3

Tony Hoare

From: Michael Hotchin

Sent: 25 March 2002 22:45

To: Daniel Doubrovkine; David Richter; Peter Shier; Michael Grier; Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer;
Marco Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

Importance: Low

At the other end of the "utility’ spectrum, when I worked on IceCAP, we used ASSERT's very liberally. In
portions of the code ASSERT and other debug checking code approach 1/3 of the total code.

In almost every case, an ASSERT firing was a defect that had to be fixed. The testers thought they were
great, our ASSERT macro would dump a stack trace to the clipboard, with that and the input data they
had everything they needed to create really good bug reports.

We decided that having a framework for allowing a diversity of non-shipping actions was simply too useful
to not have, so we came up with several mechanisms that would allow us to control the extra information
and checking that the non-ship builds would process.

For example, I created a class that would dump info to the OutputDebugString port, but only if an
ASSERT triggered during its lifetime. So, if there's something that's good to know if an ASSERT happens,
but otherwise would just flood you with useless spammage, into an ASSERTINFO it would go, just as a
stack variable.

It was particularly useful in our BVT lab - in case of an ASSERT failure, that lab software could collect
both the stack trace and the ocutput from DEBUGMON, and the tester / dev could sift though the debris
after the fact. If I was still doing this today, I might have the ASSERT code create a memory dump as well,
so things could be debugged after-the-fact.

I think it all comes down to the groups attitudes. In IceCAP a 'noisy' ASSERT simply would not be
tolerated - it counted as a build break, and if you owned that ASSERT, you could expect several unhappy
dev's and testers to visit you to persuade you either fix the condition or remove the ASSERT. For us,
quality was driven into the product from day one - bugs were fixed as they were found, with none of this
‘wait until code complete’ nonsense that some groups adopt to give the iflusion of forward progress.

Mike H.
----- Qriginal Message-----
From: baniel Doubrovkine
Sent: Monday, March 25, 2002 1:14 PM
To: David Richter; Peter Shier; Michael Grier; Tony Hoare
Cc: Jay Krell; Productivity Discussions-CodeDeavelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant George
Subject: RE: Wiy don't best practices get adopted?

There was this one product called Netdocs that used to assert in all directions during the development process. It was
hell and developers hated it. Peopfe ended up not running debug builds that popped up windows all over the place with

asserts that you could ‘'safely ignore’.
That was the worst example of how this great intention can make your life miserable.

From: David Richter

Sent: Monday, March 25, 2002 12:44 PM

To: Peter Shier; Michael Grier; Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes
Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

| disagree with this statement:

Elther you care about the condition or you don't. If you do, then IMHO It should be a runtime check
with appropriate error handling.

In order to expose errors during testing, particularly, to expose those errors closer in time to the root cause,
test-only asserts may do checking that you do not want {o normally run in retail code. For example, code that
passas along a data structure might do minimal checking in retail code (e.g., just checking the header} and
extensive checking in test mode (e.g., walking the entire data structure).

My understanding of best practice here is to leave such extenslve checks in the retail build, but disabled in
such a way that they can be enabled to help track down customer issues on the customer's box,

From: Peter Shier

Sent: Monday, March 25, 2002 12:30 PM

To: Michael Grier; Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco
Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

| never use ASSERTS as | believe that any condition worth checking should aiso be checked in a retail
build. These chacks boll down to two types of conditions:

1) Internal logic errors
2) External conditions out of your control

| have seen lots of code with things like ASSERT(pir I= NULL). What is the point of that? Do you trust
the pointer? If not, then check it in all builds.

In the XP Embedded infrastructure | used something very similar to Michael's

INTERNAL _ERROR_CHECK all over the place and it paid off extremely well. If the specified condition
exists, then there is a logic error in my code that should never happen so | have fo bring down the app
right now. For conditions that exist due to external errors | return an appropriate error code.

Some may argue that there are conditions that are not worth checking in retail builds because the
code path will definitely be exercised In debug builds and the ASSERT will allow for early and clear
error detection. 1 find that approach to be very over-confident, You would have to be 100% sure that
all code and data paths through that ASSERT will be exercised in the debug builds and that their
behavior will be exactly the same in retail builds. | would never say that about even the simplest line of
code such as x = 5.

Either you care about the condition or you don't. If you do, then IMHQ it should be a runtime check
with approptiate error handling.

Peter
----- QOriginal Message-+---
From: Michael Grier
Sent: Monday, March 25, 2002 8:59 AM
To: Tony Hoare :
Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer;-Marco Dorantes
Martinez; Grant George
Subject: RE: Why don't best practices get adopted?

| agree with all your observations. At some level an assertion macro has common unquestionable
behavior - evaluate an expression and if not true, take some action.

it's the "take some action" part that | think getting unifted will be like corraling cats (to use
someone else's clever expression).

For example, in my team | took a clear stance, which was operationally based. | leave it up to the
programmer to determine which situation it is and then choose the appropriate condition
checking. Our main assert macro could better be called

"DETECT _FALSE_CONDITION_THAT_YOURE WILLING TCO BE CALLED_IN_THE_MIDDLE
_OF THE_NIGHT_FOR_WHEN_THE_BUILD BREAKS AND LEAVE_IGNORED_IN_RETAIL_
BUILDS()".

