DATA RELIABILITY

A tutorial paper

C,A.R, Hoare

Department of Computer Science,
The Queen's University of Belfast.

Draft October 1974

summary. This paper surveys the problems of achieving data reliability,
and finds them more severe than those of program reliability, It then
outlines some of the conceptual and methodological tcols which are available
for the solution of these problems, including the concept of type, direct
product, union, sequence, recursion, and mapping. It touches on the topdown
design of data and programs, and argues that references or pointers are to
be avoided. It concludes with an annotated bibliography for further

reading.

To be delivered at the
INTERNATIONAL: CONFERENCE ON RELIABLE SOFTWARE,

Los Angeles, Aapril 21-23, 1975.

Data Reliability

l, Flow charts and data diagrams.

The most widely accepted and practised method for the design and
documentation of computer programs is the flow chart (Fig.1l). But more
recently, the disadvantages of flow charts have become apparent, Here are

some of them:

(1) They use too much paper: as soon as they overflow a few pages,
the extra page turning and cross references form a significant barrier to
undexrstanding.

(2} They cannot conveniently be input to a computer, nor output from
it.

(3) They do not enable you to understand the whole in terms of its

parts, and so they become intellectually unmanageable when applied to large

problems.
(4) The slightest fault in an arrow or box has unpredictable and

global consequences on the whole program.

(5) These problems are greatly magnified if the structure is changed
during program executicn, for example, by assigned go to's in FORTRAN, or
ALTERs in COBOL,

(6} The physical realisation of an arrow by a jump is surprisingly
expensive on modern machines, with cache stores, instruction pipelines and
virtual memory.

It is also accepted practice to use diagrams in the design of data
(Fig.2}. However, these diagrams seem to suffer all the disadvantages of

flow charts,but to an even greater degree. For example:

(7) Change in the structure at run-time is now the rule rather than
the exception,

(8) Physical realisation of an arrow by a reference or pointer is
expensive in storage as well as in time.

{9) The diagram, instead of being an actual representation of the
whole program, is only an imagined example of only part of the actual
structure at scme instant in time,

A simple example with a picture i1s of great advantage in confirming

our understanding of a complex problem; but as the sole means of developing

and communicating such an understanding it is wholly inadequate.

2. Data Reliability.
The problems of program reliability are notorious; but reliability
problems which arise with long term data stcorage are even more severe; and some

of the reasons are ag follows:

{1} Programs expressed in a suitable high level language can be
analysed rigorously by a compiler so that a running program is known to be
meaningful, even if it does not do what the programmer wanted. Input data is
nothing but an unstructured stream of characters, cards, or bits; it may be

meaningless, and even if meaningful, the “information conveyed may be false.

{2) If a program behaves incorrectly,on.a particular run, this does not
affect other programs, or even subsequent runs of the same program. However, if
a bug is introduced on one run into a data base, it remains there, and can

actually propagate itself as later correct programs operate on the data.

(3} 1If the hardware fails in the middle of a run of a program, it can
safely be run again from the beginning, but the same fault in the midst of
updating a data base may Leave it in a partially or wholly unusable condition.

{4) From bitter experience, users can learn to avoid the bugs in
unreliable software. But as scon as bugs appear in a data bank, its users lose
confidence, and will withdraw their data for private keeping. Now they no
longer have any motive to keep their banked data up-to-date. A run on a
data bank is as catastrophic as a run on an ordinary bank which deals merely

in money.

- This theoretical analysis shows that in the design of data we have been
using weaker design methods to tackle problems more serious.than those of the
design of programs. Practical experience in the design of data bases seems to
confirm the theoretical analysis. This paper surveys some of the improved methods
for data design and description which are now becoming available, and points out
the analogies with some of the improved methods of design and description which
are being applied to programs, and which have been packaged and marketed under

the brand name “structured programming".

Programmers benefit from these methods largely because they reject
flow charts, and deliberately confine themselves to a range of structuring

disciplines with the following desirable properties:

(1) They are few in number.

(2) They are logically simple.

{3) They are amenable to simple proof techniques,

(4) They can bhe applied on a large scale or on a small,
(5) They assist in topdown design or in bottom-up.

(6} They are easy to implement.

(7) The easy implementation is also efficient,

Structuring principles for data should have the same properties.

