Assertions in programming;
from scientific theory
to engineering practice

Tony Hoare
Microsoft Research Ltd., Cambridge

Belfast April 2002

/

/

5 C(,wLLFI o

fb e

I first became interested in assertions when I took up my post as Professor of
Computer Science at the Queen’s University Belfast in 1968, I welcomed
them first as a means of applying objective scientific judgement to the design
and evaluation of computer programming languages. My subsequent
academic research career was inspired by an ideal that assertions would
contribute to the avoidance of programming error by means of mathematical

proof.

At the present day, assertions are widely used in program development
practice, as I have found from a recent survey among software development
managers in Microsoft. The main role of assertions is as test oracles, to detect
programming errors as close as possible to their place of occurrence. In this
talk T will describe a number of other ways in which assertions arg found
useful, and may become even more useful in future. All-ofthend fall far short
of the hard ideals of mathematical proof.

Q‘M Al

/ , F\m C\ t (,o& : \(wsw LA

bn a/u\q«me,wm(qu aqumu‘ /

Vol

An assertion

1s a Boolean expression

written in the middle of a program

which is always true
» whenever control reaches that point.

At least, that’s the intention

- VVNA(UQ,@ :

FAVIRZY
An assertion in-its most familiar form}i/s a Boolean expression that is written
at any point in the’program text. It can in principle or in practice be evaluated
by the computer, whenever control reaches that point in the program. If an
assertion ever evaluates to false, the program is incorrect. But if it always
evaluates to true, then at least the relevant progiam defect has never been
detected. But best of all, if it can be proved th% the assertion will always
evaluate to frue on every possible execution, then the program is proved to be
correct, at least with respect to that assertion.

s

P " ~g\g.e/‘3\('

Program verification

« Alan Turing (1950)
On Checking a Large Routine
+ John McCarthy (1963)
A Basis for a Mathematical Theory of Computation
* Robert Floyd (1967)
Assigning Meanings to Programs
« Edsger W. Dijkstra (1968)
A Constructive Approach to the Problem of Program
Correctness.

An understanding of the role of assertions in the checking of large computer
programs goes back to Alan Turing in 1950. The idea of automatic theorem
proving to guarantee the correctness of programs goes back to John McCarthy
in 1963. The jded of assigning a meaning to a programming notation by
specifying the logic of correctness proofs goes back to Bob Floyd in 1967,
And the idea of writing the assertions even before writing the program was
propounc%d by Edsger Dijkstra in 1968. Dijkstra’s insight has been the
inspiration of much of the subsequent programming research conducted in
Universiéy computing departments throughout the world.

WL M @3@;‘\1\

»

What’s wrong with Test?

» Testing can only show the presence of bugs.

Never their absence (Dijkstra)

But test is complementary to specification,
reasoning and proof.

It 1s fundamental to both Science and
Engineering.

o w/wl ijuw s t;‘mb Yov jm

Qg correct; they
rcher, T used
to deplore this reliance on testing as inefficient and ineffective! [would quote

Of course, everyone knows that programs today are npt prav;
are only tested with a greater or lesser thoroughness. As a res

with approval the famous dictum of Dijkstra, that program testing can prove
the existence of program bugs, but never their absence.

But this has been a mistake. T now believe that testing is a valuable and

necessary complement to specification, reasoning and proof of programs. ™~

And assertions are just as impotrtant for testing as they are for miathematical
theory. [would like to explain my change of mind by an analogy with the
role 0%\ testing in other branches of science and engineering.

) 'ffnf/r)

I

\Humﬁj Ann Aw&%

1.
. - i3)e‘%a

Experiment in Science.

« A scientific theory has independent credibility
— based on « priori reasoning

« It is subjected to rigorous test,
— designed to refute it (Karl Popper)

o If it passes all tests, it is accepted.

According to the teaching of Karl Popper, the testing of scientific hypotheses
by rigorous experiment is essential to the progress of Science. A scientific
advance starts with a theory that has some a priori grounds for credibility, for
example, that a force has an effect that is inversely proportional to the square
of the distance at which it acts. A new theory that applies such a principle to
a new phenomenon is subjected to a battery of tests that have been
specifically designed, not to support the theory,but to refute it. If the theory
passes all the tests, it is accepted and used, per;iaps to help in the formulation
and test of further and more advanced theories.