Given how many hogus/"overaclive" assertions there are in the overall product, { believe that the
usual standard {no criticism implied} is more along the lines of "detect some unusual condition
that 1 think shouldn't happen but which it's safe to ignore and make progress”.

We ended up splitting assertions into two classes: hard and soft. Hard assertions are the
2

traditional "stop the production line for in place immediate debugging” type of thing. Soft
assertions are just loud debug spew that includes text asking whoever happens to read it to log a
bug on the issue, with a flag to turn them into hard assertion failures at runtime. Neither ship in
retail, but we have a separate macro, "INTERNAL_ERROR_CHECK()" which is a lot like ASSERT
in semantics, but in addition to having the hard assert break-in behavior in CHK builds, in retai
builds, it causes propagation of ERROR_INTERNAL_ERROR in retail builds. Our QA team logs
debug spew during our regression tests and logs bugs about any soft assertion failures reported
and we fix them prior to checkin just like other assertion failures.

Maybe at some level this is the traditional abstraction naming problem - does the name describe
what the function does or why you would call it? My conclusions is that base primitives ("non-
interfaces™ in my taxonomy) should be named based on what their implementation does while
names in formal interfaces should be named based on intent; thus ASSERT == "if false, break the
build" in my dev team. (This is legal in this realm since it's reasonable to have "well known"
synonyms for the primitive behavior - notably use of the term “assert", "verify" and "smart" all have
clear enough implementation meanings [hopefully] that it's reasonable to use them instead of
writing "CDeleteWhenLeaveScope<Foo> pFoo;" we can write "CSmartPir<Foo> spFoo;".

mijg
----- Criginal Message-----

From: Tony Hoare

Sent: Monday, March 25, 2002 1:48 AM

To: Michael Grier

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco
Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

That's the wrong hope! The reat beauty of an assertion failure is that its meaning is adaptable
to gircumstances.

In & recent survey, | found about a dozen different meanings, and | am still looking for more.
Can you help me?

In the simplest case, and assertion means a diagnostic dump in test; it is compiled out and
ignored in ship code. Or it may send a stack dump back to Redmond. Other useful
meanings are:

An assertion may be a guess about the behaviour of legacy code: violation is reported and
fgnored on test.

An assertion may be a simplifying assumption, to be removed before ship. On test, the test
case is ignored. In ship code, It causes the compiler to object.

An assertion may be a precondition on a method call. Its failure is reported at the call site.
An assertion may be a postcondition. Its failure is reported at the method declaration.
An assertion may be an invariant, i.e., both a precondition and a postcondition.

An assertion may be a guide to a program analysis tool like PREfix, and help to reduce false
positives.

In future, assertions may be used to help analysis to find true negatives; they may be used in
diagnosis of dumps, they will be the basis for defect classification (as in Office Watson); and
they may even be used by a compiler for code optimisation.

In summary, there may be about twenty useful meanings of assertion failure. | should be
delighted to hear of more ideas. But not a thousand, | hopel

Yours, Tony.

--—-Qriginal Message-----
From: Michael Grier

Sent: 23 March 2002 03:46
To: Jay Krell; Tony Hoare

3

Cc: Steve Palmer; Productivity Discussions-CodeDevelopment; Rick Andrews; Marco
Derantes Mattinez; Grant George '
Subject: RE: Why don't best practices get adopted?

Is there any actual hope that we can even agree on what an assertion failure means?

Heavyweight process is something we need to avoid at all costs uniess we want to
turn into yet another big inflexible software company (there's a great argument that
we're already too big and inflexible in Windows and our ability to innovate has been
massively restricled...)

On the other hand, | really think that there should be someone in charge of identifying
some best practices and they should have the ability fo more or less enforce the
engineering teams to adopt these practices. Unfortunately this is like political office -
the people who actually want this kind of position are the ones who by ho means
should ever be allowed fo hold it. <half-grin> The mere existance of this
organization/post will attract people who want to make arbitrary restrictions and build
big process.

mjg

----- Qriginal Messagg-~«--

From: Jay Krell

Sent: Friday, March 22, 2002 7:39 PM

To: Michael Grier

Subject: FW: Why don't best practices get adopted?
----- QOriginal Message-----

From: Tony Hoare

Sent: Friday, March 22, 2002 6:47 AM

To: Steve Palmer

Cc: Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes

Martinez; Grant George
Subjeck: RE: Why don't best practices get adopted?

You are right (Fve got it tight this time, haven't 1?). Anyway, your comment shows
a very sober judgment.

| can corroborate your experience in the case of assertion macro's. Every
development guide that | have seen recommends a set that is private to one
team. In Windows, a recent count revealed over a thousand different assert
macro declarations. The only large team with a standardized assert macro Is
Office, and the Office Watson tool relies on this to classify defects in RAID.

The profiferation .of build processes among development teams has absorbed an
snormous effort from the PREfast developers. [s there any hope of unifying the
notations for small range of assertion types, so that the tool developers ¢can begin
to exploit them?

Thanks for the correction and the confribution.

Yours, Tony.

