SOFTWARE ENGINEERING

C.A.R. Hoare

On April 8-9, 1876, the British Computer Society is holding its Ffirst
Symposium on Software Engineering. In this article, the chalrman of the |
Symposium presents hig views on the subject, which are not necessarily shared by' . |

the speakers he has invited to address the Symposium. : . |

If words could cure the ills of our profeSSLOn of programming, what a healthy
and hlghly respected profession it would now be! We have had "modular programming”;
the craze for "structured programming” has hardly yet reached the height of its
Commer01al profltablllty, and already we have a newcomer to the charts - the theme
we have all so long been waiting for - yes, it's Y"SOFTWARE ENGINEERING". The
experienced programmer will greet the gladsome tidings with a stifled yawn, and

turn to more urgent and important tasks.

But perhaps there is something he could learn from these catch phrases on
their passage from popularity to oblivion. Certainly; the latest combination of
the new but already tarnished word "software" with- the 0ld and respected profession

“of engineering is such a startling contradiction that it should giﬁe us pause. Let
 us compare the llca*s of the professional engineer with those adopted by some

programmers of the present day.

Cne outstaﬁding characteristic of the professional man,‘be he a doctor,
architect, or engineer, is that he understands the real needs of hig client or
employer, often very much better than the client hinself; ana he has fhe ability
and status to persuade the cllent to recognise his own interests and to abandon B
hlS less useful flights of fancy. Then he has the professional skill to recommend
from a range of known and trusted techniqgues those methods that in the given
circumstance will achieve the reguired effect gt minimum cost and inconvenience
to the client, And finally, he has the prOIeSSlonal integrity to re51gn his post

or commission if his recommendatlons are not accepted

I fear that there is a sad contrast with some Programmers, whose only wish
is that theﬂr client should "make up his mind what he wants", and who will welcome
his most elaborate fancies as a challenge to their programming ingenuity. How
many of them are ignorant of, or prefer to ignore, the known technidques used
successfully by others, and embark on some spatchcocked implementation of their
own defective invention? . And I know only one Programmexr Who‘resigned;on:thé spot. -

when his advice was not taken by his less technically competent manager.

3

A second characteristic of the good engineer is his vigilance in

seeking every opportunity to reduce the costs and increase the reliability

of his product. He realises that the conflict Eetween these two objectives.
can be resolvedron;y by preserving the utmost simplicity of concept,
specification, design, and implementation. Above all, he insists that he shall
have a complete understanding and control over every aspect of his project -
and the more difficult his project, the more firmly will he insist on the

simplicity without which he cannot understand what he is doing.

Here again, we find exactly the opposite characterisﬁic in some of
our best programmers, who deliberately avoid simplified solutions; they
obtain satisfaction from the sophistication of their designs and methods, and
~ derive excitement from engaging in projects of a complexity slightly beyond
their ability to understand and control. They may well succeed ence; but
on the next occasion they may discover that there is no way of distinguishing
(in advance) between what is siightly and what is totally beyond their

comprehension.

g

A great advantage of the éresent day engineer is that his designs are
hased on sound matheﬁatical theories and computational techniques, disqovered
over the years by his brilliant predecessors, and now enshrined in textbooks
and undergraduate teaching, in mathematical tables, and in standard codes of
practice. But in spite of the soundness of his theory, he still has many
'cauées for worry that his abstractions {and his product) may break down - a
faulty casting, a defective batéh of components, a lazy workman, or an

unpredictable natural hazard.

The computer programmer has little worry of this kind: his working
material is the hardware of the computer itself, and its reliability can
usually be taken for granted. Certainly, by far the most significant cause
of failure in software are the errors and oversights of the programmer himself.
But here perhaps he is not wholly‘to_blame, since he has no widely accepted
mathematical or theoretical foundation for his work. This is a most urgent
topic of research at our Universities and elsewhere, and it is to be hoped

that the results will be most widely and most tapidly propagated.

A final point of contrast lies in the working tools of the profession.
An engineer naturally demands of his tools the highest quality and precision,

A

eliability, convenience, and cheapness in use. In many professions,

the tools are quite simple; in others they are more complex. But in

either case the engineer has developed an intuitive understanding and .
ingrained mastery of their proper uses; and this frees him to devote his

whole intellectual effort to the understanding and solution of hig

clients' problems.) .

The basic tools of‘the programmer are the programming languages and
compilers, job control languages and operating systems, utilities and
other software supplied in profusion by the manufacturer of his computer.
But what a sorry comparison with the tools of other professions! That
they are unreliable, that they are profligate of computer tiﬁe and storage,
that they are inconvenient in operation - these are facts that have been

* long recognised and widely suffered. Perhaps the worst gymptom {and
also a large part of the cause of the trouble) is their extracrdinary
and still increasing complexity, which totally beggars the comprehension of
both user and designer. Among manufacturers' software one.can find what
must be the worst engineered products of the computer'age. No wonder it

was given away free - and a very expensive gift it was, to the recipient!

But still we have some experienced programmers and managexrs who
actually welcome the stuff, praise it, want more of it, and even pay for it"'
Here perhaps the fatal attraction is the very éomplexity, which would revolt
the ingtincts of any engineer, but which, to the clever programmer,
masquerades as power and sophistication. He may have even less creditable
motives: the use of unreliable tools both increases and éxcuses the
unreliability of his programs; the use of inefficient tools both increases
and excuses the inefficiency of his programs; and the complexity of his
tools can protect him from clbse scrotiny or control of his client or
employer. And finally, after a few years expexlcnce of some particular product,
the programmer finds that even his partial understandlng of it can command =
high salary; and he has the strongest motive for refusing to. learn something
new, and for rejecting the idea that it might possibly he an improvementf
And his manager who committed himself to that prbduct many years age has an

even stronger personal and financial interest in its perpetuation.

The attempt to build a discipline of software engineering ¢n such shoddy

foundations must surely be doomed, like trying to base chemical engineering on

B

the phlogiston theary, or astronomy on the assumption of a flat =arth.

wgzzwthe study of mnanufacturers' software is an excellent way to sharpen our
understanding of the principles of software engineering, both beéause of its
consistent vieclation of those principles, and because it makes a serious

i and creditable attempt to define the working tools of the software engineer.

; That is why. the forthcoming BCS Symposium on software engineering will

i

% concentiate on this aspect of the subject.

} The Symposium will take an optimistic, practical and forwardlooking
/

approach,. " . There are many ways in which existing tools can

by instrumentation and tuning, by program editors and preprocessors, by
structured programming aids, training manuvals and courses, and by standards
of programming practice. On the Ffirst day of the Symposium, a series of .
expert speakers will surxvey the range of_methods‘which are immediately

available for practical use.

On the second day, we shall look slightly further ahead, and describe
1‘ some of the possibilities of further improvement that are now being opened
[up by fundamental and applied research. Even ifrthe practical.difficulties
; of change delay the widespread application of results of new research, it
is important that programmers and managers should understand now what they
are; so that they aré never again led astréy by the specious promise of

i sophistication and complexity.

E

!
s

i In this short sermon on the theme of software engineering, I have

i oL T

made many allegations against the gquality of software, and against the
competence, intelligence, and integrity of programmers. But I have not given
a single example to support my case, nor have I named a single name.

‘Let me do so now: I name the guilty man: I name myself. Within myself I

have discovered all the faults which I have ascribed to programmers in

general. If my remarks carry any conviction, it can only be because my

reader has made a similayx discovery.

