Towards a Theory of
COMMUNICATING SEQUENTIAL PROCESSES
C. A. R. HOARE

February 1979,

Summary. This paper extends the methods of a previous

paper [] to describe nondeterministic processes. These

are modelled as sets of deterministic processes, The

problem of concealment of Internal communication is solved.

Some additional operators are defined, and their use illustrated
in the design of some simple modules of an operating system.

Oxford University Computing Laboratory
Programming Research Group

45 Banbury Road,

Oxford 0X2 6PE

England U.K,

Introduction.

A previous paper {] described a mathematical model of

a communicating sequential process. Consider two such processes,
P and Q, with the same alphabet. We define a nondeterministic
process (P or Q) as a process which behaves elther 1ike P or

like Q; but we cannot control (or even know in advance) which

of the two it will be. Such a process can be modelled as the

set . {P,Q}. More generally, -any nonempty. set S:of processes
__(with the same alphabet) defines:a nondeterministic. process,

~which, is guaranteed to behave 11ke some unknown and arbitrarily

| d;;selected member: of: the set., :Its:- alphabet‘t(s) is the same:as
.that of all its. members P e A R

s The potential behaviour of S on Its flrst step Is denoted
by 89, This is a collection of sets of symbols which are .-
acceptable on its ?irst step by some member of 5. o

s° {P IPES}

If some symbol s in the: union of S° Is accepted by S on its,
first step, then S{s) denotes the subsequent behaviour of S.
It Is defined

S(s) =45 {P(s) | SeP & PeS}

This is empty If s ¢ WS®, which ihdicates that s cannot be
accepted by S on Its flrst step.

“Like a deterministic process, a nondeterminlstic process
can be defined by an. analogue of functional notation. Let L -
be an arbitrary alphabet; let C be an arbitrary collection of M&ﬂmﬁvuﬁt
subsets of&; and let F be a function from. UC 1
processes with alphabet § .

We define

nondetermlnistic

(s c F(s)) ’df {P]P € C &Vs' UC + P(s)e F(s)}

o Clearly (s:Qb(s))° = ¢ IR O o
anda Y (:0—*(2))(:') F(r)ggfor ranc g/ Lt

L A nondetermin!stic process can .be pictured as a tree, "
in which ‘the existence of nondeterminism is indicated by :a node
with unlabe}led arcs leading to. the atternatives. Thus if

{{a} {a,b}}

then the process:

(s:C+ if s = b then {(b=v),(a+1)} _e_i_g»_g{b 1 hH

Is shown in Fig 1. Regarded as a set, it contains:

“a+ (b+1))
(a+(b+n)u w+ @+/H i,
(?*‘bf*”‘+‘Pf_@*/D= _*-

“An-alternative method of ‘defining-a process Q is by
specifytng the -set of ‘environments in which ‘it may be successfuily
- used. < An ‘environment P-for Q is specified as a finite deterministic
process, which Ts run in parallel with Q- (P!|Q) “The 'Interaction
is successful if the trace of the communications between Q ‘and
P Is finite and ends in Y. The interaction is certain to be
successful If all traces of Q||P are finite and’ end In ¥/, Since
we are interested only in the certainty of success, we define
the specification of'a ‘process-as ‘the set of environments in
which its use is certain to be suecessful

a {Pf:(P =g(Q)s P is flnlte&safe (P||Q)}

spec {(Q)

whefe!géfe_(T) 4 all branches of T end In v

This definition extends readily to a nondeterminlstiéﬁproﬁesg
S, whose specification is the set of envnronments inwhich It
!s certain to be successfully used:

spec. ($) = QDS-. spec (Q).:.

_ . Conyversely, let T be an arbitrary set.of enviropments.
The Implementation of T.is the set.of machines Q which can be
successfully used in every envaronment of T. C

imp (1) = L§ T{Q|P€SP8C @)

If this set Is empty, T is said to be an Enconsistent specification,
and the machine which satisfies it does not exist. Conversely,

if T is empty then every machine (trivially) satisfies the
specification T, even the machlne _which fails ln every enVironment.

Conssder now two nondetermlnlstlc processes with the same
specification, ~“Foriatl practical ‘purposes, these: processes are
-~equivalent to:each other, ~:In’ particular, each process Is
equivalent to the- impiementation of its own specification. So
we may, without loss of generality, confine our attention to a
canonical member of each equivalence class, which satisfies the
equation .

S = can (S)
where.can (S) ; imp (spec(S))
Technical Note.