From: Steve Palmer

Sent: 15 March 2002 22:52

To: Grant George; Tony Hoare; Marco Dorantes Martinez; Rick Andrews;
Productivity Discussions-CodeDevelopment

Cc: Six Sigma; Six Sigma Code Development Managers; Edgar Alberto
Herrador Nieto

Subject: RE: Why don't best practices get adopted?

A best practice that comes in the form of a tool developed by another
group may not be sufficiently supported in terms of troubleshooting,
upgrades or documentation beyond that group to warrant any other group

4

adopting it. The exceptions, of course, are tools such as PREfast and
PREfix that have a support structure within MSR. The same applies to
tools developed by the Productivity Tools Team.

From: Grant George

Sent: Friday, March 15, 2002 8:58 AM

To: Tony Hoare; Marco Dorantes Martinez; Rick Andrews;
Productivity Discussions-CodeDevelopment

Cc: Six Sigma; Six Sigma Code Development Managers; Edgar
Alberto Herrador Nieto

Subject: RE: Why don't best practices get adopted?

I have seen a number of obstacles in my experience (pre and
post coming to Microsoft) to adopting best practices:

1) The not-invented-here problem. Personal pride and glory can
sometimes get in the way of adopting a smarter solution that
comes from the outside versus one you might be crafting locally
in your team.

2) Culture and process co-dependency. Many of the best
practices that work for a particular team don't transiate well to a
team with a different culture. The process in Team A might be
well-honed and refined over time and fit that team's approach to
testing or development or program management, but doesn't
work as well in a different group.

3) Timing. Sometimes best practices are bound up with a
specific tools and the ability to move from a legacy environment
to a new tool environment comes only at certain windows of the
product development schedule and if you don't make that shift at
the right time, you lose the opportunity.

4) Age. The longer a product group using a particular
methodology with some dependent tools has been around and
doing things the same way, the harder it is to unseat the old
practice (and related tools) when you want to make a shift.

5} Basic championship. Often a superior practice to one currently
being used does not get adopted without support from the top
leadership of the group and a torch-bearer to champion it. That
torch bearer must also be well respected within the group culture
and seen as one who can affect change without alienating folks,
and has a personal (read: review goals) stake in the shift.

6) Trade-off. Too often process and tool shifts are approached
as an all-or-nothing proposition and that's both myopic and
insensitive to each team's unique characteristics. A number of
initiatives over the years we have pursued in Office (spec
inspections, common ui test automation tools, test library
management solutions, etc) each have slight twists (call it a local
accent to the mother tongue) in each team that allows for some
shades-of-gray implementation locally that stifl fits into the overall
common best practice or tool set. You have to allow for and plan
for this from the outset.

From: Tony Hoare
Sent: Friday, March 15, 2002 8:34 AM
To: Marco Dorantes Martinez; Rick Andrews; Productivity Discussions-

CodeDevelopment

Ce: Six Sigma; Six Sigma Code Development Managers; Edgar Alberto
Herrador Nieto ’
Subject: RE: Why don't best practices get adopted?

You are tight. If you want some really significant case studies, you
should look at projects in which first use of a new technology has
been successful, but for which the technology was abandoned in all
successor projects, even by the original team members. The reason
for this cannot just be ignorance or fear of the new.

i have been involved in two such projects, when as an academic |
was collaborating with Industry. In both of them, the initial trial

5

project was well chosen as suitable for the new technology, and the
participants were seif-selected enthusiasts, who understood the
technology well enough to adapt it further to the needs of that project.
On successful completion of the nitial project, it did not seem that
the next project was sufficiently similar to the successful one that
there could be a guarantee that the same techniques will be
successful again.

A second factor is that the original team is now dispersed through a
somewhat larger project. The other members of the new feams are
no longer so keen to undertake something new (which anyway is not
so original any more), and they fes! it might be beyond their powers.
They would need a couple of weeks’ training to give them the
necessary skills and confidence. But there is no time. The project is
already behind schedute, and it would be managerially unacceptable
at this stage to accept a two-week delivery delay. (Actually, in one
case at least, failure to use the new technology led to much more
serious delays at a later stage)

The lesson | have drawn from these two sad stories is that our only
hope lies in the development of automatic programming and testing
tools. As they evolve in the light of user requests and suggestions,
they act as an accumulation of the experience of all who have used
them in the pasft, and they immediately propagate the benefits to all
who use them now. My stories date from the eighties, when good
tools were conspicuously absent, and we had to rely on exhortation,
education, and good will. These are good enough to generate a
small band of early enthusiasts, but they cannot adequately influence
the majority. And managerial edict is known to be dangerous at
worst and ineffeclive at best.

Have you given any thought of how your best practices could be
supported by tools? An obvious target would be an extension of
PREfast, but perhaps we should also think of tools that assist in the
planning of test harnesses and the generation of test cases. They
could certainly contribute to your goal of getling the test strategy
planned early.

Tony Hoare.

From: Marco Dorantes Martinez

Sent: 14 March 2002 21:09

To: Rick Andrews; Productivity Discussions-CodeDevelopment
Cc: Six Sigma; Six Sigma Code Development Managers; Edgar
Alberto Herrador Nieto

Subject: RE: Why don't best practices get adopted?

Hi,

This topic is of paramount importance, thanks for doing this kind of
job and for conducting this discussion thread.