3. Type.

In order to develop the analogy between program and data structuring
methods, we must introduce the concept of type. A type determines a
class of values, which may be stored in a variable (declared to be of that
type), passed as a parameter (specified as of that type), or gilven as the result
of an expressiéﬁzfunction {of that type). The primitive types of a programnming
language, such as the'integer of ALGOL 60 and FLOAT of FORTRAN, are obvicus
exanples, But the concept of a type can be usefully generalised to cover
structured data, whose pattern can be specified by the programmer himself by

means of a type declaration.

A program or procedure may alsco be regarded as determining a certain
class, namely the class of all computations which may result from a particular
run of the program, or call of the procedure. A1l these computations will
be similar in their overall structure, even though the exact size and wvalues
involved will vary from computation to computation. In the case of a well-

structured program, the overall pattern of the class of possible computations is

so clearly revealed in the pattern of the program itself that it is possible
to understand and prove the correctness of such a program without even
| thinking of the large class of potential computations involved. A type
declaration should use similar ¢lear patterns to define the structural
properties of all possible data instances of that type, independent of

their size or the component values involved.

4, Direct Product.

The first and simplest structuring method is known by mathematicians
as the direct or Cartesian product. For example, a mathematician can

define the space of ? complex number§as a product of real and real, thus

complex = af real X real.
By this definition, he states that each value of the type complex is
a structure with exactly two components, a first component which is real,
and a second component which is alsc real; or in other words, an ordered
pair of reals. Furthermore, the two reals are entirely independent of
each other; their only connection consists in theilr grouping together in

the specified order as a single complex number.

The same structuring method is just as familiar in data processing,
where it is known as a record definition., For example, a record which

specifies an insertion may be defined:

insertion = af partnumber X partdetail; -

or as it is expressed in a COBOL-like language:

0l INSERTION
02 PARTNUMBER
o3
02 PARTDETAIL
03

where the items with level number 03 (and higher) indicate the substructure of

PARTNUMBER and PARTDETAIL components.

The direct product method of data structuring has close analogies
with the method of constructing a program by composition, ie, the compound
statement. For example, a particular program or procedure may be composed

of two statements:

begin q:=g+l; r:=r-y end

This means that every computation evoked by this compound statement also
consists of two disjoint parts; the first adds 1 to g, and the second
subtracts y from r. Furthermore, the only connectipg relationship
between these parts consists in their grouping together in the specified

order.

One of the most important advantages of a good structuring
method is that it can be applied to components of any size or substructure,
The methed of program composition can be applied egually to atomic
instructions as to complete programs; for example, the following is a

very common structure for scientific programs:

begin input; calculation; output end

Similarly, a large database may be described as the direct product of

the files which it containsg, for example:

database = salesledger x inventory'x payroll x catalogue.

5. biscriminated Union.

The next simple structuring method is the discriminated union, which
specifies that a choice is to be made from a selection of alternative structures.
In the simplest case, the alternatives are just indicators of some condition,

for example a possible malfunction of a peripheral device:

exception = parity fault empty | manual .,

This states that the type "exception" consists of exactly three values with

the names indicated, and every exception variable has one of these three values.
As a more substantial example, consider a transaction-record for a traditional
file-updating program. If record definitions have already been made for
deletions, insertionsg, and amendments, a transaction can be defined as being a

choice of exactly one of these alternatives:

transaction = insertion | deletion | amendment.

A similar specification can be given in COBOL by multiple record

definitions:

Ol INSERTION
02 vees

Ol DELETION
02 ceen

0l AMENDMENT

02 * b a

At lower levels than OL, the REDEFINES .clause permits a similar effect.

The discriminated union is closely analogous to the conditional or

case construction in programming. & conditional of the form
if B then T else E

evokes computation of exactly one of the alternatives T or E, the selection to

be made in accordance with the value of B,

6. Sequence.

The third major data structuring method is called the sequence.
A sequence consists of none or more components of data, arranged in some
meaningful order. In mathematical notation a sequence is frequently denoted

by an asterilsk, thus
*
string = character
which defines a string as a sequence of none or more characters, for example

A
B7Y;
A SLIGHTLY LONGER STRING

In data processing, a sequence is usually known as a file, and might be

defined, for example:

*
transaction file = header X transaction X trailer

where "header", “"trailer", and "transaction" have previously been given record
definitions., A similar, but less precise, specification of a file can be

given in the YOBOL file description:
DATA RECORDS ARE

HEADER, INSERTION, DELETION, AMENDMENT,
TRAILER;

A sequence corresponds to the iterative program structure, using

while:
while B do L.