In order to justify the use of recursion in defining
nondeterministic processes, we require a chaln- complete partial

ordering. A simple ordering, recommended by Smyth, is the super-
set ordering

ﬁﬂjf ‘!/oé 5")0.. L

I N
This d in!tion?];flects the fact that increased pondeterminism
makes a process worse, because it Is less predicécable and

less controllable, The worst possible process i% one that is

whol Iy arbitrary, and may behave in.any way whatsoever. . ..

The fact that this ordéfihg is comﬁ?éfe dépends on
finitude of the tests.

Fig 1.

2‘].

"

2.2,

2.3.

Localisation of process names.

n thIS section we revuse the model of communicat:ng
sequentlal processes given in ['], ahd show a solution to the
problem of localising process names,

Operators,

The operators defined in [] for single deterministic
processes can be readily redefined for sets, by means of the
usual pointwise extension; the result must then be made
canonical;

;T =can {(P;Q)| PcS&Qe T}
S(Ir = can {(Pl]Q)| Pes&QeT)
a.$ = can {(a.P)| PeS}

SuT = can {(PuQ)| PeS &Qe T}

These definitions clearly preserve cbmmut{vity, associativity,
d distributivity of the. operators. However, |] Is no longer
i;dempotent. :

Symbol Change.

Let f be a many-one’ “function which. .maps symbols of an
alphabet £.(S) onto a set of symbols § 7:" We wish to define a
process f(S) with alphabet &, which behaves like § except that
it communicates a symbol f(o) whenever $ would have communicated
g, In general, f{S) will be more nondeterministic than §.

For example, let 0, and o, be distinct members of %, such that

f{o,) =fl{o,}; and ;uppose £(S) has accepted f(o,).. If § could

havé accep%ed elther o, or O,, then the subsequent behaviour of

f(S) is defined elth either by s (5) or by ${0,) - but the choice
between them is nondeterministic.. This nondeterminlsm is introduced
by taking the union of the sets: . %[

FO) = g 7 | / [/A
= 4f can (o: {f{X)]Xes } > U {5(5 |0 - f(.@l__ﬂl.l%,w
fﬁ??he““lffw; e

whgre f(X) .= {f(0) |oex} ~m%m_wwﬂ_mwhwwp(wa

Concealment of internal communication.

Consider a parallel command S, containing processes with
names in a set N:

N = {al, Byy ens an}

Gy sill oy Sl ll o s 4

S

2.4,

cocoandsoe XY

According to the constructlongiven in [], all the symbols
communicated within this command are prefixed by the name of

‘:the reciplent -and by the.name of the sender, I.e., they all
have the form Ta,.a aj.0. . Let Yr be the set /’f such symbols L

1’
I = loc(l\) = df{.'c Yo O[w,y el\& x# y} |

We wish. to. define the result S\W.of concealing.all .the Internal

: .«communlcatlons mthln S Clearly, its alphabet excludes Tl"

(S\“‘) (S) =

- >The clearest way of deflmng S\Tr is. by glvlng the set of

environments in which it may successfully be used. All internal
communications are concealed from the environment slmply by
removing the relevant symbols from its: alphabet '

NI = o imp {o|£(Q) = XA(S) -M8Q is finite &
VP PeQ+ safe (PHQ)}

The notatlon S\Tl‘ but not lts defin:tlon, ls due to Robln Hilner

Localisation of process. names.... .

After conceaiment of local communications between.named
subprocesses of a parallel command S, it sti#tT remains to deal
with their nonlocal :communications,. which are stlll prefixed by
the name of the participating process. We wish:to strip off
these local names, so that S itself, rather than its subprocesses,
appears. to ‘be the participant in the communication, This stripping .
Is achleved by a functlon

.--'.;;striph (:c 6) = 6 P if :ceA j.

_-..strlp’\ ()' .—. 0 . "i_f‘-c.;l:e_ a_'.o_t._-pr;el’.lxed -by'.iar.!..:c'lnh

Thus we define the parallel eorrlnland' ol’* | l:l

[a,::5 H.a'::.:s]I...]|a --s] =y

df
strip p((a;.s l|a2.52|[||aﬁ.Sn)\'\T)
where A= {a],az,...,an}.

{z.y.0)z, ye N&aor y}

3.1,

3.2, i

New operators

- This section’introduces new operators for non-deterministic
processes, and illustrates their use in the design of modules
for a simple operating system.

Alternative composition.