Also, the topic is a very complex one, because it is about how
creative and ingenious people (programmers) work, and some times
these guys are not very well in articulating their thoughts in clear and
unambiguous statements (well, that is human behavior any way).

in my experience, | see some factors that prevent/permit quick
adoption of best praclices,

Here | am going to start with one of them, productivity/time, that is,
the amount of work done by unit of time, something like velocity of
development.

The practices that get my attention very quickly are those that help

6

me get things done faster and with high-quality.

| have found that those practices enclose sound principles, methods
and rules about software design and programming, and also
integrate well with related practices across the entire software
development process.

For a general study on related subjects see the following classics:

"The Psychology of Computer Programming: Silver Anniversary
Edition"

by Gerald M. Weinberg

ISBN: 0-932-63342-0

Dorset House

"Peopleware : Productive Projects and Teams, 2nd Ed."
by Tom Demarco, Timothy Lister

ISBN: 0-932-63343-9

Dorset House

"The Mythical Man-Month, Anniversary Edition : Essays on
Software Engineering”

by Frederick P. Brooks

ISBN: 0201835959

Addison-Weslsy

Best regards,
Marco

From: Rick Andrews

Sent: Thursday, March 14, 2002 2:17 PM

To: Productivity Discussions-CodeDevelopment

Cc: Six Sigma; Six Sigma Code Development Managers
Subject: Why don't best practices get adopted?

Hi,

I'm doing a study to fry to determine why Best Practices don't
get adopted; and would love your input.

in my work, I've seen several best practices being followed
by teams here at Microsoft, but rarely do | see other teams
adopt them — even though some have been measured with
proven results. When | discuss this with the teams that have
the best practices, they tell me they've shared their practices
with others but still they don’t get adopted. Sure, some get
adopted (e.g., PREFast); I'm frying to understand the issues
that drive adoption and learn why some get adopted and
others don't.

What's the secret to get a team to change their existing
processes and adopt a proven best practice? What prevents
teams from doing so? What's the key to getting individuals
to adopt best practices?

If you have any thoughts, ideas, suggestions, etc., I'd really
appreciate your feedback. Feel free to reply privately, or to
the alias if you think it's a suitable discussion topic. If you
want your response to be confidential, please be sure to
clearly tell me that. Finally, I'd be happy to meet, 1-1orina
group, with anyone interested in discussing this further face
to face. If you prefer to meet and can't find time available,
feel free to schedule me for any morning from 9-10am where
my schedule shows me as tentative.

I'm also looking for volunteers to help with this study (e.g.,
collect data, analyze data, brainstorm, etc.}). If you'd like to

7

participate, please contact me.

Plil publish my results on hitp://dev and
hitp://SixSigma/CodeDevelopment when the study/analysis
is complete. I'd like to get everyone’s input by 3/22 (sooner
the better} and have the results ready by 3/29.

Thanks for your helpl

Rick Andrews

KhkkkkARIAXRAAKARR XA RARE AR L IF

Rick Andrews
Six Sigma Blackbelt/SDE

SixSigma Team, hitp:/SixSigma/CodeDevelopment

Concerned about Coding Quality? If so, join the Productivity
Discussions - Coding alias {ProdDisC) o learn more and
participate in helping ship higher qualily software to our customers.
Click here to join ProdDisC.

A bad day working is betfer than a good
day reworking!
<< QLE Object: Picture (Metafile) >>

Tony Hoare

From: Joe Porkka

Sent: 25 March 2002 21:13

To: Peter Shier

Cc: Productivity Discussions-CodelDevelopment
Subject: RE: Why don't best practices get adopted?

I've got to disagree here - including all assertions in retail build for internal logic errors is unreasonable.

Certainly, asserts get abused (for handling your case 2: external conditions for example) - but including all assertions
in retail builds will just discourage people from using them. If | know that assertions won't affect my retail
size/performance then 1 don't hesitate to use them. If | had to worry that they may impact performance then I'm going
to be a lot more conservative about using them. For example:

void MySortFunction(List *pList)

// Some nifty fast sorting code goes here...

// end sorting code.
Asgert(IsSorted(pList)); // EXPENSIVE test to ensure the list 1s really sorted.

In this example, if the assertion falled it may not be possible to recover - there is a serious flaw in the code and

potentially corrupted data already.
If | lived in a world where Assert() didn't go away in retait builds, then | would delete that line of code as soon as | had

verified MySortFunction() works correctly.

| have seen lots of code with things fike ASSERT({ptr i= NULL). What is the point of that? Do you trust the pointer?
if not, then check it in all builds.
It's not about trust - if's about validating and documenting your assumptions and requirements (among other reasons).
Preconditions and Postconditions are excellent uses of assertions. Preconditions let you be very explicit and clear
what conditions must be met for a piece of code to execute correctly. Postconditions let you very explicitly say what the
possible range of results are. This is invaluable information for users, maintainers and debuggers of a piece of code.

----- Criginal Message-----

From: Peter Shier

Sent: Monday, March 25, 2002 12:30 PM

To: Michael Grier; Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant George
Subject: RE: Why don't best practices get adopted?