The computation of this structure consists of a seguence of none or more
computations of the program component L; the seguence is not bounded in

advance, but its length on any given occasion must be finite,

7+ Types and recursion.

A procedure declaration in a preogramming language is a means of
packaging a complex program structure, possibly evoking long and elaborate
computations, and enabling it to be regarded and used many times by procedure
calls, as though it were a single primitive unit of action. Thus the procedure
declaration is one of the most powerful tools provided in a high level
programming language for mastering the complexity of a large problem.

A similar benefit can be extended to the design and description of data
by the type declaration of PASCAL, the mode declaration of ALGOL €8; or perhaps
best of all, by the class declaration of SIMULA 67{

A type declaration associates a complex structure description with
the type namé. This name can be used repeatedly to declare new variables of

the type, for example, using PASCAL notation:
X, Y:complex;

will declare two new variables X and Y of type complex; each of these will
display the structure of a complex number, and each will consist of two
separate real numbers; but the programmer can regard it as a single unit

of data. ©On a larger scale, two files might be declared:

oldmaster, newmaster:masterfile.

The analogy with procedure declarations suggests the question, is
there any place for recursion in the definition of data structures? Again
the answer is yes. The occurrence of a type name inside its own definition
denotes an occurrence of a (smaller) instance of a value of that type as a

component. "This is exactly analogous with the computation of a recursive

1o

procedure, which contains a (smaller) computation of that same recursive

procedure in place of each of the recursive calls. -

Examples of recursive types occur frequently in programming language
definition and processing, and alsc in general symbol manipulation. For

example, the traditional data structure of LISP may be declared:
type list = atom | list x list;

or in other words, a list is either an atom (defined elsewhere) or an

ordered palr, whose first and second components are themselves lists.

An example drawn from data processing applications-is the catalogue of
parts and components which is used in a parts explosion analysis. A part
is either bought in (and has no components}, or it is an assembly. Each
assembly has assembly data, followed by a sequence of the parts from which it

is made. These facts can be expressed formally in the type declarationg

type part = bought in assembly
*
type assembly = assembly data X part

It is unfortunate that no well-known programming language permits this

simple use of recursion in data structuring.

8. Operations,

The preceding sections have been based on an over-simplified view of
the concept of type, which concentrates solely on their values and their
structure. A more balanced view regards a type as a set of values (for

variables, functions, and parameters), together with the primitive operations

which can be applied to these values. Thus, the concept of the integer
type consists not only in a certain range of integer values, but also in

the availability of the primitive operators of addition, subtraction,
multiplication and division, which are defined on integer arguments and

give integer results. It is far better, for conceptual clarity as well as
.machine independence, to regard the integer type as a set of abstract values
on which these operations are defined, rather than as being structured out
of its component binary digits, which are used in most machines to represent

the integer.

A similar abstraction is highly desirable when the programmer is
constructing new types. For example, the complex type too is better
regarded as an abstract number space over which certain arithmetic operations
are defined, rather than in terms of its representation, say, in polar
coordinates. But in this case it is the programmer rather than the hardware
designer who must declare the functions or procedures which actually
implement these coperations. Furthermore, once these operations are implemented,
they should be the only means of processing and updating complex numbers;
and from then on the programmer should cease to think of them in terms of

the pair of real components of which they have been made.

It is this resolve to hide the details of a representation which
provides in data structuring the same power of abstraction that is offered by
procedures and parameters, The caller of a procedure is encouraged to be
unaware of the details of the computation which it invokes, and the nature
and names of the local data which are needed temporarily during the
computation. The only aspect of the procedure with which he is concerned is
its effect on the actual parameters (arguments} which he has passed.
Similarly, the user of a type should be concerned conly with the effect of the
operatlons which have been made available by the implementor of the type, and

not with the details of internal structure.

Methods of operator definition are available in SIMULA 67, and have been
developed by Liskov under the name "cluster"., 2 similar idea is incorporated

in Parnas' module.

9. Mappings.

The survey of data structuring methods given above deals only with the
most important structures, which can be easily and efficiently :mapped onto
machine representations, and it is not intended to be complete. For example,
it omits one very useful concept of a finite mapping. A finite mapping, in
the mathematician's sense, is a function which is defined only on a finite range

of arguments of type A, and which maps each argument onto a value from type B.

