| GC 6

Dependable systems evolution

A grand challenge for computer science

1 Introduction

This document is a call for action on the part of the strong software engineering research community.
The call is to select a programme of scientifically relevant projects, and to form nmmlti-national
teams for their implementation. Team formation and planning could last tvo to five years, and
the programme itself could last up to fifteen years. The action will enjoy enthusiastic support
from the general community, as well as participation from suitably sized groups of specialists. The
immediate objective is to suggest a plan for a workshop to be held in November 2003, 1o test the
possibhility of the formation of teams, and work towards clarification of the work-plans of each team.

2 The vision

Society's dependence on computing systems is increasing, and the consequences of their failures are
at best inconvenient; in certain application areas, they may also lead to loss of financial resources,
and even loss of human life. A computing system is dependable if reliance can justifiably be placed
on the service that it delivers, characterised in terms such as functionality, availability, safety, and
security. Evidence is needed in advance to back up any manufacturer’s promises about a product’s
future service, and this evidence must be scientifically rigorous, At the moment it is very expensive
and difficult to produce such evidence: exhaustive testing is usually out of the question, and the
application of mathematical techniques for high assurance is usually effective, but extremely costly.

This is compounded by the need for practical computing systems to evolve in response to
changes in their requirements, technology, and environments, without compromising their depend-
ability. For example, an avionics systems will have its processor upgraded several times during the
life-time of the airframe; and a telephone system will be continually upgraded with new features.
There are even applications where system boundaries are not fixed and are subject to constant ur-
genl change. These applications are typically found in emergent organisations, which are always in
a state of continual process change, never arriving, always in transition. These may be e-businesses
or organisations that continually need to reinvent themselves to gain competitive advantage. For
example, stock-brokers often need to introduce a new service overnight; the service may exist for
only another 24 hours before it is updated. As an extreme case of evolution, we will provide the
scientific and technological means to be able to create dependable computing services out of com-
ponents existing at the moment when the service is required. In all these applications, from high
assurance to emergent systems to just-in-time services, the reliability required of the system is just
as great after the change as it was before.

We need the scientific foundation to be able to build systems whose dependability can be justi-
fied, even in the face of the most extreme threats. We need to he able to put systems in inaccessible
places, knowing that they will continue to work over decades. We need to be able to build very large
scale systems with controllable costs and risks. We need the ahility to evolve such systems rapidly,
at costs which reflect the size of change, not the scale of the system. We seek a change in culture,
where suppliers sell software for its safety, security, and reliability, as well as for its functionality.

The scientific and technical advances that we hope will result from this project could be the basis
and trigger of a radical change in the practice of soffware engineering. Perhaps in the future:

e Commercial and industrial-scale software can be developed to be truly dependable, at lower
cost and with less development risk than today.

» The vulnerabilities in legacy systeins and COTS components can be discovered and corrected,
improving their dependability,

+ Dependable systems can be evolved dependably including, for a class of applications, just-in-
time creation of required services.

Within fifteen years the project will produce prototype tools and examples of their successful use
that are sufficiently persuasive to encourage commercial tools vendors and their customers to make
these improvements. The cheice of early prototype tools and the range of their experimental use
are yet to be determined by the participating scientists.

3 The tools

The realisation of our vision will depend on the development of a powerful set of tools for strong
software engineering. These might include the following.

o Software system specification and model-based software development/architecture: Tools
to construct specifications including timing, safety, security, and resource-usage properties of
systems. Tools for modelling and analysis to enable architectures to be developed that satisfy
both functional and non-functional requirements.

o Automated verification of software properties: Combined model-checking and theorem-
proving tools to enable fully automated assessment of software properties. Tools for support-
ing correctness-preserving refinement from spectfication to implementation and incremental
(component-based) verification.

» Automated testing of software properties: Tools for automated generation of test cases and
test oracles to demonstrate that software meets its functional and non-functional require-
ments. Extension of existing automatic test-bench generation tools used during hardware
design to demonstrate that software meets its functional and non-functional requirements.

o Automated dependability analysis: Tools to generate dependability analyses automatically
from software specifications and hardware failure properties.

» Heuristic design synthesis: Tools for heuristic approaches, such as simulated annealing and
genetic algorithms, to synthesise designs from functional and non-functional specifications.