Extending this analogy to computer software, we can see clearly why program
testing is in practice such a good assurance of the reliability of software. A
competent programmer always has a prior understanding, perhaps quite
intuitive, of the reasons why the program is going to work. If this hypothesis
survives,rigorous testing regime, the software has proved itself worthy of
M_delive{y):o a customer. If a few small changes are needed in the program,
; ~ they are quickly made — unfortunate, but that happess to scientific theories
C too. In Microsoft, every project has assighe Pto it a team of testers, recruited
e specially for their skill as experimental scientists; they constitute about & haif
of the entire program development workforl.

\i:.‘w\,fk 4 LL&E’M/Q_J oa_ai.jb\«%w/u«jg m
u’vax vwmi&.., ;

Test in Engineering

 Analogy: engine on a test bench
» Instrumented by probes at internal interfaces

To test tolerances continuously
And avoid test to destruction

Opportunity to improve quality by
tightening the tolerances

My second G0

P&i%n_ﬁéﬁﬁtoﬁhe analo gyﬁth other branches of engineering, where rigorous
product test is an essential prerequisite before shipping a new or improved
product. For example, in the development of a new acro jet engine, an early
working model is installed on an engineering test bench for exhaustive trials.
This model] engine will first be thoroughly instrumented by insertion of test
probes at every accessible infernal interface, A rigorous test schedule is
designed to exercise the engine at all the extremes of its intended operating

- range. By continuously checking tolerances at all the crucial internal
- Nw*iﬁtméi’fa“c":“é%",wfﬁéwénginegfdétécﬁﬁléipient errors immediately, and never needs

to test the assembly as a whole to destruction. By continuously striving to Jﬁj‘/j iw J\)
improve the set points and tighten the tolerances at each internal-ififerface, the v gy
quality of the whole product can be gradually improved. That is the essence

of the six sigma quality improvement philosophy, which has been widely

applied in manufacturing industry to increase product reliability at the same

time as company profits.

In the engineering of software, assertions at the interfaces between modules of
the program play the same role as test probes in engine design. The analogy
suggests that programmers should increase in the number and strength of
assertions in their code. This will make their system more likely to fail under
test; but the reward is that it is subsequently znllcllﬁémly to fail in the
field.

Macros

#ifdef DEBUG
#define ASSERT (b,str) {
if (b) { }
else {report (str);
assert (false)} }
#elgse #define ASSERT (b, str)
fendif

The defining characteristic of an engineeting test probe is that it is removed
from the engine before manufacture and delivery to the customer. In
computer programs, this effect is achieved by means of conditionally defined
macros. The macro is resolved at compile time in one of two ways, depending
on a compile-time switch called DEBUG, set for a debugging run, and unset

when compiling retail code. An assertion may be placed anywhere inthe o~ \H/L
middle of executable code by means of this ASSERT macro: It is ‘based on (_;/f ' 7 L&j 7
one that has been suppliedfo developers in Microsoft by my colleague Jon N

Pincus, in asso:;i/ago with his program analysis tool PREfast. Many other
examples in this talk are derived from the same collection. #WW\M@,

(DW M’Ym) o)%)‘%{Né U\/;/)Q/\f\ e e sf/mf\d\”?;i;
Ji/wxj %e C‘M)fx»{/\,r%j z/’a t}ﬁag -
/ & /ﬁ @ Lj% % ,ﬁ_fa.«uaﬁ

(

b g\}/Lw)J Vs

\ Y il ﬁ' Lb Y . |
SD ‘rov:a’h/é L:w\ W;;:”” W} . gﬁ\f ;{/\z) V/g{gw\ﬂd

".

My

Explanations

ASSERT(assertion, “reason why I think
the assertion is true”)

Otherwise it’s easy to forget.
Helps both writer and reader.

