


EVERYTHING YOU'VE WANTED TO KNCW ABOQUT PROGRAMMING LANGUAGES
BUT HAVE BEEN AFRAID TO ASX

C.A.R. Hoare
November 1978

Introduction

Programming languages and their design have always excited intense controversy
and intense activity. The controversy is usually conducted at a level of minute
detail; and the activity has led to designs of impenetfable complexity.® Practising
programmers observe that neither the detail nor the complexity seem to be rélevant
to the actual prebiems that face them daily; and each cne of fhem believes that he
could improve the language he uses, or (more rashly) could design a better one, if
only his colleagues would agree.

The consequences of this are well known: a large and expensive collection of

languages and incompatible dialects of each of them. It is essential to take action

to briﬁgaa grea; degree of order into the chaos. But how can we be sure that
this 2kt%ﬁ;;y:iﬂ not merely contributggg tc the chaos? Even more importart, how

can we convince the makers of policy and allocators of funds, who have none of the
experience and technical background of those actualily engaged de—the—aebiswdty? How
can they distinguish a policy that is wise from cne that is merely clever (or worse)?
How can they distinguish between those experts they can rely on and those equally
distinguished expertg that they can't?

This brief report attempts tc answer these questions.. It takes the view that
the design of a programming language 1s not very different from the design of other
engineering preoducts - automobiles, bridgeé, electronic computers., Where the analogy
breaks down, this is clearly highlighted, and'apprépriate conclusions (usually pes-
simistic) ére drawn. By surveying previous history, the report attempts to eluc-
idate the signs and symptoms which should have been recognized as indicative of a

rapidly successful project, or of a leng-drawn-out failure to meet the original

hopes. It attempts to convey sufficient imsight into the field to enable the non-
technical policy maker to exercise genuine and most necessary control of the tech-
nical directicn pursued by experts engaged on the project.

The report is structured as a series of questions and answers. Its tone is as

%See ALGOL Bulletin; or attend any language design or standardization committee
meeting.




2.

far as possible non-technical, perhaps to the point of naivetd, It appeals to

anecdote and to analogy, to experience and to common sense. Every attempt has been

made to achieve brevity and readability. Inevitably this means that whole areas of
wns&:é?

scientific research and development are dis in a brief or pungent phrase,

Many readers will be alienated by the oversimplifiecation of the issues. For this
I offer apologies, but no excuse.

The report falls naturally into three parts. The first part outlines the lessons
which can be learnt from study of past history; the second part tries to examine how
these apply to the current DOD HOL projects; and the third part locks to the future,
and summarizes the research directions most relevant and promising for future lang-

uage design and uss.

Contents

l. What can we learn from past experience of language design?
1.1 Why so many general-purpose programming language designs?
1.2 Why so few special-purpose language designs?
© 1.3 Were the designers of previous languages incompetent?
1.4 Why are their language designs so inadequate? Or do they only seem so?
1.5 Why do programmers get so attached to the programming language they
currently use?
-6 Why does design of a new language seem so desirable and so simple?
7 How long does it take to complete a language project from initial design
to final standardization? = . A
.8 Why does language design always turn out to be so difficult?
9 Which are the technically successful language design projects of the past?
1.10 What are the technical reasons for their success?
1.11 VWhat other factors contributed to their success?
1.12 Why is machine and assembly code still so widely used?

2. How do these lessons apply to the DOD HOL?
2,1 How long will the DOD HOL project take?
2.2 How does the project compare technically with earlier language design
projects? '
2.3 Are the novel aspects of management of the project likely to contribute
to its success?
2.4 What are the major currently unresclved language design issues?
2.5 Which of these issues are of real significance to the practicing programmer?
2.6 How can a design avoid the more irrelevant igsues?
2.7 Which language design issue is central and cannot be evaded?
2.8 How do the answers to these questions relate to the DOD HOL project?
2.9 Which recommendations of STEELMAN would you recommend omitting?
0 Why do academics sometimes take such a negative or even cynical
attitude to the project?
2.11 VWhat strategy can mitigate the extended timescale of new language
development?
2.12 What strategy will smooth the transition to a new language?




3.

3. What research directions are most relevant and promising for future languages?
ek, short=tarn. reseanch Is maet ureent iy T\pqn'?'rn:\r'l Lot PRGEAOE B~
SE DD LD ' tgki
e g masaah w111 4 S e RALOMIEIL L d i e Jongo . tenm? 4
3.3 What is the relevance of prcblem specification languages?
3.4 How will they influence the development of programming languages?
Bl 000 B Pl 2GS EoR ARl LC AT LonsoRieRted B e
3:§f What can we learn from controlled experiments in the use of different
languages?
3.6 What can we learn from a comparative survey of programming language features?
33? What can we learn from formal methods of language definition?
3.4 What can we learn from program verification studies?
S.ZT What are the prospects of automatic verification or even synthesis of
computer programs?
3.11 What is the best method of determining the relative merits of rival
languages?
3. jolow will hardware development affect the relevance of existing languages
and the development of new ones?

1. What can we learn from past experience of language design?

1.1 Why so many general-purpose programming language designs?

~

Because it always seems that no existing language is adequate. When CCITT
wished to standardize a language for programming electrenic switching systems (i.e.
computer-controlled telephone exchanges) they made an exhaustive survey of existing
~ languages, and came to the conclusion that none of them was adequate. The Purdue
Workshop Long-Term Programming Lan e Committee in Furope (LTPL/E) made an even
more exhaustive survey before coming to the conclusion that none of them was adequate.
The DOD HOL project was even more thorough in its survey of criteria and languages,
and came to the conclusion that none of them was adequate. I have made an exhaustive
survey of committees which have made exhaustive surveys of programming languéges;

and I am regretfully tempted to come to the same conclusion.

