Timetabling Ffor Schools:

an Exercise in Program and Data Structuring.

C.A.R., Hoare and H.C. Johnston.

A i "*E gé ;%

Supmary.

The purpose of this paper is to illustrate some recent theories of
program and data structuring, with the aid of a realistic large example
problem, - that of constructing an acceptable timetable for a school.
1. Specification of the Problem.

A school way be described in terms of the items, which constitute
the school, - teachers, classes, rooms, and equipment. The set of itene
may be defined for a particular school by enumeration:

type Item = {?Janes,Smith,...,IV,V&,VE,...,physlabsgym,...,prajecfor,..})
The number of items will be of order 250. , |
‘Some of the items will have more than one unit; for example, there may
be two physies laboratories or four projectors which can be used
similtanecusly. The number units of an item defines the number of possible
simultaneous users of an item,and will be given by a mapping:
livea: Item ~» 1..HL
where NL will be typically 8, Most items will have only one life.
The school engages in & number of activities, which are to appear in
the timetable: for example "form VA &atin” ‘or "form IV physics", These
activities may be defined by enumeration; there will usually be leas than
500 of themn.

The school timetable is constructed over & week, consisting of a
nurber of periods, usually hetween 30 and u48:

type Perdod = 1..NP:

Each activity will in general be requived to occur several times during
the week; this is defined by a mepping:

times: Activity > 1..HT:;

where NT will usually be not more than lO.

Fach activity invelves pavticipation of a set of ltems; Ffor exawple,
"IV forwm physies™ will reguire a meeting of form IV with a teacher,
(say Jones); it alse vrequires a physlal, and perhaps alsoe & projector.
The regquirement for each activity is given by a mapping:

requirement: Activity 9 Item set;

We aleo shall use the inverse of this mapping:
users: Item-»Activity set
where a € users{i) = i € requirement{a)

A timetable may be specified by giving for each activity the set of
periods in which that activity is to take place, that is, by the mapping:

timetable: Activity -» Period set
This mapping must satisfy the following constraints.

(1) Each activity must take place exactly the right number of times:

¥a:fctivity size(timetable(a)) = times(a) (C1)
(2} Each Ttem ¥i,p nust be used exactly the right number of times
in each period: busy(i,p) = lives(i), fﬂv P
where busy(i,p) = size La &users(i)\ B e—timetable(a)} (c2)

The requirement that an item may not be underused is not in practice
restrictive. If an item i is going to have free periods, their number can
be computed by the formula:

NPxlives(i)}~ ;Etimes(a)
zseusers{l)

Then for each unit of an item a further artificial activity can be inserted
to represent its free periods. A "free" activity is thus an activity which
has only one item in its requirement set.

The number of such artificial "free" activities may be up to 250,
bringing the total number of activities up to 750.

2, Additional Constraints,

In practice, this relatively simple characterisation of the timetabling
problem is complicated by a number of additional constraints, described below.

2.1 Preassignments.

Certain activities ave specified to take place at particular times; for
example it may be necessary that one of the cooking classes takes place just
before lunch, when its products are to be eaten; or perhaps a teacher is
unavailable at a certain time, so that his "free" activity must be scheduled
at that time. Such constraints may be expressed by a mapping:

timetablgé; Bctivity-;ﬁ%riod set

such that timetable (a) consists of those periods in which that activity
a must occur in the completed timetable, i.e.

Ya timetableo(a)ﬁmimetable(a) : (c3)

2.2 Fopbidden assignments,
Sometimes an activity must be prevented from oeccurring at certaln
times; for example, swimming should not occur immedlately after lunch:
or practical classes should not occcur in the first peried of the day. Such
constraints may be aexpressed by a mapping:
pwssibleg:Activityw)?ericd set

such that pcsaibleﬁ(a) pives the set of perieds in which the activity a
may occur in the completed timetable, i.e.

