Notes on the standardisation of Programming Languages

C.A.R. Hoare

Preliminary Draft - February 1975,

Summary. This paper surveys the conditions for successful standarxdisation
of products and designs, and enguires how far computer programming languages
satisfy these conditions. It concludes with suggestions for future action

in research, development, and standardisation.




1. Purpose and Motivation.

The first peason for the establishment of a standard is the
possibility of thereby saving time, effort and money. A standard can save money
by assisting in the intexchange of products, people, and ideas. It serves as a
form of contract between groups of suppliers and groups of customers; it enables
products of different workshops and manufacturers to operate harmoniously together,
and thereby fosters economy, competition, and progress. It permits people trained
on one manufacturer's equipment to transfer without too much retraining to another's.
And finally, a standard may serve as guarantee of a certain degree of quality and

gsafety in a product which claims to conform to the standard.

These three aspects of standardisation may be well illustrated by standards
for punched cards and card handling equipment. The purpose of the standard is to
permit a card supplied by one manufacturer to be punched on a card punch made by
another and read by a card reader made by yet a third. The layout of the keyboard
on the punch conforms to a standard which permits ready transfer of trained punch
operators; finally the quality of the paper of which the card is made must be
adequately robust to stand repeated mechanical handling. 2nd these standards are
remarkably effective; the trouble-free use of alternative suppliers of cards and

card equipment is wvery widespread.

The primary purpose of a programming language standard is to permit free
interchangeof programs between computers made at different times and places and
even by different manufacturers. 2And certainly, compared with assembly code
programming, the early languages viere guite successful in facilitating program
interchange between machines with different instruction codes. But compared with
the free interchange of punched cards and other physical ?roducts, the situation
is by no means ideal. It is a rash man who proposes to transfer a pxogram of any
size between one machine and another, and does not expect any trouble,

There are several reasons for this. Firstly, operating systems and other
software often get. in the way. Secondly, the art of programming language design
wag still quite backward, and did not yet permit the construction of aiwatertight
standard for a machine-independent language. Thirdly, implementors have not been
prevented from encouraging their users to take advantage of enticing "extensions"

which are not part of the standard.

TR




The second motive for standardisatioﬂ, namely, the transfer of trained
personnel, has also been a qualified success. When machine codes wexe simpler than
they are today, a good programmer could learn a new assembly language in a few
weeks. Today, he may take nearly as long to learn all the peculiarities of a
different implementation of the same language on a different machine or in a

different operating system.

motivation :
The third ~. for standardisation, namely control of the quality of the

implementat
«ag /m ﬁaéogéen almost completely neglected; and many implementations of standaxd

' languages have been unreliable and- inefficient, almost to the point of unusability.

Perhaps it is therefore fortunate that the .. costsg of transferring
programs from one machine to aﬂother are being reduced by other methods, such as
the introduction and perpetuation of wide ranges of compatible machines such as
the IBM/360 and ICL/1900. Furthermore, an occasional complete rewrite of a
laxge program is ofiten advantageous in improving its usefulness and structure
and future adaptability - as long as you are not faced with a simultaneous
rewrite of all your programs. And in some applications, like real time conmand
and control, the reguirement to move a program from one machine to another is
fairly uncommon.

There has often been expressed the hope that the use of a common standard
programming language will permit the ready transfer of programmers from one
application area to another. This was the hope underlying the design of PL/I
as a common language for scientific and commercial programmers, and which leads
to the suggestion that COBOL should ke adopted as a standard programming language
for real time applications. Unfortunately, the major problem in moving a
programmer from one application area to another is his lack of familiarity with
the new application area, a lack which may take several years to overcome.

A simultaneous change to a new language is a comparatively minor problem -

and it may even be an advantage, since a well-designed application—oriented
language can actually hasten and sharpen his understanding, and suggest useful
programming methods. A programmer who is unwilling or incapable of changing

N his language is probably well advised not to change his application area either.