Pinpoints risk of similar errors
Helps to avoid them in future

The whole point of an assertion is that the programmer should have a good
reason for believing that it will always be true when the program is executed.
When the programmer’s reasoning has been confirmed by extensive
gxpenments we have a genuine scientific basxs for conﬂdence that the

pmgzam is in fact correct. ling to explain the. Ulw«.f

D:ason why——th&assmﬁmm&ahd as a secondment to the ASSERT)\:\

have the information needed to trace the underlying cause of the mistake.
Correction may well be easier: but more than that, The programmer will be
warned of other likely occurrences of a similar error in the existing code; and
will be encouraged to improve the rigour of the reasoning, to avoid all such
errors in the future.

acro. In case of error, discovered perhaps much later, the” programmer will R ’iy

That i% why the PREfix-asssrtion macro requires-a§€cend paramecter, a stying
in wh%ch the programmer can explain quit%in’ ormally the reason why-the first
parameter will always be truel The more gbscure the reason, the gyeater the

value of the explanation,

Documentation ,

« Protection for system against future changes

X]

if (a »>=b){ .. a++ ; .. }

ASSERT(a != b, ‘a has just
been incremented to avoid
equality’) ;
x = c¢/(a - b)

A major activity of a software Company like Microsoft is the continuous
evolution and improvement of old code to meet new market needs, Even quite
trivial assertions, like that shown on this slide, give added value when
changing the codg. One Microsoft Development Manager recommends that
for every bug corrected in test, an assertion should be added to the code which
w111 fire if that bug ever occurs again. Some developers are willing to spend a
" whole day to design precautions that will avoid a week’s work tracing an
error that may be introduced later by a less experienced programmer. For
example, the error message delivered on assertion violation in later evolution
of the code can be carefully crafted to explain to later maintainers how the
violation should have been avoided. Success in such documentation by
assertions depends on long experience and careful judgment in predicting the
most likely errors a year or more from now. Not everyone can spare the time
to do this under pressure of tight delivery schedules. But it is likely that a
liberal sprinkling of assertions in the code increases the accumulated value of
commercial legacy code, when the time come to develop a new release.

:;
£Mfma¢wL&UWUN‘ pel o —

/2__\

Assumptions

» Used only during early test
SIMPLIFYING ASSUMPTION

(strlen(input) < MAX PATH,
‘'not yet checking for
overflow’’)

o Failure indicates test was irrelevant
 Prohibited in ship code

In the early testing of a prototype program, the developer wants to check out
the main paths in the code before dealing with all the exceptional conditions
that may occur in practice. In order to document such a development plan,
PREfix provides a variety of assertion which is called a simplifying
assumption. The quoted assumption documents exactly the cases which the
developer is not yet ready to treat, and it also serves as a reminder of what
remains to do later. Violation of such assumptions in test will simply cause a
test case to be ignored, and should not be treated as an error, But the priority
of the test case should be increased, to ensure that the eventual special case
code will be adequately tested. Of course, in a retail build when the debug
flag is not set, the macro will give rise to a compile-time error; it will not just
be ignored like an ordinary assertion. This gives a guarantee against the risk
incurred by more informal TO DO comments, which occasionally and
embarrassingly find their way into ship code.

10

Optimisation

switch (condition) {
case 0: c e e ; break;
case 1: C e e ;break;

default: UNREACHABLE (‘condition
ig really a boolean’) ;}

» Compiler emits less code

\/\J M L A ;

Assertions can help a compiler produce better code. For example, in a C-

style case statement, a default clause that cannot be reached should marked

with an UNREACHABLE assertion, and the compiler avoids emissionof .- ;)un
unnecessary code for this case. In future, perhaps assertions will give further Ao m{;__
help in optimisation, for example by asserting thatpomtels or references do e ‘

not point to the same location, Of course, if such an assertion were false, the

effect could be awful; but fortunately it can be diagnosed quickly«ifwthe fault s | /
is reproduced on a debugging run, be@gmmmm&u;dmm - } g d&u} 3
immediately.a And Mhenever the code is changed, it is subjected againto a 0

massive suit¢ of regression tests, For this reason, assertions are widely %ELKL
believed to He the only believable form of program documentation. I still
hope that one\day it will be possible to confirm such belief by proof,