¥a timetable(a)Cpossible (a) (cy)

2.3 Hultiperiod asctivities.

Certain activities of a schoel may be such that they can only
effectively be carried out in a nuwber of consecutive periods, for example,
practical classes, opr games. BSuch constraints way be specified by a
mapping: :

length:fctivity 91, ML, where HL will usually be 3 or &4,

which pives for each activity the length of the multiple period which must
be assipned to 1t. We also need a mappling:

gtarts:l,.ﬂinﬁﬂariad sat
which gives for each length the set of periods in which a multiple period
of that length may start (for example, not the periods at the end of a day,
or before a lunchbyssak). We can now define a funotion
trin: 1. Hlxferiod ser —» Peviod 5-¢t__
guch that trim(a,ps) is the result of removing from ps any isolated periecds,
which cannot form part of a multiple peviod of the requived length. The
required constraint may now be expressed
¥a trim{aitizetable(a)) = timetable {(a) {cs)
2.4 SBpread.
Ancther constraint is ilmposed by the desire not to have two
oceurvences of the same activity on the same day. Activities to which this
constraint is to be applied belong to the set: :

spread: Activity set.

This constraint, of‘csuraes cannot be satisfied by an activity which ovcurs
too often; but we may artificially split such an activity inte two or move

activities with identical requirements. The days in the week may be defined:

type Day = l..ED;

where KD is usually between § and 7.

We are alsc given mappings:

periods in:Day-»Period set
day of:Period -lay
which give the set of pericds in a given day, and the day in which any given
period occura. Obviously,
p#»eperiods in {(d)= 4 = day of (p) (P1)
o & SPMJDM times (a)«< HD x length (a) (P23

We also assume that the periods in a day form a contlnuous renge, so that

ps~periods in (d) = trim(a,ps-periods in (d)) (P3})
Another realistic assumption is that all multiple perlods must be spread:

length{a)>1) a & spread (bu)
The constraint may be enpressed:
Va a espread o possdays (timetable(a)) = times(a) + length (a) {ce)
where posadays (ps) = size {'d \ ps Aperiods in (d) :#amptyg
2.5 Tas.

In some cases, it is desired to prevent certain related but not identical
activities from occurring on the same day, for example, physics theory and
physics practical, or two non-academic subjects. We may express this by a
mapping:

Ee: Activityshctivity set

which for a glven activity specifies the set of other activities which must
not occur on the same day, i.e.

Ya,a',p,p'. a'etiela) & p etimetable(a)&p'e timetablé (a')D day of(p):’: da;ép’)(C?}
For most activities, tie(a) will be empty.
The conjunction of conditions (C1) teo (L7) wi.ll‘ he known as (C).
2.6 Conclusion. |

The constraints given above are in practice never wholly observed by a
human timetabler; and there are grounds for belief that it is often logically
impossible to construct a timetable that observes sll the constraints Initially
specified by a school. Thus in spite of the rigour with which the problem has
been stated, in practics the cowputer cannot be expected to solve the problem
as posed, but only to "do as much as it can” within the comstraints, or
alternatively "break as few constraints as possible”. DBut the latter approach
is not very promising, since the importance of the constraints varles from
case to case, and cannot vreasonably be specified In advance. "Ig it more
important that Hr. Jones gets his nap after lunch, or form IV should not have
cwrrent affairs and swimming on the same day?" - no schoolmaster is willing
to answer many hundreds of such questions in advance; but will answer a few
such questions when he knows that completion of the timetable depends upon it,

g i Loy
LR

3. The Timetabling Method. festrene.

9 ‘}ALﬁf
The method of timetabling is to make successive decisions about the -° ~/°

assigmment of activities to periods, until all activities have been

successfully assigned. Fach decision can be made in two ways

+

either {a) to assign an activity to a period
or {b) not to assign an activity to a period.

Choice (b} is known as a cancellation. If a declsion turns out not to lead
to a successful timetable, the alternative decision is taken. If neither
decision is successful, one of the previous decisions must have been
mistaken, and further backtracking must occur. If neither way of taking the
very first decision is successful, then the problem was incorrectly posed,
and there is mno solution.