1.2 Why have there been so few special-purpose languages?

Computers are used for a wider range of applications than ‘any other mechanism;
and yet they are not particularly well suited for any particular one of them. - That
is one of the reasons why programming them is so difficult. But a programming lang-
uage is not subject to the same constraints of hardware nor the same requirement for
generality. A great deal of the problem of programming could be mitigated if a
language were specially designed for the needs of a particular class of user, say
structural engineers, or astrophysicists, or accountants, or secretaries, or perhaps
even managers!

However, this has not happened to any great extent, except perhaps in discrete




event simulation. The reason is perhaps twofold:

(1) The design of a special-purpose language reguires at least as much
engineering skill and judgment as a general-purpose language, in design,
description, and implementation.

(2} The user of a special-purpose language soon begins to miss the general
algorithmic capability of a general-purpose language, and facilities for
data storage and input/output. Thus even special-purpose languages (e.g.
SIMULA I or SIMSCRIPT) turn out to be af least as complicated as general-
purpose ones.

For these reascns, it has been more effective to superimpose speclal-purpese
features on a simple general-purpose programming language like FORTRAN, by imple-
menting a package of useful functions and procedures. But these packages can get
quite bulky, and inefficient, and their interfaces can be complex and prone to
error. SIMULA 67 was the first language to tackle this problem, but leaves some

aspects of efficiency to be desired.

1.3 Were the designers of previcus programming languages incompetant?

Undoubtedly, the designers of some existine languages have been technically
less than in control, in that their designs have had to be quite radically modi-
fied beforé they could be implemented or used. The earliest drafts of the design
of PL/T give evidence of this®*. But the task of language design has attracted a
number of the most brilliant software engineers in the world - John Backus, Peter
Naur, John Reynclds, Dahl and Nygaard, Jchn MacCarthy, Niklaus Wirth, Doug Mcllroy,
Edsger Dijkstra. If these great talents cannot design an adequaté programming
language (or quail before the magnitude of the task}, this cannot possibly be

attributed to technical incompetence.

1.4 Why are their language designs so inadequate? Or do they only seem so?

If we accept that the designers are competent, then perhaps the reason is that
their designs are being judged by a standard that is technically unachievable.
Many people cherish a hope that the adoption of a better programmipng language will
actually make programming into an easy task. But this, I fear, is a hope as vain

as the pursuit of the philosopher's stone. The design of computer programs, right

¥and numercus less famous languages seem to owe more to historical accident than
to conscious design!

P S PSP




5.

down to the level of detail, will always be a significaﬁt intellectual endeavor,
requiring the same inventiveness, insight, experience and meticulous care as the
design of cathedrals, aeroplanes, bridgés, and computers. It demands the balancing
of many incompatibie objectives: sophistication of specification, correctness,
readability, adaptability, machine-independence, economy of storage, speed of
executicn, early delivery. The design of a program to meet the interests of its
users will always depend on the relatlve 1mportance of these objectives; and a good'
programmer almost unconsciously adapts Eg the percelved needs of his client. No

programming language will reduce the lmportance of the human intellect for this

task; nor will it enable the programmer to get away with slipshod reasoning, inad-
equate planning, imprecise definitions, or inattention to detail.

This argument in no way states that all languages are equally helpful; it
merely states that we should not expect too much, and maybe we should be more éonm

tented with the best designs of the past.

1.5 Why do programmers get so attached to the programmlng language they currently ]
use?

The attachment of programmers tc existing languages is in stark contrast to

the enthusiasm of committees in condemning all such languages as inadequate; and it

reflects a well-founded suspicion that no alternative languagelis likely to be wvery

much better. Furthermore, a programming language conditions the whole culture and

working framework of its user, to such an extent that use of a rival language becomes

almost unthinkable. We are willing to tolerate major deficiencies in a familiar i

language, or friend; but the smallest flaw in a rival justifies our bitter hatred. }
i

But there is another, more disturbing reason for the intense partisanship of

a programmer -~ that his existing programming language has presented so many prob-

lems, complexities, and unexpected traps that he spent a long time learning how to

master it. The prospect of a new language presents a severe threat - it might take :
even longer to learn to use it properly than the old one. But perhaps an even
worse threat is that it might actually be easier to learn and use effectively, since
that would wholly devalue the programmer's hard-won professional expertise in his
earlier language and its implementation._ in this way, a complex programming lang-

uage can drive out a simple one.




6.

1.6 Why does design of a new programming language seem so desirable and so simple?

Having determined the inadequacy of all previously designed prograrming lang-
uages, it is always decided that the scluticn is to design a new one; and this con-
clusion was reached independently by CCITT, LTPL/E, and the DOD HOL project. In
view of the acknowledge technical competence of earlier designers, and the apathy
or even the cpposition of most experienced programmers, this seems an absolutely
extraordinary conclusion. If it were motor cars or mixing machines, it would be
quite laughable. Committees which evaluate compﬁter hardware designs for standard-
ization seem to realize this well enough. -

But a programming language seems somehow different. It is not subject to the
same sort of obvious and well-understood engineering constraints as the products of
traditicnal engineering; and the penalties for technical inexperience are not so
obvious or so dangerous. There is no danger that incorrect calculation of stresses
or strengths of materials will lead to collapse. It seems so simple: all we need
is to specify a range of useful features and facilities; and a team of competent
compiler writers will be able to implement them.. In fact no great feats of inven-
tion are called for; all that i1s necessary is tc make a collection of the best
features of existing languages, and merge them into a single language; and that is

surely only a routine engineering development project,

1.7 How long does it take to complete a language project from initial design

to final standardization?