;; W’“‘f cwwf;@m o /ﬁl@QV‘ JGI \a& L\

1 11

Assertions in retail code

* VSASSERT assertions are ignored
. -VSVerifyThrow generate exception

* VsVerify ...user chooses

The original purpose of assertions was to ensure that program defects are
detected as carly as possible in test, rather than after delivery. But the power
of the customer’s processor is constantly increasing, and the frequency of
delivery of software upgrades is also increasing. It is therefore more and
more cost-effective to leave a certain proportion of the assertions in ship
code; when they fire they generate an exception, and the choice is offered to
the customer of sending a bug report to Microsoft. This is much better than a
crash, which is a likely result of entry info a region of code that has never
been encountered in test. A common idiom is to give the programmer control-
over such a range of options by means of different ASSERT macros, These
three examples are taken from the Visual Studio project.

12

27

PRocRM ANALYSLS
PREFIX ASSUME

» Reduces PREFIX noise

» pointer = find (something);
PREFIX ASSUME (pointer = NULL,
“see the insertion three lines back™);
pointer ~>mumble = blat ...

hiah Lok o
g g Ve ol § o S0

e <
v M sl The glbbal'program analysis tool called PREfix is now widely used by \W)m AP |

- Micros’cft development teams to detect program defects at an early stage, 3= ww\i&' Ol

merely by scanning the program text, and even before compiling and testing. VES

Typical defects detected by PREfix are § NULL pointer referené‘%é an atray i

' subscript out of bound{ a variable not initialised. PREfix weyk@%yana}ysing“ /, o4
all paths through each method body, and it gives a report for each path on

which there may be a defect. The trouble is that most of the paths considered T

can never in fact be activated. The resulting false positive messages still ‘"w{*ecu\j

require considerable effort to analyse and reject; and the rejection is prone to PW

etrror too. Wf
va{//’ L9

Assertions can help the PREfix anomaly checker to avoid unnecessary noise. 'L”’& "&’I"ﬂ
If something has only just three lines ago been insetted in a table, it is p C/wat’,
annoying to be told that it might not be there. The ASSUME macto allows

the programmer to tell PREfix information about the program that cannot be

automatically deduced.

8 13

Defect tracking

Office Watson keys defects by assertions

Integrates with RAID data base

Identifies bugs across builds/releases

Integral to the programming process

Assertions feature strongly in the code for Microsoft Office — around a quarter

of a million of them. They are automatically given unique tags, so that they

can be tracked in successive tests, builds and releases of the-product, even
though their line-number changes with,the program code. Assertion

violations are recorded in RAID, the sfandard data base of unresolved issues.
When the same fault is detected by two different test cases, it is twice as easy

to diagnose, and twice as valuable to correct. This kind of fault classification
defines an important part of the team’s programming process.?LKiLk—G'}ertIﬁT]"’A

14

Assertion Languages

« Bertrand Meyer
— Eiffel, assertions as contracts
« Leavens, Baker, Ruby
— Java Modelling Language
« Leino, Nelson, Saxe
— ESC/Java, Extended Static Checker

1 will now broaden my view away from current practice in Microsoft and
towards the future progress of research into the use of assertions for the
specification and verification of interfaces within a large software system; and
in particular, the interface between class libraries and their users. In the
design of Bertrand Meyer’s Eiffel programming language, interface
specifications are recommended as a sort of contract between implementers
and users, in which each side undertakes certain obligations in return for
corresponding guarantees. The same ideas are incorporated in draft proposals
for assertion conventions recommended for specifying Java programs. Two
examples are the Java modelling language and the Extended Static Checker,
ESC is already an educational prototype of a verifying compiler.

