check the validity of any proposed discrete model against

~ some well established continuous scientific theory of electrodynamics,
for example Maxwell's equations. SR |

14

15 |

In practice, however, a crude discrete theory may be superior to a precise
theory, because it is more tolerant of the wide variation in parameters
inevitably arising in the mass production of engraved silicon. The main
value of the precise theory is to calculate the permissibie limits of such
variation, within which the approximations made in the discrete model
remain valid.

3.9 Algebra
An algebra of C-mos circuit design is most elegantly expressed by writing

the name of the gate of a transistor as a subscript to the equivalence
symbol; for example we define

Like = , the operator =g is reflexive, symmetric, associative, admits

distribution by disjur{ction, etc.

X) = true

(xzgy)vz)=((xvz) =g (yvz))

In the case of switching circuits, conventional algebraic laws like these -
do not promise much assistance in the transformation or ophm:sataon of
designs. The reason is that atgebraxc formulae use nesting as the main
method of composition of complex formulae from simple ones, whereas
circuit designs use only conjunction.

- 3.10 General - | | | '
C-mos swrtchlrig circuitry is only. ohe among a number of techniques for _ |

design of general-purpose or custom-built computing devices. Standard
logic gates dlscretionary wired gate arrays and programmed Ioglc arrays

raise few of the problems listed above, and often provide adequate
efficiency in return for considerably less ingenuity. And when the higher
switching speed, of ECL is required, the technigues described in this paper
are not applicable at the circuit level. They are equally inapplicable to
asynchronous circuit design.

The scope for switching circuit design is further restricted by practical
limitations on the number of transistors through which a signal may pass
before regeneration. So switching techniques are used mainly to
implement simple logic functions like EXOR; and these functions are then
composed using simpler and more standard technigues for logic design.
The effort of developing a theory and installing a complicated methodology
for design of such a restricted class of circuits may be hard to justify.

4. Towards a solution

A solution to some of the problems raised in the previous section may be
sought by increasing the number of variables used to describe the
behaviour of a circuit from one variabie per wire to six or more. There is
a corresponding increase in the complexity of the predicate describing
each transistor. :

4.1. Asymmetry

‘The first problem of asymmetry is solved by using two propositional

variables instead of one to describe the state of each wire in the circuit.
Let w be the name of the wire. Then the propositions are

Twand Fw

where Tw is true if wire w is connected to power when the circuit

stabilises (and false otherwise); whereas Fw is true if the wire is

connected to ground on stabilisation. It is possible that both of these
propositions will be false, in which case the wire is said to be floating. It

is possible that both of them will be true, in which case the wire w is part

of a connection between power and ground, i.e., a short. The introduction
of two separate variables for each wire ensures that a short is no longer a
logical contradiction; so a short across the source and drain of a '

transistor no longer has a miraculous effect on the value at its gate.

17

4.2. Weak propagation

The second problem is solved by introducing two more variables
associated with each wire,

WTw and WhHw

The first of these indicates that w is connected to power, but possibly one
of the transistors on the connecting-path is only weakly conducting. A
similar interpretation is given to WFw. For convenience this definition
has been formulated in such a way that a strongly connected wire is also
weakly connected; so it is axiomatic that

Tws WTw and Fw= WFw forallw

Since a weak signal is anyway unusable, we do not need to model the fact
that weak conductance of a weak signal makes it weaker still.

The behaviour of transistors can now be more accurately described than in
the simple story. An N-transistor strongly conducts a strong false signal
when its gate is strongly true. When the gate is strongly false it does not
conduct at all. In all other cases, the transistor weakly conducts any
signal, either weak or strong.

B(N,g,{s,d})=(Tg=(Fs=Fd))
A{-Fg = (WTs= WTd)
A (WFs = WFd))

4.3. Short circuits. - |

it is & reasonable simplification to treat weakly connected shorts as just
as bad as strongly connected ones. Thus the possibility of a short is
indicated by the existance of a wire w for which WTw and WFw are both
true. Thus the absence of a short can be proved by showing that at ieast
one of these remains false in-every permissible combination of input
‘values to the circuit. Proof of absence of shorts i is the only reason for .
modelling weak propagation. -

18

To maintain validity of our proof method, it is necessary that a short is
not hidden when abstraction is used to render invisible the name of the
guilty wire. For this reason, we introduce a single further propositional
variable "sh", which is true of a network just when it contains a short.
Thus it is axiomatic that

WFw A WTw = sh for all w

To maintain the realism of our theory, the formula for behav;oural
abstraction must be modified to

B(locx.C)= 3Fx, Tx, WFx, WTx.
(Fx =>WFx)A(Tx > WTx)
A{WFx A WTx = sh)
AB(C)

Unfortunately, proof of absence of a short is still not simple. The formula
describing the behavioural predicate for a circuit is defined in such a way
that it it satisfied when all the propositional variables (including sh) take
the value true. This means that it is always impossible to prove the
desired implication

B(C)=>"| sh

What is required is more like a proof that the behavioural predicate is
satisfiable by an interpretation which assigns the value false to sh.