1 never use ASSERTSs as | believe that any condition worth checking should also be checked in a retail build.
These checks boil down to two types of conditions:

1) Internal logic errors
2) External conditions out of your control

| have seen lots of code with things like ASSERT(ptr 1= NULL). What is the point of that? Do you trust the pointer?
if not, then check it in all builds.

in the XP Embedded infrastructure | used something very similar to Michael's INTERNAL_ERROR_CHECK all
over the place and it paid off extremely well. If the specified condition exists, then there is a logic error in my code
that should never happen so | have to bring down the app right now. For conditions that exist due to external
errors | return an appropriate error code.

Some may argue that there are conditions that are not worth checking in retail builds because the code path will
definitely be exercised in debug builds and the ASSERT will allow for early and clear error detection. find that
approach to be very over-confident. You would have to be 100% sure that all code and data paths through that
ASSERT will be exercised in the debug builds and that their behavior will be exactly the same in retail builds. |
would never say that about even the simplest line of code such as x = 5.

Either you care about the condition or you don't. If you do, then IMHO it should be a runtime check with
appropriate error handling.

Peter

From: Michael Grier

Sent: Monday, March 25, 2002 8:59 AM

To: Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Derantes Martinez; Grant George

Subject: RE: Why don’t best practices get adopted?

1 agree with all your ohservations. At some level an assertion macro has common unquestionable behavior -
evaluate an expression and if not irue, take some action.

it's the "take some action" part that | think getting unified will be like corraling cats (1o use someone else's
clever expression).

For example, in my team | took a clear stance, which was operationally based. | leave it up to the programmer
to determine which situation it is and then choose the appropriate condition checking. Our main assert macro
could better be called
"DETECT_FALSE_CONDITION_THAT_YOURE_WILLING_TO_BE_CALLED_IN_THE_MIDDLE_OF THE_
NIGHT_FOR_WHEN_THE_BUILD_BREAKS AND_LEAVE_IGNORED_IN_RETAIL_BUILDS()".

Given how many bogus/“overactive" assertions there are in the overall product, | believe that the usual
standard (no criticism implied) is more along the lines of "detect some unusual condition that | think shouldn't
happen but which it's safe to ighore and make progress".

We ended up splitting assertions into two classes: hard and soft. Hard assertions are the traditional "stop the
production line for in place immediate debugging” type of thing. Soft assertions are just toud debug spew that
includes text asking whoever happens to read it to log a bug on the issus, with a flag to turn them into hard
assertion failures at runtime. Neither ship in retail, but we have a separate macro,
"INTERNAL_ERROR_CHECK()" which is a lot like ASSERT In semantics, but in addition to having the hard
assert break-in behavior in CHK builds, in retall builds, it causes propagation of ERROR_INTERNAL_ERROR
in retail builds. Qur QA team logs debug spew during our regression tests and logs bugs about any soft
assertion failures reported and we fix them prior to checkin just like other assertion failures.

Maybe at some level this is the traditional abstraction naming problem - does the name describe what the
function does or why you would call it? My conclusions is that base primitives ("non-interfaces” in my
taxonomy) should be named based on what their implementation does while names in formal inferfaces
should be named based on intent; thus ASSERT =="if false, break the bulld" in my dev team. (This is legal in
this realm since if's reasonable to have "well known" synonyms for the primitive behavior - notably use of the
term "assert", "verify” and "smart" all have clear enough implementation meanings [hopefully] that it's
reasonable to use them instead of wriling "CDeleteWhenlLeaveScope<Foo> pFoo;" we can write "CSmartPir
<Foo> spFoo;".

mjg
----- Original Message-----
From: Tony Hoeare
Sent: Monday, March 25, 2002 1:48 AM

To: Michael Grier
Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant George
Subject: RE: Why don't best practices get adopted?

That's the wrong hopel The real beauty of an assertion failure is that its meaning is adaptable to
circumstances.

In a recent survey, | found about a dozen different meanings, and 1 am sfill looking for more. Can you
help me?

In the simplest case, and assertion means a diagnostic dump in test; it is compiled out and ignored in ship
code. Or it may send a stack dump back to Redmond. Other useful meanings are:

An assertion may be a guess about the behaviour of legacy code: violation is reported and ignored on test.

An assertion may be a simplifying assumption, to be removed befare ship. On test, the test case is
ignored. In ship cods, it causes the compiler to object.

An assertion may be a precondition on a method call. Its failure is reported at the call site.
An assertion may be a postcondition. Its failure is reported at the method declaration.

An assertion may be an invariant, i.e., both a precondition and a postcondition.
2

An assertion may be a guide to a program analysis tool like PREfix, and help to reduce false positives.

In future, assertions may be used to help analysis to find true negatives; they may be used in diagnosis of
dumps, they will be the basis for defect classification (as in Office Watson); and they may even be used by
a compiler for code optimisation.

In summary, there may be about twenty useful meanings of assertion failure. | should be delighted to hear
of more ideas. But not a thousand, | hope! .

Yours, Tony.

From: Michael Grler

Sent: 23 March 2002 03:46

To: Jay Krell; Tony Hoare

Cc: Steve Palmer; Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes
Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

Is there any actual hope that we can even agree on what an assertion failure means?

Heavyweight process is something we need to avoid at all costs unless we want to turn into yet
another big inflexible software company (there's a great argument that we're already too big and
inflexible in Windows and our ability to innovate has been massively restricted...)