On First starting the design of a new language, it is typical for the designers
to work to a three-month timescale. The history of ALGOL 68 is fairly typical in
this respect, but PL/T and other less well-known languages exhibit the same story.
Usually the deadline has to be extended to (say) six months, after which a hurried
design is produced. However, this is clearly unsatisfactory to the sponsoring
body, and even to the authors, and another three months must be allowed for refision
to produce the final and definitive design. Unfortunately, exactly the same history
repeats itself, not once, but several times. After about two years the patience of
everybody concerned can stand it no more, and the design is '"finalized". c@&;nn

The next stage is that of implementation. But of course the degree of defimt-
wieon and consistency required for successful implementation is far greater than for
a lanélg%ge definition that satisfies a committee; and the implementors discover

hosts of incredibly complicated special cases and ambiguities and inconsistencies.




7.

The standardization committees must be reconvened, and set to work on putting the
language to rights. Typically this takes abgut siﬁ years. It's a soul-destroying
job, because it is cobvious that there is no "»&sh®' sclution tec the oversights of
the original design; and that the problems inveolved are wholly irrelevant to the
improvement of the quality and efficiency of practical programming. And by this
time, it is obvious that the language has not succeeded in its original cbijective
of making programming easy!

In briéf, a language design project takes about ten years from initiation to
"successful" standardization: this is true of FORTRAN (1954/6-1966), ALGOL 68
(1966-1974), PL/I (1962/4-197?), PASCAL (designed c. 1970) is not yet standardized,
ALGOL 60 might seem an exception to this rule: 1957-1962; but this is a language
which ignored many problems, some of which are still unsolved. COBOL has undergone

a lot of changes since 1960; I do not know whether it is yet sufficiently stable or

well-defined to serve as a secure medium of interchange of programs between machines --

which is a primary objective of language standardization.

1.8. Why does language design alwéys turn out to be so difficult?

Because of the extraordinarily complex and unexpected interaction effects between
alil parts of the language. Even an experienced language designer, compiaining about
some irregularity in the design of a relatively simple language like PASCAL, is as%onn
ished to find that it was a very carefully designed irregularity, required to ensure
that some other part of the language should work smoothly. When a list of desired
language features is first compiled, and the early designs ave made, it all seems so
easy, because the interaction effects are not immediately apparent. It is usually
only during implementation (and after) that all the tricky and subtle problems come
to light.

It is illuminating to draw a contrast with the engineering design of a motor car,
for which the different "features" of the design are obvicusly independent, because
they are physically disjoint, and can be assumed to be irndependent, unless they are
deliberately connected, Thus we can safely separate the specification and design of
the seat covers, the steering mechanism, the exhaust gystem, etc. These features
can be safely redesigned and improved separately without fear of interaction effects
(though occasionally our confidence is shattered by an unexpected result). The main
reason why computer programming is more-difficult (in this respect) than other

branches of engineering is that every decision is capable of interacting in an unex-




8.

pected way with every other decision, unless the most rigorous steps are taken to
design and maintain a strict structuring discipline. But we do not yet generally

recognize what kind of structuring discipline is appropriate for the design of pro-

grameing languages -~ though some thinkers believe that the discipline imposed by

»

"axiomatic! definition methods could be fruitful. I also believe that some funda-
mental decision about storage and resource allocation strategy will be required.

But any such discipline will of necessity place considerable constraints on the lists
of "features and facilities" which can reasonably be inserted into the structure.

But perhaps I am being too subtle: it requires only one really foolish feature:
to wreck a complete design. Imagine an early automobile design standardization
committee which suddenly realizes that if the chassis were fitted with wings perhaps
it would fly! The ALGCL BOuﬁdynamic own array' wés soon recognized to be like this;
and so were several features of IRONMAN which were removed from STEELMAN. Pérhaps

the requirement for arbitrary scale factors is equally unwise,

1.9 Which were the technically successful language design projects of the past?

Here is a list:
FORTRAN, ALGOL 60, LISP, APL/BASIC, PASCAL.
The list cannot pretend to be complete; for example, I do not know enough about
RPG II to pass judgment. Also, I do not wish to pass judgment on the present design
of languages like COBOL, ALGOL 68, and PL/I. All T wish to suggest is that, as
design projects, they were historically associated with a certain amount of tech-
nical blundering; and from a technical point of wview, they do not clearly dominate

their predecessors {except perhaps in size and complexity)s

1. 10 What are the technical reasons for their success?

The success of each language can be readily explained by the technological

‘breakthroughs on which they are based. These are:




FORTRAN: register optimization for arithmetic expressions; and optimization
of address calculation for loops. The introduction of subroutines

and parameters to make the language in effect extensible.

ALGOL 60: the introduction of nestable program structures; the concepts of
locality and scope of variables; arrays with dynamic bounds;
recursion; and the efficient implementation of all these using a
run-~time edealks 5‘7&.4&. .

LISP: a simple uniform list structure; function definition as a uniform
programming method; and the brilliant invention of the scan-mark
garbage collector, which makes all of these efficiently implementable.

APL: the introduction of vectors and matrices as primitive data values;
the introduction of powerful priﬁitive vector operations to cbviate
the need for programmed loops; the introduction of a conversational
mode of use, and a brilliantly engineered implementation. BASIC
shares many of these properties.

PASCAL: user-defined types, with full type checking, including checks on
references; introduction of set concept; inclusion of packed and
unpacked representation; omission of many attractive features; and
recognition that the need for highly efficient implementdtion
should influence details of design. ALGOL W and PL/360 each had

some of these properties.

1.1l What other factors contributed to their success?

Clearly, the most important is the existence of a ready market for the product,
and the absence of effective competition. The easiest market to invade, as soon as
efficiency problems are overcome, are programmers using machine/assembly code
(FORTRAN, COBOL). LISP was clearly better than its competitors at just the time of
the upsurge of artificial intelligence research, and benefited from a machine design
(PDP 10) oriented towards its efficient implementation. APL and BASIC arrived at
just the time when the oversophistication and inconvenience and inefficiency'of
standard manufacturers' software was making conventional batch processing very dif-

 ficult to use.