Although the choice of prototype tools has yet to be made, #t may include the following exemplars.

s Invariant generators are program analysers that discover putative program invariants. The
properties of interest may be restricted in order to get a high degree of automation.

« Verifying compilers give high assurance of the correctness of the programs that they compile.
Consistency of the program with its specification is established automatically by a combina-
tion of program analysis, type inference, maodel checking, decision procedures, proof search,
test case generation, and any other method that justifies increased trust in the quality of the
program,

« Refinement tools guide the systematic production of designs and code from specifications
using special-purpose design calculi.

We consider a work-plan for one of these exemplar projects in the appendix.

4 The criteria

Sixteen criteria have been proposed to judge the matarity of a grand challenge, and we consider each
of them in this section, applylng them to each of the exemplars, individually or in combination.

4.1 Scientific significance

> Is it driven by curiosity about the foundations, nature, ov limits of basic Science?

The correctness of computer programs is the fundamental concern of the theory of programming
and of its application to software engineering, Much is understood about how to verify the correct-
ness of functional properties of modest systems. The limits of application to large-scale systems
will be explored and extended, especially in the treatment of non-functional properties, such as
safety, security, responsiveness, and locality, and the cost-effective development and evolution of
industrial-scale systems. Many non-functional properties can be formally described so that they are
unambiguously testable, and so are equally amenable to scientific method as functional properties.
The limits of mechanisation will alsc be explored.

- Avre there cleay criteria for the success or failure of the project after fifteen years?

Where practical, scientific method will be used to evaluate the project’s results: before the project
starts, we will design experiments to try to refute claims made about how our methods and tools
increase system dependability. These experimenis will, by their very nature, have clear criteria for
success and failure.

If the projectis successful, thenits technology will become standard practice for the development
of dependable systems. For example, a prototype strong software engineering tool-set will be widely
available, including support for powerful static analysis of mainstream language dialects to show
a program’s conformance to a range of assertions and other partial specifications, It will have
heen tested in the verification of certain desirable properties of millions of lines of software; these
properties that those that are desirable of any system, such as deadlock freedom or absence of nil-
pointer dereferencing. It will have heen tested in the more substantial verification of critical parts
of it, leading to the removal of thousands of anomalies in widely used code. Some of this work will
have been carried out on open source software, so the results will be widely visible and open to
refutation. Exemplars and prototype products will be developed within the project, and evaluations
will be published in the scientific literature. New dependable products will have been developed by
industry, and their adoption will be widespread.

i Does it promise a revolutionary shift in the accepted paradigm of thinking or practice?

At present, the most widely accepted means of raising the levels of trust in software is by massive
and expensive testing, which often fails to produce the dependability required by users. Avail-
ability of effective software development tool-sets will encourage software engineers to formulate
specifications in advance of code, and many of them will be verified by mathematical techniques.
Experience of the verified development of safety-critical code will be transferred to commercial soft-
ware with mass markets. The Grand Challenge offers the opportunity for a shift from the carrent,
largely manual development of industrial-scale systems to a situation where development is largely
automated. This new approach will be faster, and much more predictable in time and cost. This
will mark the maturity of software development as an engineering discipline.

> Does it avoid duplicating evolutionary development of commercial products?

At present, large comparnies manage their products through evolutionary development, producing
software that is not always adequate for the job, with users frequently encountering problems. In
this climate, guarantees of dependability are seldom offered and consequent liabilities not accepted.
With the success of our work, we will break away from this institutionalised situation. No single
commercial company could contemplate carrying out this work and making its results freely avail-
able; nor would they have the technical competence to do so. It is inconceivable that the integration
of technigues would take place without the cohesive drive behind a Grand Challenge. Few of the
individual areas will be addressed by commercial tool vendors, as they will not see sufficient eco-
nomic benefits from advances made in isolation. The Grand Challenge offers a unique opportunity
for theories to be implemented in prototype tools, and for these tools to be used on realistic case
studies, where theorists, tool-builders, and users come from different countries,

4.2 Impact on practice

- Will its promotion as a Grand Challenge contribute to the progress of Science?

The project proposes to go far beyond the state of the art in the development of dependable systems.
This will require significant scientific advances in the theory of computation, particulaily in the
treatment of non-functional properties, as well as significant engineering advances in large-scale
modelling and mechanical reasoning. It will require the consolidation of decades of research in
theoretical computer science and sofitware engineering, unifying theories that have to work together,
identifying gaps in the range of existing theories.