This compilication is the price that must be paid for modelling composition
as the conjunction of predlcates Further explanatlon of the details is
beyond the scope of this paper.

3.4. Charge

To model the storage of charge, we introduce two more propositional
variables for each wire w, namely

CTw and CFw

CTw is true when
both (a) Tw or CTw was true at the end of the previous cycle of
operation
and (b) The charge on wire w has not been dissipated on the current
' cycle.

The meaning of CFw is analogous.
A charged wire behaves exactly like a driven wire in opening or closing the
gate of a transistor. So the definition of an N-transistor needs to be

extended

B(N,g,{s,d})=

]

((TgvCTg) = (Fs =Fd))

A{(~Fgaa- CFg) = (WTs = WTd)
A (WFs = WFd))
The above formula correctly reflects the fact that a charge cannot
propagate between the source and the drain of a transistor. Indeed, such

propagation,would'dissipate thé charge; this will make CTw and CFw
~ both false, as described below.

19 .

Charge dissipation cannot occur on the current cycle if the relevant wire
is isolated from the rest of the circuit. The perimeter of a wire is defined
as the set of transistors to which it is connected as source or drain

perim (w)={t|w=stvw=dt}
A wire is isolated if all the transistors at its perimeter are switched off
isol (w)=(Vt.teperim(w)=off (t))
where
off(N,g,{s,d})=Fg v CFg
and off(P,g,{s,d}):Tg-vCTg

The reason for introducing charge into our model is to permit the design of
sequential circuits, whose behaviour unfolds over many cycles of
operation. On each cycle, enough time is allowed for the circuit to
stabilise before a change to one or more input wires (often a clock) causes
the next cycle of operation to start. A charged wire which is isolated on
the current cycle will retain the charge it had at the end of the previous
cycle.

The easiest way 1o extend the methods described in this paper to the more
general case of sequential circuits is to reinterpret all the propositions
Tw, Fw , WTw , WFw , CTw , CFw as infinite sequences of Booiean

variabies We can therefore define a shift operator A on these sequences,

such that AP takes the same vaiue at time t+ 1 as P tookatiime t,
and was false at time 0.

Now we can define the conditions under which wires are charged to poWer
or to ground.

isol (w) A (ATwv ACTwW) = CTw
isol (w) A (AFwv ACFw) = CFw

Recali that isol (w (w) stands just for a conjunction of normal propositions
(Tg v CTg) and (Fg v CFg) for all the wires g connected o the gates of
transistors whose sources or drains are connected to w

The formulae given above seem to deal adequately with the conventional

techniques of precharging. However, they ignore the problem of charge
sharing. Charge sharing occurs when a wire, which in the stable state will
be isolated, loses too much of its charge before the transistors on its
perimeter have fully switched off. This problem can sometimes be averted
by careful timing of clock signals.

Another problem ignored in this model is that a charge on a wire wil|

decay spontaneously after a certain number of cycles du ring which the
wire has not been connected to power or to ground. The model could be
extended to deal with this gradual décay, but there may be simpler ways of

avoiding it.

The technique described above is also incapable of dealing with such
circuits as the SR flipflop, in which each of a pair of charged wires is
isolated with the aid of the charge oh the other, A solution to this
probiem may be to allow the circuit designer to annotate the circuit by
specifying the conditions under which each wire is expected to retain its
charge. These annotations-are like the assertions used in program
verification. They have no significance on the operation of the circuit:
they are needed only to establish correctness.

Of course, the validity of the assertion itself must also be established by
a proof that each wire which has been asserted 1o retain charge will -
actually be found to be isolated at the end of the current cycle. And for
this, a weaker definition of isolation would be aliowable. But the details
are beyond the scope of this paper. | |

Acknowledgements
-~ For inspiration,'enqourag’ement, and helpful comments to Mike Gordon, .

Geraint Jones, Geoff Brown, Mani Chandy, Mohamed Gouda, Chris Lengauer,
Roy Jenevein, David Wheeler and others yet to come. o

21,