A non determlnlstlc version of aiternative composltion
Is'based on Dijkstra's if construct [1. 7'1f:S and T are processes
(not containing v) then S®8T on its first step accepts any symbol
acceptable to either of them. |If the symbol actually offered is
acceptable by both of them, it is nondeterministic which one of
them has participated - in the commun!catlon. *Otherw!sé,-the one

"‘that can accept it does 0. *; %

s T -='df can- (c {XuY1Xes &YETO} > S(cr) uT(o))

(Recal I ‘that S(G) {} |f(IeUS°)

_‘This operator Is assoc:atlve and .nammutative, and

(SAT);R = (5 R)U(T R)

it is also idempotent on canonicaliforms.-

VExamples. Doaneiincr s

ﬂ can be used w!th the Same effect as u wherever u is

;__defined (ie: when (us)n(UT))

A server/master relatnonshtp

It is convenient to Introduce an as!&\trlc relation ﬂﬂfi
between a server process S and a master process. T, ‘The
server process Is given a name ''s', by which T can communicate

Cwith /ity but T has no name: all communications of 'S ‘are

directed towards T, except those which are outside the alphabet
of T. The reqU|red def!nitlon IS

[s::8]]T]

3]

4t strlp{ } (s. SIIT)VTT)
L(MaE(s.5)

where TT__

Example: arithmetic expression.

An arithmetic expression cah’be modelled as'a process which
inputs the values of its constituent variables (which are also
processes), and outputs the value of the expression (e.g. a
natural number) to its master. A constant Is a process that
merely outputs ITts value and stops, e.g.

(3+V)

A variable "p'" inputs a value from p, and outputs it agafn:
(p fetch?n NN -+ n)

'if S and T model subexpressions e and F, their sum “e+f”
can be modelled by:

[left::S 1|[right T ||PLUS]]
where the master process PLUS is |
(left?n:NN + (right?m:NN - m+ﬁi).
Note that ¥ (PLUS) = NNwleft.NNwright. NN

so that PLUS does not participate-in the communication
between the server processes and their operands.

An-assignment: ''pi- = e'" can be:modelled:by -
[rhs::S|| (rhs?n:NN + p.assign.(n))]
where S models e. o

'Thls example is due to John Kennaway

Sequential iteration,

We define a sequential Tteration § until T as a process
- which involves none or more .executions of § followed by T:

SysLLsT .

More precisely, S until T accepts any symbol acceptable by
either S or by T; but 1t Is actually accepted by only one of
them. If it Is accepted by 5,5 will proceed to completion,
~and then the whole construct wall be repeated. If it is

" accépted by T, T will proceed to completion, .and then the
iteration will also terminate. The construct is defined
formally by recursion:

:(S;*[S ‘untH T]).OT

* i =
L E[S untid T =g
. A versuon of the conventlonal for statement can also be
-defined
n

‘L:m .) HKE . :) .. HE
- T ;..J;é/h\ ' otherwise.
= df m; m+i

Examples. (1) A subroutine OUT

A subroutine OUT accepts lines of 20 characters, and outputs them
one at a time to a hardware process CONSOLE. Each line is followed
by é?ﬂl*“ symbol.' OUT terminates on: recelpt of. an “end” signal

ouT =, [s: CONSOLE {1 |
L:LINE —>(‘L s, (!.)), s.q

unt il end]

| -

where LINE = char20
and'lg=is~the tth character of line 4

This subroutine runs as a server: in parallel with its
master: o _
[t::0UT || (MASTER; t.end)]

communicate with the hardware CONSOLE, since :the nameys''.of the QWQ\

The master sends a line 4 to t by.“t.&“. it cannot irsctly ;*hjj
console is local to QUT.

- {2) A function Y e L

A functlon can be modelled byégrocess which’ inputs its
parameters at the beginning, and 9 %puts its results at the
end:

3*LRJF'”;:(pFNN‘4';:"cdmputé'éhd 6dtput Eesuit?--)"

(f this function is to be lnvoked many tlmes, it needs to be
repeated; and If it is to be called by a master process T, it

needs a name §: . . /
[1:: #[F until end] || (T | T

A function call from wath n T Is a spec!al case of an

- arithmetic expression, and can be modelled by a process as
described in 3.2. Let S be the process which models oomputation
of the actual parameter of the call., Then the complete call is
modelled by:

[param::S

|| (param?n:NN -~ i.ni(f?r:NN + 1))
: N

(3) A Boolean semaphore SEM.

‘ A Boolean semaphore has alphabet {P,V,end}. P represents
‘acquiéition of a slngle resource, and V represents Its release.
These symbols must alternate until the 'end" Is reached:

SEM = [(P + V) untll end]

(W) A batch processing systen BPS.