Just as important is the progress of engineering and its impact on practice. We need to extend
the successful approaches that have worked in limited domains {e.g., SPARK) to encompass the most
widely used languages; we need to develop methods and toocls that support rapid evohstion with
controlled dependability; and we need to evaluate these methods and tools scientifically. This will
involve analysis of existing languages to provide the necessary strong semantics, and the develop-
ment of stronger theories for composition and evolution. It will involve the use of design patterns
and program generators to enable users to exploit higher level concepts and features of languages
that have heen developed and tested in the laboratory.

- Does it have the enthusiastic support of the established scientific communities?
The community comprises the following.

s Domain experts will offer challenges for work on particular practical problems.

» Researchers in many disciplines, including programming theory, dependability, software evo-
lution, testing, and empirical software engineering, will need both to advance research their
own topics and to collaborate together. For example, researchers in programming theory
will accept the challenge of extending proof technology to programs written in industrial lan-
guages. They will need to design program analysis algorithms to check whether actual pro-
grams observe the constraints that make each theoretical proof technique valid. Researchers
in empirical software engineering will need to work with all research groups to determine
critical tests of the proposed technologies.

» Tool builders will include analysis capabilities earlier in the software life-cycle, to explore the
range of their application to real code.

» Experts in design patterns will extend their use to legacy software.

s Users who are willing to try out the experimental prototypes, or allow them to detect and
record the behaviour of the software that they use.

+ Regulators will contribute to understanding the requirements for assessment and certification
of dependability.

e Teachers and students of the foundations of software engineering will be enthused by various

projects associated with the challenge, so contributing to the success of a world-wide project.
For exampie, they may take part in annotating and verifying a small part of a large code bhase.

» Researchers from other disciplines will offer their specialist expertise. For example, psychol-
ogists and sociologists will help us understand how people contribute to system failures, and
lawyers and business managers will explain the legal and marketing implications or our work.

o All computer users feel the frusirations of undependable software. This includes the scientists
invalved in this project, who accept responsibility for the problem and for solving it.

Support has already been canvassed amongst these comimunities,

> Does it appeal to the imagination of the general public?

All computer users have been annoyed by bugs in mass-market software, and will be concerned
by the threats of bugs in critical software; they will welcome their reduction or elimination. Recent
well-known viruses have heen widely reported in the press, and estimated to cost hillions of pounds.
Fear of cyber-terrorism is widespread. The interest of the public can be maintained as dangerous

errors are detected and removed from software in common use. They will be reassured by the
progress towards achieving surety in safety-critical systems, the ability to deliver them on time,
and to adapt them quickly to evolving needs. Trustworthy software is now recognised by major
vendors as a primary long-term goal, and given recent problems in the UK Passport Office and Child
Support Agency, and the loss of the Mars missions in 1999 and 2000, for example, our goals should
be comprehensible to the general public.

> What kind of long-term benefits to science, industry, ov sociefy may be expected?

This project represents a realistic attempt to reduce the £60 billion annual global cost of unreliable
software. It represents a significant opportunity for a a large-scale demonstration of the practical
benefits and pay-back from advances in theoretical computer science and scftware engineering. We
look forward to the day when normal commercial software will be delivered with a high chance,
perhaps eighty percent, that it never needs recall or correction within ten years of delivery. Then
the suppliers of commercial and mass-market software will have the confidence to give the normal
assurances of fitness for purpose that are now required by law for most other consumer products.

The success of producing just-in-time services from COTS components promises a new economic
model for software, replacing the cost of ownership with pay-per-use.

4.3 Scale and distribution

- Does it have international scope?

The project has found enthusiastic support from leading researchers in Australia, Brazil, Canada,
China, India, Japan, the USA, and many European countries, including Denmark, Finland, Germany,
and the Netherlands.

> How does the project split into sub-tasks or sub-phases, with identifiable goals and criteria?

The project is organised as three sub-tasks; rigorous scientific experiments will be conducted to
gather evidence for their success or failure. Each sub-task will contribute towards the development
of the strong software engineering tool-set,

1. Legacy and COTS systems: This sub-task will study legacy systems to develop tools and
techniques to justify and improve their dependability; experience gained working on existing
code will inform the work on new systems. We will accomplish the verification of some non-
trivial properties of a major legacy system.

Tools: Tools are needed in this sub-task to generate a specification from legacy code, and
then to demonstrate that the code is correct with respect to this specification.