o

15

Interface assertions

Used at least twice

» And again on each release

Permits unit test of each module

Permits modular analysis and proof

The references-given on the previous slide-give-especial promimence to——
“assertions-at-the-major. mtenfac@éﬁetween modules of cod. Assertions at
mtelfacég -give exceptionally good value. " Firstly; they”ﬁfé exploited at least
tw1ce\by the implementer of the interface and by all its users. Secondly,
interfaces are usually more stable than code, so the assertions that define an
interface are used repeatedly whenever code is enhanced for a later release.
Interface assertions permit unit testing of each module separately from its use;
and they give good guidance in the design of rigorous test cases. Finally, they
enable the analysis and proof of a large system to be split into smaller parts,
separately for each module. This is absolutely critical. Even with fully
modular checking, the first application of PREfix to a twenty million line
product took three weeks of machine time; and even after a series of

optimisations and compromises, it still takes three days.

16

L6

Preconditions

void insert (node *n) {

PRECONDITION (n != NULL &&
invariant (), ‘don’t insert a
non-exigtent object’) ;

SIMPLIFYING-ASSUMPTION
(find (n)== 0);

A precondition is defined as an assertion made at the beginning of a method
body. It is the caller of the method rather than the implementer who is
responsible for the validity of the precondition on entry; the implementer of
the body of the method can just take it as an assumption. Recognition of this
division of responsibility protects the virtuous writer of a precondition from
having to inspect faults which have been caused by a careless caller of the
method. As an example, consider the insertion of a node in a circular list,
which may require that the parameter is not NULL. The example displayed
above includes also a simplifying assumption; the assumption uses the find
method local to the same class to check that the inserted object is not already
there.

17

Post-conditions -

POST CONDITION (find{(n) &&
invariant (), ‘the inserted

object will be found in the

list’)

}

* obligation on method writer to verify

A post-condition is an assertion which describes (at least partially) the

purpose of a method call. The caller of a method is allowed to assume its

validity, The obligation is on the writer of the method to ensure that the post-
,,,,, ~cofidition is always satisfied. Preconditions and post-conditions document the

contract between the implementer and the user of the class. This aspect of
assertions has been heavily exploited in the Eiffel programming language.

g g\?/t‘m ‘V Rt % @\Qf@u

i

18

2.8

Invariants

» True of every object ...

+ ...before and after every method call

* bool invariant ()
{...tests that list is circular...}

/)m. Mﬁt Y ,! fruyﬁ?m Lo wﬂaj
//

Assertions are’particularly valuable for documenting object-oriented
programs. Kz invariant is-defined-as-an-assertion that is intended to be true of
every object of a class before and after every method call. It can be coded as
a suitably named boolean method of the same class. For example, in a class
that maintains a private list of objects, the invariant could state the
implementer’s intention that the list should always be circular, While the
program is under test, the invariqnt can be retesteg}i after each method call, or

even before as WGH} ab dlpan e K"(/\z i"f“t’,«vw ks ‘Fhm &ﬁujﬁww.g‘

.J

19

40

Invariants

* Integrity checking
» Software audits

 Post-mortem dump-cracking.

Invariants are widely used today in software engineering practice, though not

under the same name. For example, every time a PC is switched on, or a new

application is launched, invariants are used to check the integrity of the

current environment and of the data held in long-term storage. In Microsoft

Office, invariants on the structure of the heap are used to help diagnose - C
storage leaks. In the telephone industry, they are tested in real time by a wWywav WW(Z
software auditing process, which runs concurrently with the switching o
software in an electronic exchange. Any call records that are found to violate

the invariant are just re-initialised or even just deleted. It is rumoured that

this technique once raised the reliability of a system from undeliverable to

irreproachable.

In Microsoft, I see a future role for invariants in post-mortem dump-cracking,
to check whether a failure was caused perhaps by some incident long ago that
corrupted object data on the heap. Such a test has to made on the customer
machine, because the heap is too voluminous to communicate the whole of it
to a central server.