PASCAL was designed initially for the educational market, which needs a language
for teaching programming. Such a language must be free from unexplained complexity,

simple enough for initial courses, powerful enough for second-year courses, and




30,

efficient enough for significant student projects. It coincided with a wider real-
ization of the merits of structured programming and data structuring. And now it
seems to be gaining an additional fillip as a replacement for machine code on larger

microprocessors.

1.12 Why is machine and assembly code still so widely used?

T am sure that there is no single answer; and research into existing programs
should attempt to quantify the relative importance of the various factors, e.g.

(1) a rather small and/or slow object machine

(2) high volume of cbject code produced by a compiler

(3) need for very fast response times

(4) control of highly elaborate peripheral interfaces

(5) interfacing to awkward interrupf and priority level hardware

(6) access to machine facilities not available in high-level language

(7) access to machine features deliberately hidden by the high-level language

(8) combination of (6) or (7) with the need to minimize frequency of crossing

the procedure or module interface

(9) need to make patches to existing or even running programs in machine code
(10) inertia, due to presence of so much existing machine code
(11) a slow or inconvenient compiler rﬁnning in an unsympathetic operating system
(12) avoidance of the awkwardness of cross compilation

(13) lack of sympathy with high-level language

I would suspect that item (13) is not nearly as widespread as enthusiasts for
high-level languages would like to believe (since many of thelr languages do little
to attack the remaining problems which lead to use of machine code). I think that
every one of these reasons {except the last) would justify the use of several hundred
instructions of machine code in a large system program. So any program with more
than three thousand Instructions of machine code may be symptomatic of the influence

of reason (13).




i1.

2. The Present

2.1 How do the answers to the above guestions relate to teh past and future
progress of the DOD HOL project?

‘It seems reasonable, in the absence of evidence to the contrary, that a new
project which, to date, has closely mirrored the progress of previous projects will
continue to do so. The early stages of DOD HOL are disconcertingly reminiscent of
the early days of ALGOL 68 or PL/T. The most difficult new feature 'of the language
(parallelism) has been completely respecified. Eéch of the candidate languages has
undergone two or more complete design veviews. There is still little evidence that
the intense interactions between features have been fully explored. The project
is still essentially at the stage of a "wishing spec", as PL/I was when it was first
called NPL. It will be interesting to see hoy far the Red and Green candidate

languages have changed since Phase 1!

So it seems safe to predict that the detailed design of the language will go
through a falrly lengthy evolution during its practical implementation; and it will
grow in the same complex and unpleasant way as PL/I, by the addition of voluminous
and numerous footnotes, explaining to the programmer how he must avoid all the tick-
lish interaction effects.

But there is no doubt that this can and will be done; and that implementations
will be delivered, perhaps not very late, to a number of customers, who will try to
use them. They will suffer from the usual spate of unpleasant surprises at the
unreliability of the system, and the inefficiency of some of its features. Gradually,
they will learn to avoid the use of some of the most expensive features (e.g. parallel
processing, overloaded operators, exception handling); and improved optimization
techniques will take care of other problems; and there is always the possibility of
liberal use of embedded or separately compiiled machine code,

.Then will come the task of reformulating the specification of the language to
correspond with the realities of the various implementations, and the varying strat-
egies which they have had to adopt under pressure of immediate users. And if this
prediction is correct, the design will stabilize not much earlier than ten years

from now.

But it seems incrédible that we should be condemned to repeat all the mis-
takes of the past, Surely the state of the art in language design has progressed
sufficiently that we can hope for slightly swifter progress. For example, DOD HOL




12,

have chosen a much more worthwhile list of design criteria than PL/I, e.g. simplic
ity in place of modularity, reliability in place of defaults, readability of code
in place of machinability, etc. When the pressure of competitive language design
is removed, perhaps the successful candidate will be free to make a drastic
"cieanup' of his design, and thereby ensure early delivery of a satisfactory pro-
duct which can go into immediate and widespread use. Thus perhaps w@\can-hope to

meet Don Knuth's deadline for UTOPIA 84. ' s ;QQ

2.2 How does the DOD HOL language project compare technically with earlier
language design projects?

First, it is very obviously and significantly superior to the CCITT project
and the LIPL/E project, which have seriously failed to take previous experience
into account. Tn spite of my reservations about DOD HOL, I believe that the other
two projects should learn a lot from DOD HOL, or even everything!

Comparisens with ALGOL 68 and PL/I are much closer - rather too close for
comfort., But DOD HOL has the advantage of building on a genuine technclogical
breakthrough in programming language design -- the PASCAL experience, It also
avolds certain shibboleths like "defaults", "orthogonality!, ete.

But it shares with ALGOL 68 and PL/I an ambition to move int&iareas, like con--
currency and exception handling, in which there is no reason to expect that the
design can be got correct, and every reason to fear that the consequences of incor-
rect design may be serious. There is so much of immediate potential value in the
project, that It is doubly unfortunate to place the whole project at risk of delay
or failure through over-ambition. It may turn out as laughable as the standard

automobile design, specified as sprouting wings in the hope that it might fly.

2.3 Are the novel aspects of the management of the project likely to contribute
to its success?

Some of the political/managerial aspects of the DOD HOL project are very

promising. The long progression of strawmen and woodenmen displayed very impressive




13.

improvement in the identification of significant objectives and issues. Not cnly
that; the time and care expended on soliciting opiniocn both within DOD and Trom
outside was a valuable and necessary educational exercise, and helped to develop a
political climate in which the design could both be successful and be widely accepted.
It was time well spent.

And then, perhaps éomewhere between tinman and ironman, something begén to go -
wrong. In an attempt to clarify the document, the description of the overall
objectives and criteria began to get outweighed.by the description of actual features
required; and no attention at all was given to investigating the conflicts between
the objectives and criteria, or to the relative weights and priorities which would
be relevant to the resolution of these confliicts.