2. Dependable development: This sub-task will develop tools and techniques to assure the
dependability of new systems by construction. We will develop dependable systems as exem-
plars of our approach; these may include the development of a trustworthy European electronic
voting system and the control system for an unmanned, autonomous, {lying vehicle. A key
problem is to understand the dependability requirements—dependability by construction is
great but only if the right thing is constructed.

Tools; Tools are needed in this sub-task to help guide the design process, and to verify and
validate the systems being developed.

3. Evolution and just-in-time: This sub-task will study existing evelving dependable systems
with dynamic requirements, and develop tools and technigues for maintaining dependability in
the face of continual change. We will carry out the verification of the evolution of a dependable
system with an existing, certified justification.

Tools: Tools are needed in this sub-task to suppert incremental, component-hased verifica-
tion; that is, they analyse ontly what has changed during an evolutionary step.

Towards the end of the project, a number of prototype products will be developed to act as exper-
iments to judge the success of the overall project. These products may include a national medical
record system and an aircraft flight-control system.

5

> What calls does it make for collaboration of research teams with diverse skills?

Contributions are needed from all the scientific communities mentioned on page 4. The scientific
programme requires collaboration from researchers in dependability, safety, security, and program-
ming theory, and the huilders of testing tools, model checkers, and theorem provers.

> How can it be promoted by compelition between teams with diverse approaches?

The annotated libraries of open source code will be good competition material for the teams con-
structing and applying test and proof tools. Proofs will be subject to refutation by rival proof tools.
There will he competition to find errors in legacy code, and to be the first to obtain mechanical proof
of the correctness of all assertions. Exemplars and prototype products will be developed by rival
teams, and their results compared. Scientists will compete to strengthen the level of dependability
of particular software items from just structural integrity (crash-proofing) to non-functional and
functional properties.

4.4 Timeliness

> When was it first proposed as a challenge? Why has it been so difficult so far?

The difficulty of achieving dependability has been recognised ever since we started to program com-
puters. Due to our ambitions and to continual technelogical development, systems are becoming
ever-more complex, compounding the problems of dependability. In practice, with the exception
of safety critical systems, software product quality is often compromised with tight time to market
constraints; unfortunately it has become common practice to fix software (bugs) via patches later
in the product life cycle.

Achieving dependability when a system is evolving is the really intellectually challenging part: it
it takes longer to verify and validate a system than the time between changes, then dependability is
severely compromised. Currently, the problem is that the cost of assurance is proportional to the
size of the whole system; what we want is for it to be proportional to the size of the change.

> Why is it now expected to be feasible in a ten to fifteen-year time-scale?

There is both market-pull and technology-push: society’s need for dependable software is greater
than ever before; and the results of decades of research are now ready for exploitation. The greatest
obstacle to producing dependable software has been the lack of effective tool support for verifica-
tion. Significant progress has been made recently in model checking, SAT checking, and theorem
proving. Advances in unifying theories of programming suggest that many aspects of the correct-
ness of difficult programming language features, such as concurrent and object-orientation, may be
expressed by simple specifications.

> What are the first steps?

It will be necessary to assemble a working group of international leaders in the field to promote
and guide the project. This will start with a workshop to discuss the initial technical programme;
subsequent interaction will be through a conference series and a new journal.

The existing corpus of Open Source Software can easily be parcelled out to different teams for
analysis and annotation; and the specifications can be checked by massive testing in advance of
the availability of adequate proof tools. There will be several international consortia with different
time-scales that work on different languages and code bases.

> What are the most likely reasons for failure?

The ammotation and verification of existing code is at present not a well-regarded research achieve-
ment. This essential part of the project may fail to attract good researchers. The low quality of
existing software, and its low level of abstraction, reinforced by the use of legacy languages, may
limnit the benefit to be obtained from the annotations. Many of the errors detected may be so rare
that they are not worth correcting. Many of them may be just a failure to make explicit a more
or less obvious precondition. In other cases, an anomaly may be essential to the functionality of

6

the software. Often the details of {unctionality of interfaces, human or hardware, are not worth
formalising in a specification.

These engineering concerns are always likely to place a boundary on the applicability of formal
analysis in software engineering. It is the engineering goal of our project to push back the boundaries
as far as possible. It is the scientific goal to show that there are no bounds at all to what is in principle

achievable.