On the other hand, | really think that there should be someone in charge of identifying some best
practices and they should have the ability to more or less enforce the engineering teams to adopt
these practices. Unfortunately this is like political office - the people who actually want this Kind of
position are the ones who by no means should ever be allowed to hold it. <half-grin> The mere
existance of this organization/post will attract people who want to make arbitrary restrictions and
build big process.

mjg

----- Original Message-----

From: Jay Krelt

Sent: Friday, March 22, 2002 7:39 PM

To: Michae! Grier

Subject: FW: Why don't best practices get adopted?
----- Original Message-----

From: Tony Hoare

Sent: Friday, March 22, 2002 6:47 AM

To: Steve Palmer

Cc: Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes Martinez; Grant

George
Subject: RE: Why don't best practices get adopted?

You are right (I've got it tight this time, haven't {?). Anyway, your comment shows a very
sober judgment.

| can corroborate your experience in the case of assertion macro’s. Every development guide
that I have seen recommends a set that is private to one team. In Windows, a recent count
revealed over a thousand different assert macro declarations. The only large team with a
standardized assert macro is Office, and the Office Watson tool relies on this to classify
defects in RAID. :

The proliferation of build processes among development teams has absorbed an enormous
effort from the PREfast developers. Is there any hope of unifying the notations for small
range of assertion types, so that the tool developers can begin to exploit them?

Thanks for the correction and the contribution,.

3

Yours, Tony.

Tony Hoare

From: Michael Grier

Sent: 25 March 2002 20:38

To: Brian Manthos; Peter Shier; Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer;
Marco Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

This is what our PARAMETER_CHECK macro does. There's a global setting for whether parameter validation failures

break in or not.

What we did wrong is that there should be PARAMETER_CHECK and

PARAMETER_CHECK_INTERNAL, and PARAMETER_CHECK_INTERNAL always breaks in on CHK builds since it
reflects a bad internal caller. The PARAMETER_CHECK breaking in behavior should also be governed by the use of

the app verifier,

Maybe. Subject to the other endless debates about how good we have to be to bad callers.

mg
-----Original Message-----
From: Brian Manthos
Sent: Monday, March 25, 2002 12:38 PM
To: Peter Shier; Michael Grier; Tony Hoare
Cc: Jay Kreli; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant George
Subject: RE: Why don't best practices get adopted?

Importance: Low

I take it you've never used this construct?
HRESULT SomeFunc(...)
if (...)
{

// we shouldn't be seeing this with our own sampie
// client code. If so, we're setting a bad example.
ASSERT(false);

return E_INVALIDARG;

}
}
P Brian
----- Original Message-----
From: Peter Shier
Sent: Monday, March 25, 2002 12:30 PM
To: Michael Grier; Tony Hoare
Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

I never use ASSERTSs as | believe that any condition worth checking should also be checked in a retail build.
These checks boil down fo two types of conditions:

1) Internal logic errors
2) External conditions out of your control

| have seen lots of code with things like ASSERT{ptr I= NULL}). What is the point of that? Do you trust the
pointer? If not, then check it in all builds.

In the XP Embedded infrastructure | used something very similar to Michael's INTERNAL_ERROR_CHECK
all over the place and it paid off extremely well. If the specified condition exists, then there is a togic error in my
code that should never happen so | have to bring down the app right now. For conditions that exist due to
external errors | return an appropriate error code.

Some may argue that there are conditions that are not worth checking in retail builds because the code path
will definitely be exercised in debug builds and the ASSERT will allow for early and clear error detection. | find
that approach to be very over-confident. You would have to be 100% sure that all code and data paths through
that ASSERT will be exercised in the debug builds and that their behavior will be exactly the same in retail
builds. | would never say that about even the simplest line of code such as x = 5.

Either you care about the condition or you don't. If you do, then IMHO it should be a runtime check with'
appropriate error handling.

Peter
----- Original Message-—---
From: Michael Grier
Sent: Monday, March 25, 2002 8:59 AM

To: Tony Hoare
Cci Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant Gearge

Subject: RE: Why don't best practices get adopted?

| agree with all your observations, Af some level an assertion macre has common unquestionable
behavior - evaluate an expression and if not true, take some action.

it's the "take some aclion"” part that | think getting unified will be like corraling cats (fo use someone else's
clever expression).

For example, in my team | fook a clear stance, which was operationally based. | leave it up to the
programmer to determine which situation it is and then choose the appropriate condition checking. Our
main asserf macro could belter be called
"DETECT_FALSE_CONDITION_THAT_YOURE_WILLING_TO_BE_CALLED_IN_THE_MIDDLE_OF TH
E_NIGHT_FOR_WHEN_THE_BUILD BREAKS_AND_LEAVE_IGNORED_IN_RETAIL_BUILDS()".

Given how many bogus/"overactive" assertions there are in the overall product, | believe that the usual
standard (no criticism implied} is more along the lines of "detect some unusual condition that | think
shouldn't happen but which it's safe to ignore and make progress”.