Even worse, no attention was paid to the really fundamental design decisions,
about the amount of overhead allowable for procedure call and process change, or
the underlying strategy of static, dynamic, or garbage collected storage allocation.
0f course, these are difficult decisions, but they are far too important to be left
to the experts. It is almost as ridiculous as asking an engineer to design a
vehicle without telling him whether it is a motor bicycle, a car, or a lorry --
especially if the list of required features contains items peculiar to each one
of them.

The next step was both novel and extremely sensible -- to delegate the design
to expert teams with experience of the implementation and even design of programming
languages. Even the method of competitive design by four separate teams has its
analogue in engineering and architectural practice.

But there was again one fatal flaw in the terms of the competition -- that there
was no known way of judging the true merits of the winning designs, apart from their
"aesthetic" appeal. For a public building, this is very reasonable, and even for a
programmning language it is very important. But there are other even more important

criteria like size, efficiency, speed of translation, —-- even cogﬁﬁiteness and
WL

consistency of design. In architecture, such properties as and height
are instantly obvious; and other properties such as light, thermal efficiency,

and quantity of materials can be accurately assessed before the construction starts.
Unfortunately, for programming language design (as for the design of programs),

there is no sure way of doing this.




1h.

Thus the attempt to select between language designs at the end of phase 1 was
premature; and unfortunately, very little extra evidence of value will be avail-
able at the end of phase 2. Meanwhile, the attempt to compete on the basis of
aesthetic and political appeal, together with close conformity with the detail of
TRONMAN/STEELMAN, may have had an unfortunate effect on the realism and practicality
of the design. v

But the most dangerous aspect of the project lies on the highly contentio#s
borderline between politics, management and technology, namely

(1) Failure to distinguish those technical features which are clearly within

the .state of the art from those which are more speculative;

(2) Failure to give clear and realistic timescales for implementation and

design and standardization.

2.4 What are the major currently unresolved language design issues?

In general, each individual {issue raised by STEELMAN can be resolved (more or
less) if that were the only feature to be added to a simple existing language such as
PASCAL. However, clearly parallelism is a serious unresolved issue, as can be deduced
from the radical changes made in that section of STEELMAN, IRONMAN, etc. I think
exception handling is also a serious issue; there are some grounds for believing that
a programmer who relies on exception handling to deal with exceptions will write
programs less reliable and robust than those of his colleague who always tests
explicitly for exceptions,

The really serious issues are those of interaction effects, of which a rather
large number seem to be inherent in STEELMAN, for example.

- parallelism, recursion, and efficient real-time store management.

- generic, overloading, encapsulations, subtypes, and translation time facilities.

- parallel processes and exception handling.

~ aliases, encapsulation, and independent compilation.

- checks on aliases, sharing, non-assignable record components, alteration of
tag fields, together with encpasulation, independent compilation, etc.
optimization

- asynchronous termination, in-process processing time clocks, explicit priority
contrel, and minimization of execution time and space.

- approximate, exact, and integer arithmetic.

- low-level input/cutput’typenchecking, and machine and operating system indepen-
dence.




15.

This list is not complete; those who have worked more intensively upon it could easily
extend it.
I am sure that the language designers will be able to find some sort of resolution
tc most of these well-known conflicts. But the questions which remain are:
(1) Will the resolution meet the design criteria of generality, reliasbility,
simplicity, efficiency, ete.? Or will it be ad hoc, infecting the rest of the
language with its irregularity?
{2) Will there not be atggébof even more obscure and unfamiliar interaction /*L
b

effects, remaining to discovered in the implementation and use of the language?

2.6 Which of these issues are of real significance to the practicing programmer?

Really, none of the issues is of any real significance. Each issue must, of
course, be resolved; and usually it can be resolved in three or four different ways,
about which a design or standardization committee can argue interminably. But the
arguments never touch on the essential needs of the practicing programmer. All the

solutions are equally irrelevant or unsatisfactory, giving rise to yet more problams

in other apparently disconnected parts of the language. It is instructive to recall
the intensity of discussion of the "issues" arising from ALGOL 68, PL/I, or even
ALGOL 60. It is clear that none of them saved any money or time on behalf of the

users of the language.

2.6 How can a design avoid the more irrelevant issues?

An engineer, scilentist, or even mathematician often has to tackle intractabie
problems. But if he is wise, he spends at least as long in convineing himself that
the problems are relevant and unavoidable —— and often they are. But the wise man
often develops a feeling that his problems are of his own making, or arise from a
mistaken apprehension of the reality of the situation. In this case he will rapidly
geek methods of ensuring, not that the problem is solved, but that it does not even
arise -- much to the annoyance of his clever colleagues, who are still working on a
most ingenious and elaborate selution!

Tn the design of a computer program or programming language, the easiest and

sometimes the best way of resolving a conflict between incompatible features is

simply to abandon one of them, or to reduce its specification to remove the conflict.
An engineer has the duty to detect when such simplifications are possible in the
ultimate interests of his client. In architecture, medicine, and other branches of

engineering, a client respects such professional advice and usually follows it. In




16.

programming, perhaps this is rarer: political and commercial interests will tend to
overrule the advisor who claims that the problem is not worth solving, in favor of one
who claims to have found a sclution:- the unsatisfactory nature of the solution is
never apparent until after the project is completed -- and then everybody will agree
that it has been a great success! That "it should have succeeded earlier and better"
is a remark that the wise engineer must discipline himself not to make.

When first making a specification it is an excellent practice to make a’ long list
of everything that might be desired; but then it is wise to place some kind of priority
ordering on the list, so that the designer has some flexibility in resolving design

conflicts in the interests of his clients.