This discussion leads to the conclusion that the standardisation of ppogramming

- languages has not so far been altogether successful, The main part of this papef

examines some of the reasons for this, by surveying some of the conditions for

- successful standardisation namely, the technological simplicity or even irrelevance
of the major decisions involved, the wide acceptance of a suitable vocabulary and
method for defining the standard, the specification of an appropriate range of
tolerance to permit various implementation methods, the existence of a cheap and
widely applicable yardstick for testing whether an interchangeable product meets the
standard, and the prevalence of a favourable political climate. In each case, some

special difficulties for programming language standardisation are revealed.




matter whether a feline animal is called "a cat" oxr "un chat".

However these somewhat negative conclusions in no way detract from the

“benefits that can be obtained in programming practice by the adoption of a suitable
.high-level language in place of assembly code, even if that language does not have
. the qualities or even the; political support necessary for standardisation in the

 strict sense,

2, Technological Irrelevance.

The design of a standard necessarily involves taking a number of decilsions,
For many standards, these decisions are purely conventional, and have little

technological significance; they could as well be made one way or the other,
expense

withou']Lassegf quality, There is no particular reason why punched
cards could not have been half an inch longer or wider. In some cases later
discovexies reveal that some earlier standard is somewhat inappropriate: I am
told that a seven~foot track width for the railway would have been kechnically
superior to the present four and a half feet; and that a superior layout of keys
of a typewriter could improve productivity of typists by a measurable percentage.
However, these technological improvements would be quite marginal compared with

the cost of making a change.

It is widely believed that the choice or design of a programming language
has this same property of technological irrelevance; and in certain aspects
this belief is correct. It does not matter whether a callable piece of program

is called a PROCEDURE or a SUBRQUTINE; any more than in natural languages does it

It is true also that many of the baroque features of existing or proposed
programming languages are completely irrelevant to the needs of programmers and

detailed discussion of their design is even more so irrelevant:

However I believe this reasoning is dangerous. The important decisions in
programming language design are not merely a choice of notation to denote a well-
understood concept; they ave concerned with the design of the concepts themselves,
and they require fundamental decisions about the nature of machines, of computations,

and most importantly, of the human activity of programming. Furthermore, the

logical interdependence of the design decisions is so great that the achievement of -



mere consistency requires a high degree of technical skill and vigilance., And
finally the solution for baroque irrelevancies is surely to remove them from a

language before standardisation.

I would like to argue that the design deécisions involved in a programming
language are of the utmost technical and economic relevance, and that if the taking
of these.decisions is regarded as an arbitrary matter for rapid standardisation,
the resulting language could add very significantly to the costs of programming
and using computers. I would like to support this view by a short thought-
experiment. Imagine first a language, described somewhat inadeguately by a manual
of several hundred Pages. The manual is sufficiently incomplete that successful
use of the language depends on a study of implementation manuals of comparable
size. The problems of programmer training are immense. The complexity of the
language is such that not even a trained programmer can understand it wholly,
and therefore constantly runs the risk of unexpected errors and inefficiency in
his programs. The diagnostics are so numerous and abstruse that a specialist
advisory service is required to deccde them; and even so, khe language is so full
of pitfalls that the vast'majority of errors remain undetected by the compiler.

In tracing the effect of an error in a running program,the only diagnostic aid
sometimes has to be a hexadecimal dump. Compilers for the language are so

larxge and complex and unreliable that there is a constant risk that they have
introduced yet further errors into a ‘program. The testing or updating of a
program of significant size involves heavy compilation costs, and the programmer
is effectively deprived of conversational debugging and even fast turn-round

by the large bulk and slow speed of the compiler and/or object program. The
inefficiency of the object program requires purchase of larger main stores and
backing stores and of more and faster processors in order to run the programs.
Programs expressed in the language are so cryptically unreadable that the

task of maintaining them let alone adapting them to meet changing clrcumstances
is a daunting one. And finally, the language is full of machine and implementation
dependent features, which are central to the use of the language and can hardly
be aveided; and the chance of writing a non-trivial program that could be

transferred to another machine, or even another operating system, is negligible,




There can be little doubt that the total direct costs of using such a language,

in terms of prograﬁmer effort, advisory services and hardware, must be rather
great, not to mention the indirect costs of the unreliability and inflexibility of
the resulting programs. And the cost of implementation and promotion would also
not be negligible, These are my grounds for supposing that the decisions involved
in programming language design are of great economic importance to the user, and

are not purely matters of arbitrary choice.