In any case, a significant group of the scientific community is keen to work together towards
these long-term goals. It is their scientific idealism that will drive the project through the many
practical difficulties that lie in its path.

A References for the state of the art

These references are based on those found in Cla96¢, which contains a survey of the state of the
art in the theory and practice of formal methods.

Abr96 J.-R. Abrial 1996. The B-Book. Cambridge University Press.

Alu96 R. Alur, T. Henzinger, and P.-H. Ho 1996, Automatic symbolic verification of embed-
ded systems. IEEE Transactions on Software Engineering 22(3):181-201.

Ante02 Peter Amey 2002. Correctness by construction: better can also be cheaper.
Available online at www. sparkada. com/downToads/Mar2002Amey . pdf.

App95 D.P. Appenzeller and A. Kuehlmann 1995. Formal verification of a PowerPC micro-
processar. In Proceedings of the IEEE International Conference on Compuler Design
(ICCD'95) (Austin, Texas, October) 79-84.

Arch90 G. Archinoff et al. 1990. Verification of the shutdown system software at the Dar-

lington Nuclear Generating System. In International Conference on Control and In-
strumentation in Nuclear Installations (Glasgow, Scotland, May).

Arn96 A. Arnold, D. Begay, and J.-P. Radoux 1996. The embedded software of an electricity
meter: an experience in using Formal Methods in an industrial project. Science of
Computer Programming.

Bar89 G. Rarrett 1989. Formal methods applied to a floating-point number system. JEEE
Transactions on Software Engineering 15(5):611-621.

Bar95 G. Barrett 1995. Model checking in practice: The t9000 virtual chanmel processor.
IEEE Transactions on Software Engineering 21(2):69-78.

Bea91 S.Bear 1991. An overview of HP-SL. In Proceedings of VDM'81: Formal Development
Methods Volume 551 of Lecture Notes in Computer Science. Springer-Verlag.

Ben96 J. Bengtsson, W. Griffioen, K. Kristoffersen, K, Larsen, F. Larsson, P. Pettersson, and
W. Yi 1996. Verification of an audio protocol with bus collision using UppAal. In
Computer-Aided Verification '96. Lecture Notes in Computer Science 1102, R. Alur
and T. Henzinger (editors), Springer-Verlag, 244-256. .

Bjo96 N. Bjorner et al. 1996. STeP: Deductive-algorithmic verification of reactive and real-
time systems. In Proceedings of the Eighth International Conference on Computer-
Aided Verification Number 1102 in Lecture Notes in Comiputer Science (July), Springer-
Verlag, 415-418. .

Bos94 D. Bosscher, I. Polak, and F. Vaandrager 1994, Verification of an audio-contrel pro-
tocol. In FTRTFT 94: Formal Technigues in Real-Time and Fault-Tolerant Systems
Lecture Notes in Computer Science 863, H. Langmaack, W.-P. de Roever, and J. Vy-
topil (editors), Springer-Verlag, 170-192.

Bos95 A. Boswell 1995. Specification and validation of a security policy model. IEEE Trans-
actions on Software Engineering 21(2):63-68.

Boy79 R.S.Boyer and J. S. Moore 1979. A Computational Logic. Academic Press, New York.

Boy88 R. S.Boyer and J. S. Moore 1988. A Computational Logic Handbook. Academic Press,
New York.

O
63%
Y

Boy9e

Brage

Bro86

Bro96

Bry86

Bur94

Bux70
Cal97

Car92

Cha88
Cha92

Che96

Chi87

Cla81

Cla86

Clag2

Cla93a

Cla93b

Cla96a

R. Boyer and Y. Yu 1996, Automated proofs of object code for a widely used micro-
processor. Journal of the ACM 43(1):166-192.

R. Brayton et al. 1996. VIS: A system for verification and synthesis. In Proceedings of
the Eighth International Conference on Computer-Aided Verification. Number 1102
in Lecture Notes in Computer Science, Springer-Verlag, 423-427.

M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra 1986. Automatic verification
of sequential circuits using temporal logic. IFFF Transactions on Computers C-
35(12):1035-1044.

B. Brock, M. Kaufmann, and J. 5. Moore 1996. Heavy inference: Theorems about com-
mercial microprocessors. In Formal Methods in Computer-Aided Design (FMCAD’96).
M. Srivas and A. Camilleri {editors), Springer-Verlag.