This method requires that we keep a record of decisions made previously.
This may be done by two mappings:

T,Piactivity Fperiod set

where T(a) is the set of periods which have been assigned to a
(initially empr) Y

.
o taestepile

and P(a) is the set of periods which have not been cancelled for a
(initially the full set) wﬂ4uﬁﬂﬁ Faﬁljiﬁ

Obviously, if our decisions are non~contradictory, the following will always
hold:

¥a. T(a)CP(a)

When all decisions have been taken, T = P, and it is possible to check
whether T satisfies the constraints Cl to C7. C3 and C4 can be guaranteed
by setting the value of T as timetableo, and the value of P as possibleo.

Thus the basic solution method is as follows:-

timetable program:

i prtn Lo

begin
success label print T;

progress recuprsive procedure
if TP then
begin new a:Activity.,p:Period; !
select (a,p) such that p £ P(a)-T(a); ‘JE
iT(a):+p; ' Py
call progress; Bl ehgtife

T(a):~p} note Qlo Qz means either (Q]_;QQ)
O{P(a):-—p; or (Q25Q1)
call progress;

_;_uil_ P{a):-{-p}
ggﬂg é% 1-.sai{s£lls C. tiﬁgﬂ gpgghi Suceass H

.._5....

i L et

Z' Gty i ety R,

input and check the data;

T:=timetable0; P:zpossibleo;
call progress;

print failure message

end

There can be little doubt of the 'correctness' of the program; it will
always produce a solution if there is one and print a failure message if
there is not. But the time taken to do so in practice will be many orders of
magnitude larger than can be accepted; and the main part of the programming
problem still remains.

3.1 Consistency.

One of the most obvious inefficiencies of the program is that it waits
until the very end before testing whether T and P are satisfactory; whereas
in memy cases it can be seen well in advance that there could never be any
satisfactory timetaeble based on decisions taken so far.

il.e. '13 timetable. C&¥a.T(a)Ctimetable(a)CP(a)

When this is detected, there is no point in waking further calls on "progress",
since failure is inevitable. We thus change our program thus:

replace: call progress

by: if consistent then call progress

where consistent:Boolean (initially true) is a mavker set to false if
inconsistency is detected. Unfortunately, it is too much to hope for a 100%
test of possibility of success, since this would require a guarantee of the
existence of a complex object like a timetable before it had been comstructed,
So all that can be done is to find a set of necessary conditions for success;
for falsity of a necessary condition will then be a clear indication that
failure is inevitable. A condition N is shown to be necessary if it can be
proved that:

C&¥a (T{a)Ctimetable(a)CP(a))DV.

The following necessary conditions can readily be proved:

¥a size(T(a))Ltimes(a) £ size (AP(a))f : . N
¥i,p. busy (i,p)<£lives(i)<£ possbusy(i,p) N2

where busy{i,p) = size {a € users(i) l P eT(a)} I3

possbusy(i,p) = size {a |users(i)]prcP(a)} I2

¥a a ¢ spread D times(a) £ size(possdays(a))xlength(a)

where possdays(a) = {ﬁlpsAperiods in (d):%empty} N3
¥a,d aé&spreaddmax (T(a)apericds in (d))-min(T(a)A periods in (d))<length(a) Nu
Va,a',p,p' a'etie(a)s pel{a)ip’eT(a)Dday of (p):f:day of (p') NS

In writing the program to check consistency, much time can be saved if
it can be assumed that consistency held before the most recent decision, and
it is known what that decision was. It also pays to astore the values of busy
and possbusy rather than recomputing them each time.

busy ,possbusy : ItemxPericd 1, . NP
wihere initially busy is uniformly zero, and posshbusy is uniformly equal to NP.