2.7 Which language design issues are central, and cannot be evaded?

The essential purpcse of a programning language is to help in building a bridge
between a high-level zbstract (formal or informal) specification of a program and -
its execution in the code of some machine. Scme languages only build out a short
span from the machine (e.g. assembly code and PL/360). Othen languages like ALGOL 60
take a more abstract approach, building a span neaﬁer the middle of the gap. But
ALGOL 60 gained much of its simplicity by ignoring a lot of machine—criented prob-
lems like input/cutput, which had to be achieved by machine code inserts. Thus the

span never quite reached the edge on either side!

The successful synthesis between the simple abstraction of ALGOL 60, and the
relatively simple conceptual world of the machine code programmer, is the central
issue of programming language design; and the attempt to mix high-level and low-level
features in the same language leads to a conflict which underlies all the other con—
flicts of feature and of detail. Most of the complexities and irregularities of
PASCAL arise from its mixture of high-level and low-level approaches; and on the
whole, the great number of detailed compromises have been fairly successful.

But how can one make progress on the basis of a compromise? It is very easy to
point out that the language fails to meet all of its conflicting objectives: PASCAL
is too high-level to deal comfortably with (say) binary input/output; and it is too

low-level to give full security checking on tagged records. (This problem can be
solved, but only if an implementation makes complete alias éhecks of the entire pro-
gram!) It seems SO easy to specify that a language must have high-level and low-level
features., But it is a very serious and central problem to weld these together into

a single homogeneous framework, that will be simple enough for the majority of pro-

grammers to understand and control.




17.

And it is very important to succeed in this; since the penalty of failure is
that reliable use cf the languége will depend on an understanding of the high-level
features as well as the low-level featureé)and in addition on a full mastery of the
relationship between them. And this third item could be far more complicated than the
other two put together, since it embraces effectively the whole compiler, the run-time
system, and the underlying machine.

Of course, an unsuccessful mix of high-level and low-level features can cften be
mitigated by getting the most skillful programmeré to write modules in machine code.
The trouble iz that in seme applications this may comprise a large percentage of the
whole program, especially if the run-time penalty for crossing module boundaries is

severe,

2.8 How do the answers given above relate to the DOD HOL project?

My suggestion is that some relaxation of the STEELMAN specification as soon as
possible would greatly assist the design, and permit much earlier delivery of a
really useful product. All past experience shows that it is much more dangerous to
clutter a language with prematurely designed features than to make a determined

attempt to live without them., It is relatively easy to add a new feature to meet a

well-understood need in an existing sim%;e lanpguage; it is almost impossible to

remove an over-elaborate feature from a which has already gone into use!
There is no need to solve all problems in one fell swoop; the attempt to do so can

be injurious.
In many respects STEELMAN has already made some concessions to this attitude; at

least another ten subparagraphs should be removed or relaxed -— the choice to be

made by the designer/implementor.

2.9 Which aspects of STEELMAN would you recommend omitting?

This is a question that should be answered by the designer of the language.
Since it is the interaction effects that are crippling, one would need to.study the
entire language in order to find out which features should be excised. |

At this stage, it is possible only to recommend omission of those requirements
which probably do not give rise to serious interaction effects, for example the require-
ment for exact arithmetic on fixed-point numbers of any scale. This has never been
required in any previous language; and it will become even less relevant in future,

as floating point hardware becomes more prevalent.




18.

2.10 Why do academics sometimes take such a negative and even cynical attitude
to the project?

Academics suffer from the same prejudices and prior commitments as other
programmers; it is just that they are more articulate in expressing a justification
for their views. They are also resentful when their own favorife language ideas
{e.g. assignable procedure variables) have been omitted from the project. In addi-
tion, an academic is inclined to be jealous of the success of a large-scale project,
in which the intellectual and scientific content must of necessity be compremised in
favor of considerations of politics, finance, commerce, timescales, and management.
It is extremely difficult for anyone to judge whether the compromises have gone so
far as to put-at risk the ultimate value and success of the project.

However, with the DOD HOL project, the serious criticisms have been the
reverse of usual. Academics criticise the project for containing too many features,
and even criticise it for containing features proposed by themselves and their close

colleagufes. They also criticise it for paying insufficient attention to the aspects

of timescale and economics of both development and use. These criticisms should
carry more weight, because they are based on a long personal experience of similar

language design projects: of the past.

2.11 What steps can be taken to mitigate the delays involved in the design of a
new language?

If the use of a modern high-level language can be of value to existing program-
ming projects in DOD, then any delay in its widespread introduction will be costly.
Part of the cost could be avoided by encouraging immediate use of some exiifing
language which approximates most closely in objective, spirit, and detai e selected
design. And by "existing" I mean a language which already has a number of implemen-
tations, good textbocks, and a wide circle of appreciative users.

The encouragement of an "intermediate" language as an interim measure will have
additional long-term benefits, since early experience of s implementation and use
of a similar language could beneficially influence the design and implementation of
the new one; and its successful use could pave the way for easier acceptance of its
superior successor. _ _

0f course, this recommendation will be resisted by those who suspect that the
successor language will not in fact turn out to be superior. But I regard that fear

i i ~— i ides a safe
as yet another strong argument in favor of my recommend;tlon, it provide




12.

fall-back position, just as ALGOL W aewdd-haue provided a safe fall-back against

unexpected delays in the ALGOL 68 project.
I am not suggesting universal adoption of the interim language. It should be

used only oa an experimental basis; but a fairly widespread experiment!

2.12 What strategy can be adopted to smooth the transition to a new language?

If my predictions are correct, the earliest implementations of a new and complex
language are necessarily inefficient, unreliable, unstable, and late. A premature
attempt to enforce the use of the language for a practical project is likely to ensure
that the project itself will suffer all these problems as well. Many project managers
will justifiably refuse to use the language again. For this reason, a transition to
a new language must be planned with some care.