3, Descriptive precision,

A standard serves as a. form of contract between groups of suppliers and
customers for a product; and for this reason it is usually formulated in a
precise, almost legalistic, terminology, designed to forestall misunderstanding.
It usually appeals to a widespread agreement among specialists and laymen on the
terminology and descriptive method; for example, the use of measurements in

centimetres leaves little scope for ambiguity or doubt,

For the clear definition of the context-free aspects of the syntax of a
programming language, the Backus=Naur<Form, pioneered in the definition of
ALGOL 60, was technically very successful, and has gained wide acceptance. However,
for programming languages semantics there is no generally agreed method for their
precise description, and each'language\has‘adopted a different style, The use of
ordinary English prose has:been proved ambiguous and ineffective, but no more
formal notation-has been ggreed, although this has been the subject of much research,
One proposed method is the Viemna Definition Language, which has been applied to
PL/I; but alternative methods are the mathematical semantics proposed by Scott,

and the axiomatic method proposed by Floyd,

Unfortunately, when these methods are applied to currently fashionable
programming languages, they turn out to be extremely cumbersome and unilluminating;
one feels like a keen geometer, who is trying to describe the Venus de Hilo(;or
even some less attractive artefact) in Cartesian coordinates. Although it can in

principle be done, it seems not worth the pain.

Another problem in the definition of a programming language standard, whethep
expressed formally or in English, is accuracy. The descriptions of many current
programming languages are riddled with inaccuracy and ambiguity, and standardisation
committees have spent many years trying to remove them, making hundreds of
amendments per year. When they finally present the language for standardisation,
it is not necessarily because all errors are removed, but merely because they are

sick and tired of the whole project,




This is doubly unfortunate when we are trying to persuade programmers of the
merits of absolute precision and accuracy, and they f£ind that their most -

vital toecl is so lacking in these qualities.

My own view is that the fault lies not so much with the description methods,
but with the complexity of the product they are attempting to describe., Most
successful standards apply to products of relative structural simplicity, like
punched cards, paper tape, nuts and bolts, étc.; and even so, they stretch our
descriptive powers to the limit. But if an attempt were made to standardise a
moxe complex object such as a Baeing 707, the same difficulties would arise as
in programming languages. Indeed, I suspect that a necessary condition for
any progress in langﬁage design or standardisation is the achievement of greater

simplicity.

4, "TPolerance.

The most difficult technical decisions involved in designing a standard
are not in determining the absolute dimensions of a product, but rather in
determining the tolerance or range of permitted deviation around the absolute
norm. For example, the tolerance on the dimensions of punched cards must be
sufficiently wide to permit relatively cheap mass production; but not too
wide to place an intolerable burden on the user's card handling equipment.
The determination of a range of tolerance has immense economic and commercial
imp;ications. Foxtunately, the decision once made can be guite accurately

expressed by the conventional A techniques of engineering measurement.

The need for tolerance is just as important for programming languages, to
permit efficient and economic transfer of programs from ene machine to another,
with (for example),'a change of word length. Unfortunately, there has been very
little research into this problem, even at the level of number representation;
let alone at the level of a complete language; and the details of arithmetic
are either too rigidly defined, or not defined at all. If different imple-
plementations are permitted an unrestricted freedom to implement ordinary

arithmetic in different ways, there can be little hope for program interchange.

The main difficulty is that there is no generally accepted method for
restricting the range of permitted variation; and a programming language
standard either has to specify something precisely, or states that it is imple-
mentation-defined or even undefined. Quite apart from reducing the prospects
of program interchange, this has a bad effect on the quality of language design,

since an implementor is permitted to give any result at all to a program which




invokes an undefined operation; he can even allow the program to run wild, giving

subtly or totally incorrxect answers or nene at all.

It seems to me that the axiomatic method is probably the best tool for
specifying a norm and permitted deviation in the design of computexr arithmetic
and other features; and it has two possible additional advantages, (1) that
an implementor can specify his particular implementation decisions clearly and
succinctly by additional axioms; and (2} the programmer can use the axioms to
prove that his program meets the standard, as well as meeting its desired specifi-

cation.