é'léjuéw ag DAL

20

5%

Assertion inference: DAIKON

Dynamic discovery of likely assertions
by inference from data collected in test
» Gives warning of anomalies

Estimates test coverage

Helps when code is changed
Michael Ernst

""“\

’
PG RIVEES /__1)/ ﬂwt%
I have given you semetxamp gﬂthe role of asser t1ons in current

programming practice. I hope that they will continue to give even greater
benefits in future. But in order to exploit these advantages in the great mass
of legacy code, it will be necessary to annotate it with more assertions than
are commonly found at present. For this, some kind of mechanical assistance
is practically essential. S
S | N U

In a recent Washington thesis submission, Michael Ernst describes how to
generate assertions by machine inference from data collected in test. The
programmer selccts where to place the assertion, and which variables it
should mention. The resulting assertion is reported back to the programmer.
An anomaly is suspected if the inferred assertion is found to be unexpectedly
weak. Alternatively, if the assertion states that a variable only ever takes one
or two values, this may be stronger than intended; and it indicates that the test
coverage should be expanded. Or maybe the code can be simplified to
remove treatment of cases that in practice cannot occur. An inferred assertion
can never by itself reveal an existing program defect; but it may do so when
the code is changed for the next release.

21

Capabilities
* Declare cap_set as an abstract variable

holding the set of permitted actions.

» Every action is preceded by an assertion
that it is in the cap_set of the current thread.

Some actions increase or reduce cap_set.

Tools are available to reliably insert these
assertions and actions.

Assertions of the traditional kind are poor at recording temporal obligations,

like “you must open a file before reading it’. The solution to this problem is to

introduce ex#tla assertional variables and assignments into a test harness.

They are sometimes called model variables or ghost variables or history

variables, Permissiois ‘and obligations aré made explicit in an abstract ;s l}iaf»
assertional var iable, let’s call it cap_set, containing the set of actions

permitted to'the current thread. Every action must be preceded by an

_-assertion that this action is in the cap_set, Some actions like opening a file

are defined to increase the capability set, and others to reduce it. On other
occasions, a capability is passed from one method or thread to another. A
program that satisfies all the additional assertions about capabilities is still
likely to be colrect, even when the cap-set variable is sliced out of ship code.
Tools will be n\‘eeded for automatically mse1tmg the extra vanables
assignments and asser t101ns:.Q ook s Crnarre. X

Ny
4 i Wﬁx.w& ’ ;\/{A . I\/[g
{’/;_,t/if‘a}\-{}]) & (,\ i A Lt &r A (WY Ay !
i
i

\

L‘}(Kw_a
i' - B O
{N A \

22

....

29

Test case generation

UTAHlIite (Jason Taylor)
Model-based testing
Desired behavior abstracted as a graph

With actions on the edges

Generates test scripts

\\

Drives automated test spites
@ CELL@LA f@mg,vubwem;(WLV"SV&E\;J‘VW /j/)

o

. R
The generation of really difficult test cases is essential to %ﬂ%@-@f testing}\o
establislt}/conﬁdence in the correctness of programs. The ajin of a test is
alwayst0 satisfy all the preconditions and simplifying assumptions of a

-~“program, but to violate one of the post-conditions. The automatic generation

of such tests is the ultimate goal of research in testing tools. In general, this is
just as difficult as proving the correctness of the assertion; in fact, if would be
a most desirable side-effect of a failed attempt at proof. 1\ < m

' (& wm «r‘\A’/‘Afj‘ (e

But a start has already been made in the development of an Universal Test
Automation Harness UTAH. This is used to specify the behaviour of the user
of the unit under test in the form of a graph, with nodes representing the states
of the system/user, and arrows labeled by the actions that take the system
from one state to the next. The graph is then inferrogated by the test engineer
to generate test scripts exhausting a wide range of possibilities.