11

12

In mathematical notation, this may be expressed with an arrow:

A + B.

To the programmer, the most familiar example of a finite mapping is the
array, which maps a finite range of integers, say [a...b] onto values of
some type, for example, real; Using mathematical notation this may be
written:

type vector = [a.,.bl + real

In the case of a multidimensional array, it is a cartesian product of such

ranges over which the arréﬂ is defined:
type matrix = [a..blx [c..d] = real.

- But the concept of a finite mapping is more general than that; and
the range of arguments may be any finite set. For example, a sparse matrix
may be regarded as a mapping given only by its (finite number) of non-zero

elements, eg
sparse matrix = integer X integer -+ real

In a more commercial environment, a pricelist may be regarded as a

finite mapping which assigns a price to each product

pricelist = product + price.

Similarly, in a compiler, we require a dictilonary which maps each identifier

onto its decode (type, address, etc.):
symboltable = identifier - decode.

Apnd finally, to illustrate the application of this concept on a large scale,
congsider a telephone directory. 1In the simplest view, this is nothing but a

finite (but very large) mapping:

telephone directory = subscriber + telephone number.

13

10. Top-down Design.

The concept of mapping offers a very abstract way of looking at a
large random-access file, and does not give any help or insight into the
way in which the structure is going to be implemented in some combkination of
storage levels on a large computer. In fact, all the real problems of imple-
mentation remain. It is totally unrealistic to suppose that any high level
language or automatic process (or even a generalised integrated data base
management system),will be able to produce a satisfactory implementation from

such an abstract definition.

However, I would suggest that this abstract definition, devoid of all
implementation-detail, will be helpful to the programmer in the early stages
of design of his system. He can design his abstract program as though it
operates on the abstract data structure, and can thereby complete a consistent
design, without being confused by the detaills of the representation of his
data; then, when he knows more exactly how this data is going to be processed,
he may choose the most suitable representation, and implement it by coding
the fundamental operations required. In this way, the design apnd implementation
may proceed in an corderly fashion, from the top downwards, or evg::?ottomnup,

if preferred.

But in practice, progress may not be so orderly. If it appears that
there is no acceptably efficient method of representing the data, it may be
necessary to reconsider the abstract program. However, the clear separation
of decisions and details relevant to the two stages will probably clarify
the task of the designer or designers, and will ailmost certainly help him to

communicate and discuss his problems with his colleagues and successors.

11, References and Pointers.

One remarkable feature of the structuring methods introduced here is
that they make no mention of the reference or pointer, which are traditionally
regarded as the prime means of structuring data. The situation seems similar

to that of go to statements or jumps, which have traditionally played a

14

major role in computer programming, and which seem to be going rapidly out of
fashion. 1In fact the analogy goes deeper. In the implementation of data
structures use may be made of machine addresses, just as jumps are used in machine
code to implement conditionals, and while loops and procedures. The major
structuring disadvantage of the jump is that it creates new wide interfaces
between distant parts of a program, which look as though they should be
separate, and the slightest change to a program can propagate errors rapidly
and uncontrollably along these interfaces. I suspect that the same is true of
a reference, peinting from one part of a data structure to another distant
part, which ought to be disjoint. And I expect that there will be yet another
analogy - the recommendation to remove references from data structuring will
meet as much controversy as that to remove go té's from programming; and
perhaps even more so, because it runs counter to the still prevalent belief

in integrated information systems, relational data bases, etc.; and suggests
that earlier, simpler, techniques using separate files without cross references
may be preferable in many respects. Certainly, in respect of reliability, this

theory is confirmed by ample experience.

Conclusion.

This paper has described a number of simple and efficient methods of
structuring data, similar to those recommended for reliable construction for

programs; and they seem to share the same desirable properties:

{1) They are few in number.

{2) They are logically simple.

(3) They are amenable to simple proof technigues,

(4) They may be applied on a large scale or on a small.
(5) They assist in top-down design or in bottom-up.

(6) They are easy to implement.

(7) The easy implementation is efficient.

It is for such reasons that I recommend adoption of these data
structuring methods, not as an easy road to certain success in complex
projects, but as a discipline, possibly harsh and painful, which we adopt

willingly to help us in our unending search for simplicity.