after T(a):+p do _
begin consistent :8size(T(a))< times(a); note N1

for ie requiremen‘t(a)ig_%msy(i,p)t+lsnotellsconsistentstbusy(d,plelives(d
notel?2;

ps:= periods in (day of (p));
if a €spread then consistent:&(max(T{a)aps)-min(T(a)aps) L length{a));
note Nhj
for a'etie(aldo consistent:3T(a’)Aps = empty;
note N5;
end;
after T(a):-p do
for i¥requirement (a) a_:i;q[busy(igp):wl;consisten'tmm; v_\g_'t-_; I"}
g:f_ggg P(a):-p do
begln consistent:×{a)£ size(P(a));inote N1;
for ie&requirement(a)_dwg{possbusy(i,p):-1inotel2;consistent:21lives(i)L
| possbusy(i,p)} 3
_ note N2;
if agspread then consistent:itimes(a)<L size(possdays(a))xlength(a)inoteN3

end

after P(a):4p do
for i¢ requirement(a)dopossbusy(i,p):+l; not Iz

Since we assume consistency of T and P before these decisions, it is
necessary to check the consistency of the data immediately after input. This
may be done on the assignment of timetableo to T and poss:ibleﬂ to P, using the’
above fragments of code. Altermatively, it is a trivial matter to write
a more efficient program for initial checking. :

8.2 Forecing.

A decision is said to be forced if the alternative decision would lead
inevitably to failure. An assignment of a to p is fovced if

VtimetableE&Va(T(a)Ctimetable(a)GP(a)) D v & tinetable(a)] (1)
and a cancelletion is forced if
’JtimétableE&Va(T(a)ﬂtimetable(a YCP(a))Dpetimetable(a)J {2)

X

Now it would again be too much to hope that all forced decisions will
be detectable, since if they could, all #nforced decisions could be taken
either way, and the whole timetable could be constructed without backtracking.
The best that can be expected is to find a powerful set of sufficient
conpditions for Fforcing.

Of course, a forced decision will not lead to a successful timetable
if one of the previcus decisions was incorrect, or if the problem was
originally insoluble. Thus it will frequently be necessary to backtrack
over forced decisions; and so we must keep a record what they were. This
can be dene in a stack declared locally in the procedure progress:

stack: (ActivityxPeriod) sequence initially empty.

When unmaking a forced decision, there is obviously no point in making the
alternative decision.

It can be readily proved that the following conditions are sufficient
for forced assignment of a to p, where in all cases peP{(a)-T(a)

size (P(a)) = times(a) FAY
3 icrequirenent (a). lives(id=possbusy(i,p) o FAZ
& € spread &“times(a}zsize(possdays(a) Yxlength(a)

tsize(P(a) A periods in (day of (p))=length(a) FA3
length(a)» 48Ed(p eA{pé €right length (a,d)‘(T(a)CpsCP(a)}) FAL

where ps €& right length (a,d) means that ps iz a multiple period of
length (a) in day d.

The following conditions are sufficient for cancellation of a from D)
where in all cases; peP(a)-T(a);

size (T(a))=times(a) FCL
3 i évequirement (a)(busy(i,p)=lives{i)) , FC2
a € spreadilength(a)=tegmadlastsize(T(a)pperiods in (day of (p)))=1 FC3
length(a)'>1&3d(p'€v&>s eright length (a,d) | T(a)cpscP(‘a)j) FCl
aa" p a'6étie(al)sT(a') Aperiods in (day of (p)):’:‘eﬁp'ty FCS
Fa: a' g tie(a)idsize(possdays{a ')xlengthf{a)=times(a)iday of (p)

€ possdays(a')) - FCB

The forced decislons are to be taken as soon as the corresponding sufficient
condition becomes true; which can only happen when an assignment is made to one
of the variables which it contains. Thus we design the following mutually
recursive procedures:

after T(a):4p do recursive

if sz(a) then consistent:=false else if consistent then
begin if size (T(a))=times(a) then

for pEP(a)-T(a)ggistackzh(agP}; P(a)twp}g note FCl;

if a espraad&length(alxi then for p'e P{a)Aperiods in {(day of (p))
~T(a)de istack: (a, 'S;P(a):-p‘3; note F(3;

if length (a) 1 then call multilength;