R. E. Bryant 1986. Graph-based algorithms for Boclean function manipulation. IEFE
Transactions on Computers C-35(8).

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill 1994, Symbolic
model checking for sequential cireuit verification. IEEE Transactions on Computer-
Alded Design and Integrated Circuits and Systems 13(4);401-424,.

J. N. Buxton and B. Randell (editors). Software Engineering Techniques. NATO Sci-
entific Committee Report.

J. Calero, C. Roman, and G. D, Palma 1997. A practical design case using formal
verification. In Proceedings of Design-SuperCon’97,

M. Carnot, C. Dasilva, B. Dehbonei, and F. Meija 1992. Error-free software devel-
opment for critical systems using the B-methodology. In Third International JEEE
Symposium on Software Reliability Engineering.

K. Chandy and J. Misra 1988, Parallel Program Design. Addison-Wesley, Reading,
MA.

J. Chaves 1992, Formal methods at AT&T: An industrial usage report. In Proceedings
Formal Description Technigues IV. North-Holland, Amsterdam, 83-90,

G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian 1996. Specification and
verification of the PowerScale bus arbitration protocol: An industrial experiment
with LOTOS. In Proceedings of FORTE/PSTV’96 (Kaiserslautern, Germany). Chapman
& Hall, London.

G. Chisolm, J. Kijaich, B. Smith, and A. Waojcik 1987. An approach to the verification
of a fault-tolerant, computer-based reactor safety system: A case study using auto-
mated reasoning (Vol. 1, interim report). Technical Report NP-4924 (Jan.), Flectric
Power Research Institute, Palo Alto. Prepared by Argonne National Laboratory.

E. M. Clarke and E. A. Emerson 1981. Synthesis of synchronisation skeletons for
branching time temporal logic. In Logic of Programs: Workshop (Yorktown Heights,
NY}, Volume 131 of Lecture Notes in Computer Science, Springer-Verlag.

E. M. Clarke, E. A. Emerson, and A. P. Sistla 1986. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on
Program Languages and Systems 8(2):244--263.

E. M. Clarke, O. Grumberg, and D. E. Long 1992. Model checking and abstraction. In
Proceedings of Principles of Programining Languages.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness
1993. Verification of the Futurebus+ cache coherence protocol. In Proceedings
CHDL.

E. Clarke and X. Zhao 1993. Analytica: A theorem prover for Mathematica. Mathe-
matica Journal, 56-71.

E. Clarke, S. German, and X. Zhao 1996. Verifying the SRT division algorithm using
theorem proving techniques. In Proceedings of the Eighth International Conference
on Computer-Aided Verification. Number 1102 in Lecture Notes in Computer Science,
Springer-Verlag, 111-122.

Clag6b E.Clarke and R. Kurshan 1996. Computer-aided verification. IEEE Spectrunt 33(6):61-
67.

Cla96¢ Edmund M. Clarke and Jeanmette M. Wing 1996. Formal methods: state of the art
and future directions. ACM Computing Surveys 28(4):626-643.

Cle93 R. Cleaveland, J. Parrow, and B. Steffen 1993, The Concurrency Workbench: a
semantics-based tool for the verification of concurrent systems. ACM Transactions
on Program Languages and Systems 15(1):36-72.

Cle95 R. Cleaveland, E. Madelaine, and S. Sims 1995. Generating front ends for verification
tools. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS
'95). Volume 1019 of Lecture Notes in Computer Science, E. Brinksma, R. Cleaveland,
K. Larsen, and B. Steffen (editors}, Springer-Verlag, 153-173.

Con86 R. Constable et al. 1986. Implementing Mathematics with the NuPRI. Proof Develop-
ment Enviromment. Prentice-Hall, Englewood Cliffs, NJ.

Cor95 C.Cornes, J. Courant, J.-C. Filliatre, G. Huet, P. Manoury, C. Paulin-Mchring, C. Munoz,
C. Murthy, C. Parent, A. Satbi, and B. Werner 1995, The Coq proof assistant reference
manuat version 5.10. Technical Report 177 (July), INRIA.

Available online: http://pauillac.inria.fr/coq/systeme_coq-eng.html.

Cra88 D. Craigen, S. Kromodimoeljo, I. Meisels, A. Neilson, B. Pase, and M. Saaltink 1988.
m-EVES: A tool for verifying software. In Proceedings of the Tenth Mmternational
Conference on Software Engineering (Singapore, April), 324-333.