5. Yardstick.

One of the important considerations for the success of a -standaxd is -
that there should be a relatively cheap and simple test to determine whether and
how far a product meets the standard. The early: standard for {British) proof
alcohol was based on a test using widely available materials like guncotton and
matches; and similar calibration tests are now available for standard lengths,
times, etc. Even for punched cards it is possible to use a simple.template to
check the dimensions and positioning of the holes, so that in case of difficulty,

it is possible to tell quickly whether the card or the reader is at fault.

In the case of computer programs, it is just as important to be able
to tell whether a particular program meets the standard, and can safely be
transferred from one implementation to another, so that if any difficulties arise,
they can be correctly attributed to the programmer, or te the implementation.
2nd one would think that the computer itself would be an ideal tool for making such
a test, if only a program were available to do it. Even better, the test should
be made by every compiler as part of its syntax and context checking. The PFORT project
was &n attempt to apply this method to FORTRAN, but unfortunately it cannot deal with

o are equally prevalent in otherlangua@gs
any of the really difficult points, which{ s I fear that the reason 1s that none

of the languages have been designed with sufficient care to permit such a program
to be written. The necessary condition for it is the strict observance of
security in all stages of the language design; and even the concept of security,
let alone its importance, has hardly yet been recognised by language designers.
I_Would‘suggest in future that the existence of a watertight program checking

program be made the first precondition of standardisation.

A suitable yardstick for implementations of a programming language jg.
even more difficult to construct, and is . perhaps in principle impossible. This
problem is not unique to programming languages; it is equally difficult to make

an acid test whether a card punch or card reader is meeting the standard. The




usual maintenance technique is to tune a card punch to produce cards to within a
much narrower tolerance than the standard, and to tune the card reader to accept
cards with a much wider tolerance, and hope that the machinery will remain within
specification until the next maintenance. For a card raader, the engineer may use

for marginal testing a standard deck of badly punched (even non-standard) caxds.

Unfortunately, programming language implementations are not at all like
mechanical equipment; their errors are of a discrete kind, and once an imple-
mentation has been tuned to accept a particularxr standard set of test programs, it
will always accept them, even though it fails on every other program presented to
it! I fear that such a series of standard tests can only show the presence of
bugs, never their‘absence; and as with all software (and many other_products
too), the only way of policing the standard is to inspect and control the methods
of manufacture, i.e. the programming discipline of the implementation team.
Validation tests are certainly useful for compiler checkout; they are certainly
~useful for testing the quality and efficiency of a compiler; but unfortunately
they can .never validate its design.

6, Political climate.

A standard serves as a form of treaty or contract between groups of
suppliers and customers, and imposes certain constraints on each individual
supplier, which he may or may not be willing to accept; and it is only safety
standards that are legally enforceable. Standards are most likely to be successful
rif they are agreed and adopted by groﬁps of suppliers and customers of roughly
comparable economic power, where no single supplier or customer can derive
commercial benefit from deviation from the standard, or from setting up a rival

standard of his own.

Unfortunately, in the field of computing standards, the political
climate of agreement among equal negotiators does not apply, since one manufacturer
is so much more powerful than all the others put together, and, quite justifiably,
bases its standardisation policy on its own commerxcial interests. Thus, almost
wheXever we see a computer standard, either national or international (which
usually agree with each other), we also see another so~called de facto standard,
which is designed by one manufacturer in its own interests; and this is the
standard which is most widely used; and other manufacturers often have to follow
the de facto standard instead of, or even as well as, the standardised standard.
But only the largest suppliers can afford this, and the largest can afford it
best.,




7. Conclusion.

The conclusion of this survey sugéests that there are at present many
factors which inhibit successful standardisation of programming languages, and
which reduce the effectiveness of existing language standards. This pessimistic
conclusion is, I suppose, typical of an ivory tower academic, who is suspected
of wishing to promote his own abstruse theories, or even his own programming
language, and is unwilling to compromise with the realities of the market
placggl I can only declare that these suspicions are quite groundless. T
have supported all my arguments, not by any academic theory, or advanced
technicality, but by means of common-sense judgement and long experience;
and I hope they will be convincing to people with no experience of standarxdisation,
and even with no knowledge or experience of programming. or programming languages.