.....8_.

for a'gtie(a)do
let p*ezperiods in (day of {(p));
for p'eP(a)Aaps do |
{stack (a,p");P(a): -p} FC5
end '

after busy(i,p):+l do recursive

[T

if iivea(i}zbusy(i,p)_@{l_eg
for a&users(i)de
:preP(a)w((a)then&a’tack (agp) P{a): -p} note FC2;
after P(a)i-p do
if peT(a) then consistent:=false else if consistent then
begin if size (P(a))=times(a) then
for p’ P(a)ﬁ-’f(a)gg_{:gtack:h(a,p')gT(a);ﬂ)] ; note FAL;
if ae&spreaddtimes(al=size(possdays(a))xlength(a)
dsizne(P(a) Aperiods in (day of(p))=lengthla)
then for p'e P(a)aperiods in (day of(p)i-T(alde
%(“)>1 %{stack; (a,p};T(a):*ﬁp"; note FA3;
call mult:.leng‘t'ﬁ;_
if size (possdays(a))xlength(a}»tlmes(a) then
for a' &tie(a) do for d&possdays(aldo
i.‘gg p'€& P(a')pperiods in (d}g.gi;stack:"(a,p*);f’(af):-np’};
note FCB;
end
nultilength procedure
begin let d = day of(p) sintersec: -pemods in (d); union:zempty;
for ps €right length (a,d)do {':Ln'tersec: Aps;union:Vps};
for p'é&periods in(d)do |
if p'e€ intersec-T{a)then s‘tack (a,p') ;T(a); +p'}
else if p*gP(a)-union then {stack‘ (a,p'),?(a).-«p}
end; note FAL and FCh;
after possbusy(ir,p):mlg_q_ vecursive
if possbusy(i,p)=lives(i) then
| for a' gusers(i) do _
if peP(a')-T(a') then [stack:(a' ,p)T(a');-l—P-i , FA2
before T(a):-p do unstack; -
before P(a):+p do unstack;
‘where unstack progedure
while $tack+emp‘i:y do

begin (a',p) from stack;if p&P(a’) then P(a');+p’
else P(a');-p';T(a'):-p'

end —3

%, Tight Sets.,

It is faivly obvious that the number of calls of progress will depend
on the twpical number of unforced decisions which have to be remade after
backtracking, We put

#

D total number of deecisions to be taken.

= typical number of forced decisions following upon
aach unforced one.

p = probability that an unforced decision will be correct.

B = typical depth of recursions'required before an incorrect
decision has been corrected by backtracking.

Then the total number of recursions required for a successful timetable
wlll be proportional to

D

B
F OXPR .

Thus the most important parameter to minimise is B; 1in fact to reduce
B by 1, it is worthwhile to double the time taken by the main procedure.
“Reductien of B can be achieved by

(1) strengthening our tests of conzistency, so that inconsistency can
be detected early by explicit tests rather than backtracking;

(2) always selecting for the next decision an assigment which is most
likely to reveal any latent inconsistency.

A factor to be maximised is ¥, the number of forced decisions, This can
be achieved by means that will also help in reducing B.

(1) A strengthened foreing condition will require more forced decisions
for each unforced one,

(2) To select always for next decision that activity which is likely to
lead to the longest chain of forced decisions will both increase the typical
value of T, and give an esarly indication of latent iInconsistency.

The next task is to maximise p, the probability of making an initial
correct decision in the unforced case, i.e, where p iz known to be less than 1,
Unfortunately, there does not seem to be any ready way of even eatimating
this probability, which must therefore be asmumed to be around a half,

S8ince the size of improvement obtainable by increasing p is bounded by a
factor of two, it is not worthwhile to apend much time “guessing” the right
decision, One might as well make a wrong decision, and hope that it will
be socon detected. ' '

-~ 10O~