Cra93a D. Craigen, S, Gerhart, and T. Ralston 1993a. An international survey of industrial
applications of formal methods. Techrical Report NIST GCR 93/626 {(Vols. 1 and 2)
{March). U. S. National Institute of Standards and Technology. Also published by the
U.S. Naval Research Laboratory (Formal Rep. 5546-93- 9582, Sept.), and the Atomic
Energy Control Board of Canada.

Cra93b D. Craigen, S. Gerhart, and T. Ralston 1993b. Ohservations on industrial practice
using formal methods. In Proceedings of the Fifteenth International Conference on
Software Engineering (May).

Cra94 D. Craigen, S. Gerhart, and T. Ralston 1994, Formal methods in critical systerns.
IEEE Software 11(1).

Cra95 D.Craigen, S. Gerhart, and T. Ralston 1995. Formal methods reality check: Industrial
usage. IEEE Transactions on Software Engineering 21(2):90-98.

Cro95 M. Croxford and J. Sutton 1995. Breaking through the V and V bottleneck. In Pro-
ceedings of Ada in Europe. Springer-Verlag.

Dam95 W. Damm, B. Josko, and R. Schloor 1995. Specification and Validation Methods for
Programming Languages and Systems. In Specification and verification of VHDI.-
based system-level hardware designs. Oxford University Press, New York, 331--410.

Dam96 W, Damm and C. Delgado-Kloos 1996, Practical Formal Methods for Hardware De-
sign. Lecture Notes in Computer Science, Springer-Verlag.

Dawg5 C. Daws and S. Yovine 1995. Two examples of verification of multirate timed au-
tomata with KRONOS. In Proceedings of 1995 IEEE Real-Time Systems Symposium,
RTSS'G5 (Pisa, Italy, Dec.). IEEE Computer Society Press, Los Alamitos, CA.

Deh95 D. Deharbe and D. Borricne 1995, Semantics of a verification-oriented subset of
VHDL. In CHARME'95, Correct Hardware Design and Verification Methods. P. Ca-
murati and H. Eveking (editors) Number 987 of Lecture Notes in Computer Science
Springer-Verlag, 293-310.

Del90 N, Delisle and D. Garlan 1990. A formal specification of an oscilloscope. IEEE Soft-
ware 7(5):29-36.

Dep96 G. DePalma and A. Glaser 1996. Formal verification augments simulation. Electrical
Engineering Times 56.

Dij72 E. W. Dijkstra The Humble Programmer. CACM 15(10):859-866.

9

Dil92 D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang 1992. Protocol verification as a
hardware design aid. In IEEE International Conference on Computer Design: VLSI in
Computers and Processors 522-525.

Din84 G.Dinolt et al. 1984, Multinet gateway: towards Al certification. In IEEE Symposium
on Security and Privacy

Dod26 C.J.Dodge, P.E.Undrill, A. R. Allen, and P. G. B. Ross 1996. Application of Z in Digital
Hardware Design. IEE Proceedings-Computers and Digital Techniques 143(1):79-86.

Elsg96 W. Elseaidy, R. Cleaveland, and J. Baugh 1996. Modelling and verifying active struc-
fural control systems. Science of Computer Programriing.

Fer96 1.-C, Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L, Mounier, and M, Sighire-
anu 1996. CADP (CAESAR/ALDEBARAN development package): A protocol valida-
tion and international verification toolbox. In Proceedings of the 8th Conference on
Computer-Aided Verification. Number 1102 in Lecture Notes in Computer Science,
R. Alur and T. A. Henzinger (editors), Springer-Verlag.

Filo4 T. Filkorn, H. Schneider, A. Scholz, A, Strasser, and P. Warkentin 1994. SVE User’s
Guide. Techrnical Report ZFE BT SE 1-SVE-1, Siemens AG, Corporate Research and
Development, Munich.

Gar88 S.). Garland and J. V. Guttag 1988. Inductive methods for reasoning about abstract
data types. In Proceedings of the Fifteenth Symposium on Principles of Programming
Languages, 219-228,

Gar95 D. Gartan, G. Abowd, D. Jackson, J. Tomayko, and J. Wing 1995. The CMU Master of
Software Engineering Core Curricullum. In Proceedings of the Eighth SEI Confererice
on Software Engineering Education (CSEE). Number 895 of Lecture Notes in Computer
Science, Springer-Verlag, 65-86.