This kind of Finite State Machine model can be used to define protocols at
internal interfaces of a large system, perhaps even between concurrent
programs. The state of the machine is held as the value of a ghost variable,
updated by each relevant event in the life of the program. The state machine
model can then be used either to prove correctness, or at least to generate
assertions that detect failure, and indicate which side of the interface is
responsible,

Model checking

Automatically Validating Temporal Safety
Properties of Interfaces. (SLAM)

Thomas Ball and Sriram K. Rajamani

Uses symbolic execution to generate the
necessary assertions

* Proves them by model checking
Or generates a failing test case

Model checking gxfé’lﬁ has an important role in increasing confidence in the
correctness of programs. One example is the SLAM project, now progressing
in Microsoft Research. This is initially targeted at the security of device
routines, written by independent hardware vendors and submitted for
certification by Microsoft. The automatic program starts by inserting test
probes based on the capability sets that T haveir described justnow. 1t then
examines all execution paths that would violdte one of the security
constraints. It automatically generates any ésertions that would be necessary
to exclude that violation, Tt then callson a jmodern high-speed model-checker
to see if it can prove the validity of these assertions. Ifnot, a stronger set of
assertions has to be generated, until succeZs is achieved. Or if failure is
reported, a test case should be generated {hat would reveal it. As I mentioned
before, that is very difficult. As an altenfiative, it is always possible to leave
the generated assertions in the code, at léast during test, to trigger an error

report rather than a crash. E

e

24

41—

Program verification

Extended Static Checking (of Java)
Greg Nelson and Rustan Leino

Generates verification conditions

Proves them by decision procedures

Validates omission of assertions

The ultimate goal of programmer productivity tools is to reduce the costs and
delays associated with programming error, and raise product quality by
delivering code that is almost fiee of defects. Mathematical proof of program
cotrectness would be the ultimate achievement, and like all extremes, it
serves as the inspiration and goal and criterion of long-term academic
rescarch.

Greg Nelson has recently released for academic use a checker that will in
many cases prove correctness of assertions, thereby justifying their omission
even in debug builds (but not in the source text!). Improvement in the power
of the built-in decision procedures may eventually extend this technique to an
industrial scale. In fact, I see the possibility of a continuous evolution of the
mathematical sophistication of program analysis tools, until they come to play
a role close to that of Floyd’s original verifying comp7ier.

Lk PREGL

A

25

Conclusion

 Science is concerned with general theories,

It seeks ideals of truth and certainty, based
on mathematical deduction and proof.

*

» Engineering is concerned delivery of a
particular product, at a given time and cost.

It requires common sense, judgement, and
compromise,

B -]"
R J/%wtm
In conclusion, I would like to relate my message to the theme of this - i [
... conference. I have devoted most of my research career to-the hard disciplines ‘%;f g {}m%
¢ /\Mﬂﬁ ... of the mathematical sciences. That was my choice, and 1 do not need to
" justity it. But in this talk Thave tried to complement the rigours of w%umuﬁfj 6% “HA*‘"
“fufidaental research by describing some of the ordinary ways in which the)
discoveties of that research are exploited by ordinary engineers, Fhe” The. o plo A
~mathematical rigoms-need-tobe softenedtbry-consideérations ofcommon sense ! Iy h
‘ //%?37 engineering judgement, by useof computerised design tools, and even &y ;) A5
managerial or political compromise. The challenges of exploitation are just "’S\“‘r"w ““("""‘
as hard as those of science; they are met by appealing to particular PP |
circumstances of each case; éﬁ’q lapses in,rigour are excused by
considerations of cost and time-scale, which havee no place in the pursuit of o}

pure science. A
4 s sl

Acknowledgements

Rick Andrews, Chris Antos, Tom Ball, Pete
Collins, Terry Crowley, Mike Daly, Robert
Deline, John Douceur, Sean Edmison, Kirk
Glerum, David Greenspoon, Yuri Gurevich,

‘Martyn Lovell, Bertrand Meyer, Jon Pincus, Harry
Robinson, Hannes Ruescher, Marc Shapiro, Kevin
Schofield, Wolfram Schulte, David Schwartz,
Amitabh Srivastava, David Stutz, James Tierney,
Jason Zions

My thanks to all my new colleagues in Microsoft Research and Development
who have told me about their current use of assertions in programming and
testing. Acknowledgments also to all my colleagues in academic research,
who have explored with me the theory of programming and the practice of
software engineering. In my present role as Senior Researcher in Microsoft
Research, T have an extraordinary privilege of witnessing and maybe even
slightly contributing to the convergence of these two developments, and
seeing results that contribute back to both theory and to the practice of
programming.

27