We ended up splitting assertions into two classes: hard and soft. Hard assertions are the traditional "stop
the production fine for in place immediate debugging” type of thing. Soft assertions are just loud debug
spew that includes text asking whoever happens to read it to log a bug on the issue, with a flag to turn
them into hard assertion failures at runtime. Neither ship in retail, but we have a separate macro,
"INTERNAL_ERROR_CHECK()" which is a lot like ASSERT in semantics, but in addition to having the
hard assert break-in behavior in CHK builds, in retail builds, it causes propagation of
ERROR_INTERNAL_ERROR in retail builds. Our QA team logs debug spew during our regression tests
and logs bugs about any soft assertion failures reported and we fix them prior to checkin just like other
assertion failures,

Maybe at some level this Is the traditional abstraction naming problem - does the name describe what the
function does or why you would call it? My conclusions is that base primitives ("non-interfaces"” in my
taxonomy) should be named based on what their implementation does while names in formal interfaces
should be named based on intent; thus ASSERT == "if false, break the build" in my dev team. (This is
legal in this realm since it's reasonable to have "well known" synonyms for the primitive behavior - notably
use of the term "assert", "verify" and "smart" all have clear enough implementation meanings [hopefully]
that it's reasonable to use them instead of writing "CDeleteWhenLeaveScope<Foo> pFoo;" we can write
"CSmartPtr<Foo> spFoo;".

mg
----- Original Message-----
From: Teny Hoare
Sent: Monday, March 25, 2002 1:48 AM
To: Michael Grier
Cc: Jay Krell; Productivity Discussions-CodeDavelopment; Rick Andrews; Steve Palmer; Marco Dorantes
Martinez; Grant George
Subject: RE: Why don't hast practices get adopted?

That's the wrong hope! The real beauty of an assertion failure is that its meaning is adaptable to

circumstances.
In a recent survey, | found about a dozen different meanings, and [am still looking for more. Can you

help me?

In the simplest case, and assertion means a diagnostic dump in test; it is compiled out and ignored in
ship code. Or it may send a stack dump back to Redmond. Other useful meanings are:

An assertion may be a guess about the behaviour of legacy code: violation is reported and ignored on
test.

= An assertion may be a simplifying assumption, to be removed before ship. On test, the test case is
lgnored. In ship code, it causes the compiler to object.

An assertion may be a precondition on a method call. lis failure is reported at the call site.

An assertion may be a posicondition. Its failure is reported at the method declaration.

An assertion may be an invariant, i.e., both a precondition and a postcondition.

An assertion may be a guids {o a program analysis tool iike PREfix, and help to reduce false positives.

In future, assertions may be used to help analysis to find true negatives; they may be used in
diagnosis of dumps, they will be the basis for defect classification (as in Office Watson); and they may
even be used by a compiler for code optimisation.

In summary, there may be about twenty useful meanings of assertion failure. | should be delighted to
hear of more ideas. But not a thousand, { hops!

Yours, Tony.

From: Michael Grier

Sent: 23 March 2002 03:46

To: Jay Krell; Tony Hoare

Cc: Steve Palmer; Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes
Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

Is there any actual hope that we can even agree on what an assertion fallure means?

Heavyweight process is something we need to avoid at ali costs unless we want to turn into
yet another big inflexible software company (there's a great argument that we're already too
big and inflexible in Windows and our ability to innovate has been massively restricted...)

On the other hand, | really think that there should be someone in charge of identifying some
best practices and they should have the ability to more or less enforce the engineering teams
to adopt these practices. Unfortunately this is like political office - the people who actually
want this kind of position are the ones who by no means should ever be allowed to hold it.
<half-grin> The mere existance of this organization/post will attract people who want to make
arbitrary restrictions and build big process.

mjg

----- Original Message-----

From: Jay Krell

Sent: Friday, March 22, 2002 7:39 PM

To: Michael Grier

Subject: FW: Why don't bast practices get adopted?
----- Original Message-----

From: Tony Hoare

Sent: Friday, March 22, 2002 6:47 AM

To: Steve Palmer

Cc: Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes Martinez; Grant

George
Subject: RE: Why don't best practices get adopted?

You are right (I've got it tight this time, haven't {?). Anyway, your comment shows a very
sober judgment.

| can corroborate your experience in the case of assertion macro's. Every development
guide that | have seen recommends a set that is private to one team. In Windows, a
recent count revealed aver a thousand different assert macro declarations. The only

3

large team with a standardized assert macro is Office, and the Office Watson tool islies
on this to classify defects in RAID.

The proiiferation of build processes among development teams has absorbed an
enormous effort from the PREfast develapers. s there any hope of unifying the notations
for small range of assertion types, so that the tool developers can begin to exploit them?
Thanks for the correction and the contribution.

Yours, Tony.

NN

TN

;

Tony Hbare

From: Michael Grier

Sent: 25 March 2002 16:59

To: Tony Hoare

Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer;
Marco Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

| agree with all your observations. At some level an assertion macro has common unguestionable behavior - evaluate
an expression and if not true, take some action.

H's the "take some action” part that | think getting unified will be like corraling cats (to use someone else's clever
expression).

Far example, in my team | took a clear stance, which was operationally based. | leave it up to the programmer {o
determine which situation it is and then choose the appropriate condition checking. Our main assert macro could /
better be called

"DETECT_FALSE_CONDITION_THAT_YOURE_WILLING _TO_BE_CALLED_IN_THE_MIDDLE_OF_THE_NIGHT_
FOR_WHEN_THE_BUILD_BREAKS_AND_LEAVE_IGNORED_IN_RETAIL BUILDS()".