The suggestion that I shall make is based on the observation that the main merit
of a good high-level programming language is the aid which it gives to the intellect
in the design and documentation of a computer program; and the aid which it gives in
actually coding the program may be secondary. (If a new language does not verify
this observatioﬁ, then its use should be avoided rather than encouraged!)

So my suggestion is that the language should be used on some suitable projects as
a design and documentatioﬁ-language, which will then be encoded by hand into some
existing ianguage, already implemented and familiar to *the project team. Thus the
language can be put to good use long before the first implementation is ready:- indeed,
this would be a very geood way of organizing the language implementation project
itself. The whole secret of what IBM calls "structured programming" is that the
program is first written in a simple, clear, ALGOL-like language, before being trans-
lated (by hand) into some more complicated and obscure code like FORTRAN.

A secondary advantage of the scheme is that it is possible to evaluate the lang-
uage almost immediately, and also that its implementation can be evaluated by compar-
ing the automatically-translated version with a hand-coded version of the same program.

The disadvantage is that the project must be planned on a longer timescale:

though it may then (if my prediction is correct) be completed early.




20.

3. The Future _
ﬁTEHwWhat Frd BT Tesearch is most urgently required for future pfbgress ks ‘Wwwf'
language design and use? .

The most urgent question to answer by investigation is: why is thefe still so much
e

machine code in use? Even programs written in a relatively&ﬁéﬁ—level language like

CMS?2 contain large amounts of machine code. Before giﬁlmlng that a new language is a

solution to this problem, we ought to find oq%ﬂln greater detail the exact nature and
27
i

extent of the problemilsgxz i. 17;1m+
M@jsz“

2 i 2 _»,,‘,_fx S5
-’»,ﬁ:rm"
1—"54‘”"

language Je€ign and use?

i
Th@ﬂmost fruitful and necessary area of research is in the rigorous or even

foriial specification of computer programs prior to their implementation.

3.3 What is the relevance of problem specification languages? .

A formal specification, like the blueprint of an engineering product, is the
first reliable indication of feasibility, cost and quality of the eventual product
(and delivery date}. It also lays down a plan which makes it possible for large
teams to work on separate parts of a product, with some confidence that when the
parts are put together, they will work together.

An attempt could be made to design, develop, and test a language for program
specification. This should be very firmly based on logic and mathematics. It should
start simply as an "assertional" language, for expressing preconditions and postcon-

ditions of programs and their parts. It should contain rather a large number of |

high-level concepts, but no low-level concepts whatsoever. .The particular proposed
selection of concepts and notations must be tested by application on many kinds of
program.

It is most important that no attempt be made to make the language directly imple-

mentable: this would cripple the language and with it the mental processes of its -
user, who must be wholly oblivious of machine constraints and machine'efficiency,

and consider only clarity of structure and content. However, the language should be
subject to the usual syntax and type consistency checks.

When we have successfully learned how to use this language, pérhaps a subset
could be selected for rather inefficient implementation: this would be used to check
that the specification meets the needs of the client. Methods for then cbtaining
an acceptably efficient program can then be applied in a systematic or even semi-

automated fashion.




21.

3.4 How will problem specification languages affect the development of programming
languages?

The most important influence of a problem specificaticn language will be to
place a programming language in its proper context and perspective,as being only one
of the conceptual tools available for the analysis and solution of problems. It is
important that the language in which a program is actually conveyed tc a computer
should be designed in conformity with the other tools.

Apart from the direct benefit of the use of a very high-level specification
language, it will inculecate in its user an appreciation of its logical simplicity
and coherenceAwhich will lead him to demand the same qualities in his programming

language.

3.5 What can we learn from controlled experiments in the use of different languages?

Controlled experiments are an excellent scientific method in dealing with phenomena
which.display an adequate degree of uniformity and repeatability, so that samples
drawn at different times from the same population will have the same distribution.
However, the technique has rarely been applied successfully to human intellectual activ-
ity, or to questions of professional expertise.

The trouble is that nof two problems and no two programmers are the samej; and the
interaction effect between problem and programmer is likely to be significant (e.g.,

a programmer may be more or less familiar with the type of problem, or the language,

or its implementation, as well as being more or less competent than his colleague).
And of course even the same programmer may in time gain expertise or lose interest.
The normal way of neutralizing variation of this kind is by statistical sampling.
But we are interested only in rather substantial programming projects, and any real-
istic experiment would be prohibitively expensive:- e.g. fifty teams of programmers,
each engaged in the same five-year programming project, followed by fifteen years of

maintenance and enhancement. By the time the experiment is complete, its results

WDUld not be of the least relevance! For similar reasons, realla+ic controlled .
experiments are rarely used in other engineering professions, though they are used own F“£UMt

e

in medicine and psychology.

Statistical experiments have been performed on student pregrammers, to determine
whether some aspects of the syntax of their ianguage could have an impact on their
rate of errors -- for example, semicolon used as terminator led to fewer errors than
semicolon used as separator. But student syntax error rates have no relevance what-

soever to serious professional programming; and anyway, the experiment would probably




22.

have come to exactly the opposite conclusion if the students had learnt ALGOL 60
instead of BASIC as thelr first programming language. And semicolons are almost

wholly irrelevant to the real issues of programming.

3.6 What can we learn from a comparative survey of programming language features?

Not very much. The real merit in a programming language is its success in combin-
ing a useful {(but not redundant) set of features into a single programming tool, which
can be widely used and efficiently implemented. It is the right balance between
features, and the avoidance of interaction effects, that is most impertant. Thus I
fear that the exhaustive survey of languages and features conducted by the LTPL/E and
CCITT were largely irrelevant, except as a learning exercise.

