Research Proposal 1976-7

C.A.R. Hoare

In the year 1976-7, I wish to pursue the hypothesis that the concept of a
communicating sequential process is a useful one for programming in many areas
of application, including conventional scientific and commercial applications,
real time, simulation, construction of compilers and operating systems, as well
as for the design of algorithms for execution on networks of interconnected
autonomous processors. S

In addition, I wish to explore the possibility that this concept is useful in
the laxge-scale structuring of large programs, and in their expression as abstract
algoxrithms.

Finally, some thought must be given to the implementation of the concept
in a high level programming language, where there may be a conflict between
tniformity and efficiency.

The method of lnvestigation is to select small to medium scale problems
from the various application areas, and show how thelr solution can be expressed
in terms of communicating sequential processes. The problems will be taken from
the published literature; where they have been used to illustrate the merits of
other program structures, such as wonitors, processes, coroutines, classes,
modules, clusters, etc. If their solution in terms of a single uniform structure
is acceptably natural, convenient, and efficient, this will be strong evidence of .
the value of the uniform structure as a primitive programming concept.

If a programming concept is to be used in abstract programming, i%shighly
desirable that the abstract program should be correct before any attempt is made to
code it into more concrete form. For abstract programs, even the usual ineffective
option of program testing is not available. Thus it is necessary to give some
attention to problems of establishing the correctness of programs, both by formal
and by informal techniques. One of the best formal methods is by use of
Dijkstra's "weakest precondition" predicate transformer, which can be used as an ald
in precgram design as well as proof. Dijkstra shows how it can deal with both
termination and nondeterminism; its extension to communicating parallel processes
vould be highly deslrable, and would add to the evidence that it is a proper
programming primitive. '

Although it is far too early to contemplate a practical implementation
of the concept, some preliminary design sindies for object codes on various
types of machine could provide some valuable insights, and validate the soundness,
usefulness and generality of the concepts. For example, if the concepts can be
adequately implemented on a conventional processor with homogeneous SRS store,
on a multiprocessing machine with single store, on an array of intercomnected
processors with separate stores, and even perhaps by the hardware of large-scale
integrated circults - this result would be of practical as well as theoretic
interest. The actual construction of a “compilexr" is not necessary for the
investigation of these questions,

In.the following sections, particular sub-projects have been described
in greater detail; there is no undertaking that the work will be completed by the
end of the year.
1. Preliminaries.

The following documents will be required at an early stage in the project:

1.1 The design of a notation suitable for the design and description of
abstract computer programs, and which includes a notation fox commun i~
cating processes, . :

1.2 The rigorous description of the syntax and semantics of the language
in the form of the ALGOL 60 report. o

1.3 A graded series of example problems and solutions, taken from a
variety of application areas, and suitable as a tutorial introduction
to the concepts and notations, and illustrating a variety of methods of
using them.

These documents may need to be revised as a result of desirable changes
brought to light duxing the study.

2. Applications.

The language should then be applied to the design of programs in various
application areas. In each case, only an abstract program is written, and concessions
can be made on efficiency and realism, Thus, guite large projects can be
tackled, for example:

2.1 A compilexr (perhaps for the language itself), of about the
 complexity of our PASCAL S (a student interpretive subset of PASCAL).

2.2 An operating system of about the complexity of the T.H.E. system,
or the IBM 704 FORTRAN Batch Monltor.

2.3 A simulation package, including simulated time, queues and random
numbers, together with a substantial application, fox example,
simulation of an airport's passenger handling.

2.4 The analysis of a major administrative system, such as the student
records of this University. The example should show the application
of more rigorous methods to the task of systems analysis.

2.5 The design of the implementation of a communication protocol for

communication between machines and devices of varying worxd length,
character codes, message lenyths, etc.

In addition to these major projects, the collection of typical small
problems and elegant solutions should be increased,

3. -Proof Metheds.

On the more formal and theoretical side, work can proceed in three
directions:

3.1 The selection of small problems (e.g., Dining philosophers,
readers and writers) which are frequently used to test structuring and

proving methods; and their solution and proof using communicating
processes.

3.2 the extension of formal. proof methods to parallel programming,
and. the construction of a complete axiomatic definition for the
programming nctation.

3.3 The construction of an operational definition of the concept,
and the proof of its consistency with the axiomatic. This ls required
poth to ensure the validity of the axioms, and to give a more intuitive
description to the programmer of what hisg program does.

4, Twplementation studies.

The implementation studies may include the following:

4.1 The design of an nafficient" implementation for a conventional
machine of a highly restricted subset of the language, at about the
level of PASCAL.

4,2 The design of an nabstract"implementation, using intexpretive
techniques, and disregarding economy in space and time.

4.3 The design of an implementation for multiple communicating
- prOCcessors, including design of suitable hardware interfaces for
communicating microprocessors.

5, Conclusion.

The expected outcome of this work is to establish that the concept of a
conrmunicating sequential process is too general and tco primitive foxr many
purposes. In paxrticulax

1) The use of the concept will reveal common special cases which
require cumbersome coding, and for which an abbreviated notation
would be helpful both to reader and to writer.

(2) The general proof rule may be too complicated, and much simpler
rules could be found to cover certain common specificses.

{3} The fully general implenéntation may involve inescapable overhead
in space and tine, and much more efficient methods are available to
deal with common special cases.

P AT T e g T TV T A S 4 A

If it turns out that the common cases referred to under the
three headings above are the same, then there will be a strong
argument for extending a prograrming notation in a manner carefully
designed to solve all three problems simultaneously.

Tt is highly probable that this will involve reintrxoduction
into the language of some of the structures (e.g., procedures, classes,
monitors), which were intended to be replaced by communicating processes,
But as a result of the exercise, the definition of these concepts will have
been sharpened and simplified, their proof miles will have been discovered
and validated, and their relationship to each other will have been
clarified, and their design should completely avoid the arbitrary
complexity which is characteristic of many proposed extensions to

programming languages, onnd Fon), evem 4k¢ﬁ§AgA ﬂaqﬁmaérﬂz

Wil be v ol