© YA batch processing system accepts and executes ‘a sequence

of Jobs presented on cards. ' Each Job is preceded by a JOBCARD,

3.b,

and the last card Indlcates “end of bateh!, -
. BPS = *[]1JOBCARD » ... process next Job i
until end of batch)

bisjolnt processes.

When two processes running in parallel are intended to

“the requlred effect can be achieved by ‘the normal paraliel

ﬂﬁﬁvoiﬁﬂ

- operator ||, But if thelr alphabets are the sams, or overlap, a
“more elaborate construct 1s required. :The case |3 sufflclently
" common to deserve ‘a speclal motatlent S

sIHT =4p lats|fbrit] ﬁssee Z{Afl-_&

where a and b are arbitrary distinet local process names.
This operator Is clearly assoclative and commutative.

It Is also convenlent to Introduce & parallel analogue of
the sequentlal 'for statement'

Stvy o Mface

e
[
]

All's, otherwtse. .

1
Y
e

A parallel form of Iteration may also be defined:
oaafs uneh) 1] =g (s|lIAkDS wnel) TDRT

This‘gonsr§?§wgk nohé'dr'ﬁére”disjdinfiy parallel activations of
$ together with one activation of T

s o fHT

9,

“‘communicate with thelr comion envlronment but not with each other,
“they ave sald to be disjolnt. |f thelr alphabats are disjoint,

10.

i

Each new actlivation of S Is triggered by acceptance of a symbol
on the flrst step of $. The new activatlon of S runs tn paraliel
with all previously triggered actlvatlons. After acceptance of
an Inftlal symbol by T, no further actlvatlons of § are posslibla.

o The parallel lteration. terminates after termination of T and of

all the previous activations of S,

Examples: (1) a more general semaphore.

A general semaphore Inltlellsed to value n represents a
set of n Identical resources, any one of which may be acqulred
.by.P and released.by V.. The P's and V's are Interleaved, subject
©..ohly to the constraint that the number of P's must never exceed
the number of V's by mora than n,
n

GSEM(n) = . SEM

4=

This example Is due to Robin Miiner,

(2) A multiprégrammed bateh system‘

A muitiprogrammed batch system contelns a number of subprocesses,

| P:{~each of which {s capable of running a series of Jobs. These sub-

processes do not communlcate with each other, but they do communtcate

i with other processes of the operating system in which they are
-.embedded,. For. example, they may all send 1ines to the process t.0UT,

(3.3. (1)), Such communications are arbitrarily Interleaved,

Mpa's('n)g T 8PS,

2i{3) .. Two shared consoles,

In order to reduce the bottleneck of sharlng a single
console in a multiprogramming system, a second CONSOLE is Introduced,
exactly like the first., When a line ls sent for output, It does
not matter which console 1s used - whichever 15 free flrst will
be satisfactory. The required effect .Is achlieved by running two
coples of ot In parallel:

[tss 0UT|]|OUT) I MPBS(n), t.end; t.end]

Note that no change is needed to OUT or to MPBS to accommodate
introduction of ‘the second console., . The second ''t.end" is
required to terminate the new Instance of OUT.

3.5.

: ;hame;for=the channeIl -

;ﬁ“lffreqUIred)." < :
- ; Shouidusimp|y5“fhput? i?i‘

Channe] g,

1.

imber of activations

ch'Other, :Uhfdrtunately,

: *‘t:1s*imposs1b1e to

-+ communicate with somefpartiéu!ar.actlvatlon o '

--:cpmmunicated?wlth'the.pafa}tel icerationsmay-

N ' ' ' i What we require Is that
each new activation of g comes equipped with

fs; any symbol
be accepted'by any

one end of which s connected to.the;activation, and the'dtﬁer to

TQ;"i;,.Tb;achieVe the:réqp;réd'éffégt;.we use ‘a

set CHAN ofrchannels'(fﬁe:nétgrai numbers wi}
In order”tqf“aqu{re“»a~fresh

S (s EETTE I P T

The local name g Standefor:the.channel; an
communication rather'like'a'process name. -$y

is running inparalie] with S, and contains
command: ' KA

(£¢CHANWf,;;:x3n=NN e ¥ 3L

fF(EOtEDS and T are\//;eady_to execute these -
the-effect wil] be that both Wil Yippytn the

of CHAN., n g this will be bound to & and in
to y. NevertheleSs; because and y denote t

communication on g by S wil] match a communic
In general, more than one channel will b
$ and T, and We must ensire that any newly ac
distinct from al] Previously acquired ones,
by a thirg Process GEN, whose sole task is to
channel names,
GEN = df GEN{CHAN)
where GEN(X) = (Cr:x_ijENQX-ﬁn}});