Glven how many bogus/"overactive” assertlons there are In the overall product, | believe that the usual standard (no
criticism implied) is more along the lines of "detect some unusual condition that | think shouldn't happen but which it's
safe to ignore and make progress".

We ended up splitting assertions into two classes: hard and soft. Hard assertions are the traditional "stop the
production line for in place immediate debugging” type of thing. Soft assertions are just loud debug spew that includes
text asking whoever happens to read it to log a bug on the issue, with a flag to turn them into hard assertion failures at
runtime. Neither ship in retail, but we have a separate macro, "INTERNAL_ERROR_CHECK()" which is a iot like
ASSERT in semantics, but in addition to having the hard assert break-in behavior in CHK builds, in retail builds, it
causes propagation of ERROR_INTERNAL_ERROR in retait builds. Our QA team logs debug spew during our
regression tests and logs bugs about any soft assertion failures reported and we fix them prior 1o chéckin just like
other assertion failures.

Maybe at some level this is the traditional abstraction naming problem - does the name describe what the function
does or why you would call it? My conclusions is that base primitives ("non-interfaces” in my taxonomy) should be \
named based on what their implementation does while names in formal interfaces should be named based orrintent,
thus ASSERT == "if false, break the build” in my dev team. (This is legal in this realm §ince if's reasonableio have ™"
"well known" synonyms for the primitive behavior - notably use of the term "assert”, "verify" and "smart" all have clear
enough implementation meanings [hopefully] that it's reasonable to use them instead of writing

"CheleteWhenlLeaveScope<Foo> pFoo;" we can write "CSmartPtr<Foo> spFoo;".

mjg
----- Original Message-----
From: Tony Hoare
Sent; Monday, March 25, 2002 1:48 AM
To: Michael Grier
Cc: Jay Krell; Productivity Discussions-CodeDevelopment; Rick Andrews; Steve Palmer; Marco Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

That's the wrong hope! The real beauty of an assertion failure is that its meaning is adaptable to circumstances.
In a recent survey, | found about a dozen different meanings, and 1 am stiil looking for more. Can you help me?

In the simplest case, and assertion means a diagnostic dump in test; it is compiled out and ignored in ship code.
Or it may send a stack dump back to Redmond. Other useful meanings are:

An assertion may be a guess about the behaviour of legacy code: violation is reported and ignored on test.

An assertion may be a simplifying assumption, to be removed before ship. On test, the test case is ignored. in
ship code, it causes the compiler to object.

An assertion may be a precondition on a method call. Its failtire is reported at the call site.

An assertion may be a postcondition. s failure is reported at the method declaration.

1

An assertion may be an invariant, i.e., both a precondifion and a postcondition.
An assertion may be a guide to a program analysis teol like PRE(fix, and heip to reduce false positives.

In fulure, assertions may be used to help analysis to find trus negatives; they may be used in diagnhosis of dumps,
they will be the basis for defect classification (as in Office Watscn); and they may even be used by a compiler for
code optimisation.

In summary, there may be about twenty useful meanings of assertion faiturs. | should be delighted to hear of more
ideas. But not a thousand, | hope!

Yours, Tony,

From: Michael Grier

Sent: 23 March 2002 03:46

To: Jay Krell; Tony Hoare

Cc: Steve Palimer; Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes Mattinez;
Grant George

Subject: RE: Why don't best practices get adopted?

Is there any actual hope that we can even agree on what an assertion failure means?

Heavywsight process is something we need to avoid at all cosls unless we want to turn into yet another
big inflexible software company (there's a great argument that we're aiready too big and inflexible in
Windows and our ability to innovate has been massively restricted...)

On the other hand, | really think that there should be someone in charge of identifying some best practices
and they should have the ability to more or less enforce the engineering teams to adopt these practices.
Unfortunately this is like paolitical office - the peopfe who actually want this kind of position are the ones
who by no means should ever be allowed to hold it. <half-grin> The mere existance of this
organization/post will attract people who want to make arbitrary restrictions and build big process.

mjg

----- Original Message-----

From: Jay Krell

Sent; Friday, March 22, 2002 7:39 PM

To: Michael Grier

Subject: FW: Why don't best practices get adopted?
-----Original Message-----

From: Tony Hoare

Sent: Friday, March 22, 2002 6:47 AM

To: Steve Palmer

Cec: Productivity Discussions-CodeDevelopment; Rick Andrews; Marco Dorantes Martinez; Grant George

Subject: RE: Why don't best practices get adopted?

You are right (I've got i tight this time, haven’t [7). Anyway, your comment shows a very sober
judgment.

| can corrchorate your experience in the case of assertion macro’s. Every development guide that |
have seen recommends a set that is private to one team. In Windows, a recent count revealed over a
thousand different assert macro declarations. The only large team with a standardized assert macro
is Office, and the Office Watson tool relies on this to classify defects in RAID.

The proliferation of build processes among development tearns has absorbed an snormous effort
from the PREfast developers. |s there any hope of unifying the notations for small range of assertion
types, so that the tool developers can begin to exploit them?

Thanks for the correction and the contribution.