I fear that the experts will be more difficult to convince.

Apart from an unfavourable political climate, T Suspect that most
of the problems of programming language standardisation arise from the deficiency
in present-day technology in programming language design, and that in the next
ten years, the study of programming methodology will provide a far morxe secuxe
theoretical and practical foundation for the design and standardisation of the
most important tool of the programmer's trade. Aand the discussions of this

paper suggest some possibly fruitful awenues for research and development,

(1) There is plenty of experience of the program interchange problems
with existing languages. Perhaps a systematic attempt should be made to list and
classify the problems and to tackle each one methodically by reformulating the
definition or modifying the language. This will be excellent practice preliminary

to the design of a standard in which these faults do not occur.

(2) The attempt should be made to construct a program that will
decide whether some other program conforms to one of the existing standards, or
at least to point out all the places where there is risk of machine or
implementation dependencies. Such a check would, of course, have to be made on
the complete program, and could not be made on the independently compilable
modules., And again, the difficulty of constructing the check might suggest

useful reformulations to the standard and simplifications to the language,

(3) Further work needs to be done on the simplification and clarification.
of definition methods, so that they can be an actual aid tc the standardisation

effort, instead of an additional burden.




10
(4) Particular effort needs to be expended on the problem of partial
specification, which permits a rigidly circumscribed freedom to an implementor,
which he will need in order to secure adequate efficiency. Here it might be a

good idea to start with computer arithmetic.

(5) Since a major purpose of standardisation is to transfer programmer
expertise; and since a significant part of programmer expertise is to understand

and act on diagnostic messages, a firm attempt should be made to standardise

diagnostics. The production of standard diagnostics should be a major
yardstick program. ' jor function of the

{(6) More attention should be pald to establishing standarxds for the
quality of an implementation - for example, its size, speed, object code
efficiency, resistance and responsiveness to programming error. Standard bench-
marking may play a role in this. B. Wichman has done some useful work in this

area ("ALGOL 60 compilation and assessment").

(7) But the major barrier to all these preliminary enterprises, and
to the standardisation itself, is the logical complexity of the languages.
I have a theory that the most complex and difficult programming tasks are
best carried out with very simple programming languages; and I would most
strongly urge future language designers to try to test and validate this theory

by practical coding experiments of large projects in,very:small>aﬁd simple languages.

. I believe that a thorough study of these rxelatively mundane topics would
be far more beneficiadl to the progress of standardisation (and even the cost and
quality of programming and compilers), than the proliferation of yet furthex
programming language’designs, many of which are incredibly complicated, and
reflect far more the brilliance of their designers than any real contribution

to the efficiency or reliability of programming, or even to standardisation.

So my first, last, and most important piece of advice to a proposed
standardisation committee is not even to consdder a language for standardisation

until it satisfies the following criteria:

(1) It has been designed and has been reasonably stable for

at least five years.

(2) There are at least two high quality implementations on machines

with widely differing structure.

(3) These implementations have been in successful use in the intended

application area for at least two years.




11

L}

(4) There is adequate evidence of interchange of programs between

the implementations.

(5) A timescale of at least four years should be allowed for the _
standardisation process. In any other field but programming languages it would
be considered insane to standardise straight from the drawing board. And
bitter experience of standardisation committees for ALGOL 68 (8 years)

and PL/I {10 years) proves that it is somewhat unwise in this field too.

Unfortunately, there are very few languages which satisfy even thece
non~technical criteria, and it may be felt that their known technical deficiencies
are sufficiently great as to make them a suitable basis for standardisation.

But this melancholy observation, so far from being an excuse for the design.of
& new language, should be recognised as the strongest possible warning against
it.

'

If the arguments against designing one new language are strong, the
arguments against designing three of them are overwhelming. And the same is true
of standardisation., If the only alternative to one standard is three standards,
the arguments in favour of one are very strong, even if that language suffers from
many known defects, both in standardisation and in use, But please let the
language be a simple one which has already proved its viability and usefulness
in practice, and not yet another ALGOL 68 or PL/I,