_u'ehdgen)] :3

_,r;;:84#%] ;:af 'Is:iﬂfs;ehdgehﬂ

Now, when T {or a subprocess of T) has to est
with a subprocess of S, it Is necessary to qu

d'Is used for

The channel is then
with thé_othey,
n (ﬂfffergnﬁ)}]ocal

denUméfebiy:]hfinite
| ‘serve this purpose
channel, a process s

PPOse another process
.an exactly similar

commands simultaneously.
Same arbitrary membe ¢
T Tt willp '
he same channel, every
ation ony by T,

e required between
quired channe! jg
This can be achieved
allocate fresh

ablish a new channe]l
ote the name "g',

12,

(y:s.CHAN =+ ...y?n LIPS 3..4)

The formal defln!t!on of 4 Is unpleasantly compHcated.
However, the dynamic establishment and disestablishment of dlstinct
channels :fs no more unfamillar than making a telephone call; It
Indlcates that many separate calls can proceed in parallel;’ and

=_It permlts a clear expresslon of important programmlng tachniques.

Example (1) a reentrant Functlon. o

The Functlon F descrlbed th 3.3 (2) can be shared among
many ‘subprocesses of :its master process T, However, since it |s
~Implemented by sequentlal Iteration, only one subprocess can use

It at a time. If the computation of the functlon |Is. timeconsuming,
this could be.a bottle=neck in a multiprocessing system. The

~ bottle=neck can be relieved If parallel iteration is used Instead
“of sequentlal. slnce each activatton can then proceed in paralle)

i ©'With ‘those that are still running., But we need to ensure that

' the result of each activation [s sent back to the same subprocess

of T which sent the parameter for that actlivation. This is

achieved by setting up a fresh channel, and using it exactly: twlice -

once for the parameter:and once for the result._ Thus;therbody of
a reentrant functlon looks Ilke.if: PO A

(m CHAN > (m?p.NN ST R r))
This Is comblned with T

NUE **[F unt!l end]:&h&T f.end)]

A ceIl of f from T wtth parameter E s modelled.:,
| [param--sz': |
. 2. s Sl)
ll(y £ GHAN (param?n NN -+ y.n); | (i;i_éﬁ o> ())

(y?r NN > r))

(2) Virtual line printers.

A process HLP describes the behaviour of a simple line
printer, implemented in hardware. 1ts alphabet conslsts of lines
of 125 characters each (l.ev the type LINE), and a symbol ''throw',
which positlons the paper at the bottom of the next even-numbered
page. The line printer Is to be shared among the processes of a
mult!programmed. batch processing system, E£ach process uses !t on
occasion for output of a flle consisting of many lines, The lines
from f!les output by separate processes must not be Interleaved.

" To assist In separation of flles, each one must begin and end on
the turn of an even-numbéred page with a line of asterisks,

i s ANl A

ot el

13.

A process acquires and uses the lineprinter thus:

(report: vlp.CHAN + ..o3report.linel;...; report.end)
P

where report is the local name for the file. '
vlp is the name of a process wh:ch implements virtual
I'tne printers,
1iné Y is an array of characters to be output
end” indicates the end (closure) of the file.

The overall structure of the solution ‘is

[vip:: [hlp::HLP}]VLP] &k (T; vip. end)]
where VLP hlp. throw; hlp asterlsks,
user:CHAN > hlp.asterisks; . -

*[user?l:LINE + hip.d

.untll user.end}; .

" Tp. throw; hlp asterisks
until end]; - oo

%

(3) Two line printers.
To accommodate an increased load of printing a second
HLP is installed. [t is to be brought into use without making

any change to T or to VLP. The solution is left as an exercise
(hint. see 3.4 (3)).

(4) QUEUVE

A queue is a process with alphabet
2. (QUEUE) = CHAN u CHAN.leave y{serve,end}
A process waits on a queue named ”q“:by ‘bf
{q?c:CHAN + c.leave) Gt q;(Zf(ﬁ
A server ends the wait of longest waiting process by
q. serve

TP NS NS 3) S 0L&< Lo, T@{l _wag {L{ S CT SR Y NN (3{‘1 .

The ""end" signal may be 'given dnly when the queue Is empty.

QUEUE - Q

: _
o 0, Bond

Bl

where Qe
| [u:CHAN -+ Q .

Fd).leave; Q&'} o %

where S is a sequence of channels,

3

| serve o (

€ is the empty sequence
<u>is the sequence containing only u .

s,is the first Ttemof §

s/is the rest of S, on removal of § |
s-S5-with u appended. B ¢ et

K i o

14,