But there is some.danger that feature comparisons can be dangerously misleading,
especially if there is a feeling that "the more features the better'. Features are
like dials, knobs, and controls in a motor car: provided that performance and safety
are not jeopardized, the less of these the better. A car that has a gear lever,
ignition advancercontrol, rev counter, choke and thermometer calibrated in fahrenheit
and centigrade is probably less useful for the vast majority of motorists than a car
that does not need these features. And a cocktail cabinet would be positively dan-

- gerous.,

However, the argument cannot be taken to extremes. .In the present state of the
art, a car wi thout speedometer and steering wheel would be even less useful. But it
is a very worthwhile objective of research to design personal transport systéms that
do not need these features. Reduction in features would also seem to be a valid
direction of research in programming languages.

*

3.7 What dis the use of formal methods of language definition?

They are the same as those of the rigeorcus specification of any product prior
to implementation. Without such a specification no product can be properly engin-
eered, and will inevitably give rise to unpleasant problems of implementation "and
use.

As with other software and hardwape products, a formal specificatibh gives an
early warning of unexpected complexities and interactionpffects between various
features., A wise engineer will heed this warning, and dttempt rigorous simplifica-

tions, before the project gets out of his control. However, I rvegret that most




23.

program designers are not allowed to do that, so when the formal specifications get
too complicated, they abandon the formality that should have safeguarded them, and
proceed with informal specifications, which seem (at the time) much simpler. But
the price that is paid later can be severe, So a formal specification method is
like a-fat man's diet: it is useful only if the resulting discomfort is endured.

A formal specification technique bears the same relation to language design
as a language does to an application. I have a strong hope that formal specifica-
tion will show the way to modular language design, in a way that permits minimiza-
tion and control of the interaction effects which have plagued more informal design
methods, An old example of this: the use of context-free grammar‘éeparates this
important aspect of language design from all the many others. That is why the
ALGOL 68 grammar is a backward step - it amalgamates concerns which could be sep-

arated,

3.8 What can we learn from program verification studies?

The most important lesson is the simple one that programs can be verified,
In other words, ﬁ#mﬂ programming is an exact science like mathematics, and not an
experimental science like chemistry, or a statistical sciemce like socialogy. This
means that in principle, computer software can achieve absolute standards of
reliability, far greater than those of computer hardware engineering, or any other
engineering product.

But this can be achieved only if the basic tool of the programmer (his lang-
uage) satisfies the same standards of rigor and exactness as logic and mathematics.
The design of languages sympathetic to program verification has started, but there-

is still some way to go.

3.9 What are the prospects for automatic verification of computer programs?

Rather pocr: they don't work well on programs -that are incorrect; so the user
should maké sure his program is correct to start with. But then the automatic
verification system is redundant., Furthermore, the effort required to get the
system's assent to a program is considerable, and requires familiarity with the
inner working of the system. Finally, the system's assent is obtained by feeding
in additional "facts" about the problem domain; if the program has an error, there
is a risk that the additional "fact™ will contain the same errcr.

The develocpment of automatic wrification has led to important new insights

in programming methodology which far transcend its value as a tool for practical

pProgramming,




24,

3.10 How are -current hardware developments likely to affect the relevance of
existing languages?

The main impact of the microprocessor on the civilian market is its startlingly
low cost; and its secondary impact is its limited size. This will lead to greater
interest in user-oriented special-purpose languages, which are simple enough to be
controlled by a non-programmer, and to be compiled and interpreted by a very low-
cost computer. It will also give rise to a requirement for a language capable of
programming a multi-computer system.

Low cost is not likely to make such an impact on the military market as on
the civilian; partly because mil spec products will remain more expensive, and partly
because computer hardware is already cheap encugh compared with other componfifs of
weapons systems. However, reduction in size and power consumption will be ekdmwese
significant. '

The development of low-cost user-oriented languages will probably not be so sig-
nificant in military application, for the same reason -- that low cost is not as
important as high performance.

The requirement for programming multi-computer systems has long been recognized
in military applications, at least for logistic systems. The advent of the microproc-
essor will reproduce the same requirement in embedded systems.

The availability of low-volume, low-power floating-point units will make the use
of fixed-point arithmetic irrelevant. However, it will still be important to retain
fixed-point as a "packed representafion" of a Floating-point number; it will be un-
packed for the arithmetic operations, and repacked again after. The need to perpet-
uate "facilities" of existing languages may seriously delay this desirable development.

It is too early to say whether the STEELMAN specificatioﬁ of parallelism will
help or hinder the programming of multicomputer systems. A lot will depend on the good
judgment of an implementor in imposing realistic restrictions on access to non-local
variables, access to processing time clock, exception handling, etc.

In the longer term, I look forward to a sufficient increase in computing power
and storage capacity to permit the economic use of rather abstract high-level languages,
which gain in simplicity by omitting all lower-level features altogether. But I fear
that the enormous inertia inherent in the use of existing languages will ensure that
any available power and space will be used to implement their|fcomplexity. The world

eagerly awaits PL/I on the 8086!




25.

3.11 What is the best scilentific method for determining the relative merits of
rival programming languages?

The best method is undoubtedly an informed and expert opinion, based on a thorough

study of the languages, their implementation, and their application. But who should

be selected as expert? and what happens when the experts disagree? This is a problem

faced by all those whose task it is to make important decisions, and the answer is:

make a thorough study of your expert, his past advice and predictions, his qualifica-

tions, his personal attitudes, the clarity of his advice, etc., etc. None of these
studies is guaré%keed to discriminate an expert from a charlatan; but they give the
best results available.

Just occasionally, a language appears that is so far ahead of its competitors
that it is widely adopted in education and re%érch,‘even though it is supported by
no political or commercial pressure whatsoever, LISP was one of these languages;
PASCAL was another. One plausible explanation for the spread of these languages is

theiy merit. This is a historical and practical argument, not a scientific ome,