Ger95 R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper 1995. Simple on-the-fly automatic ver-
ification of Yinear tempaoral logic. In Proceedings IFIP/WGE.1 Symposium on Protocol
Specification, Testing, and Verification (Warsaw, Poland, June).

Gor79 M.], Gordon, A. J. Milner, and C. P. Wadsworth 1979, Edinburgh LCF. Number 78 of
Lecture Notes in Computer Science. Springer-Verlag.

Gov87 M. Gordon 1987. HOL: A proof generating system for higher-order logic. In VLST
Specification, Verification and Synthesis. Kluwer.

Gui90 G. Guiho and C. Hennebert 1990. SACEM software validation. In Tywelfth Interna-
tional Conference on Software Engineering.

Gut93 J. Guttag and J. Horning 1993, Larch: Languages and Tools for Formal Specification.
Springer-Verlag. Written with S. J, Garland, K. D. Jones, A, Modet, and J. M. Wing.

Hal926 A. Hall 1996. Using formal methods to develop an ATC information system. IEEE
Software 12(6);:66-76.

Har87 D. Harel 1987. Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8:231-274.

Har90 7. Har’El and R. P. Kurshan 1990. Software for analytical development of communi-
cations protocols. AT&T Bell Laboratories Techrnical Journal 69(1):45-59.

Har92 D. Harel 1992, Biting the silver bullet: Toward a brighter future for system develop-
ment. JEEE Computer 25(1).8-20.

Hei96 M. Heimdaht and N. Leveson 1996. Completeness and consistency in hierarchical
state-based requirements. IEEE Transactions on Software Engineering SE-22(5):363-
377,

Hen80 K. Heninger 1980, Specifying software requirements for complex systems: New
techniques and their application. IEEE Transactions on Software Engineering 6(1):2-

13.

Hen94 T. A., Henzinger, X. Nicollin, J. Sifakis, and S. Yovine 1994. Symbolic model checking
for real-time systems. Information and Computation 111:193-244,

10

Hoa85

Hojo3

Hol89

Hol91
Hol92
Hol94a
Hol94hb

Hou91

How95

ISO87
Jac95

Jag9e

Jange6

Jon86
Kalo4
Kap87

Kau9ds

King4

King96

Kij89

C. A. R. Hoare 1985. Communicating Sequential Processes. Prentice-Hall Interna-
tional, Englewood Cliffs, NJ.

R. Hojati, R. Brayton, and R. Kurshan 1993. BDD-hased debugging of designs using
language contaimment and fair CTL. In Proceedings of the Fifth International Con-
ference on Computer-Aided Verification. Number 697 in Lecture Notes in Computer
Science, C. Courcoubetis (editor), Springer-Verlag, 41-57.

G. Holzmann and J. Patti 1989, Validating SDL specifications: An experiment. In
Proceedings of the Ninth International Conference on Protocol Specification, Testing,
and Verification, INWG/IEIP. (Twente, Netherlands, June) C. Vissers and E. Brinksma,
{editors)

G. Holzmann 1991, Design and Validation of Computer Protocols. Frentice-Hall,
¥nglewood Cliffs, New Jersey.

G.Holzmann 1992, Practical methods for the formal validation of SDL specifications.
Computer Cormunications. Special issue on Practical Uses of FDTs.

G. Holzmann 1994, The theory and practice of a formal method: NewCoRe. In
Proceedings of IFIP World Computer Congress (Hamburg, Germany, August),

G. Holzmann and D. Peled 1994. An improvement in formal venﬁcanon In Proceed-
ings of FORTE94. (Berne, Switzerland, October).

I. Houston and S. King 1991. CICS project report: Experiences and results from using
7. In Proceedings of VDM’91: Formal Development Methods. Volume 551 of Lecture
Notes in Computer Science, Springer-Verlag.

P.-H. Ho and Wong-H. Toi 1995, Automated analysis of an audio contro! protocol. In
Computer-Aided Verification '95, Lecture Notes in Computer Science 939, P. Wolper
Ed., Springer- Verlag, 381-394.

18O, 1987. Informaltion Systems Processing-Open Systems Interconnection-LOTOS.
Technical Report International Standards Organisation DIS 8807.

J. Jacky 1995, Specifying a safety-critical control system in Z. [EEE Transactions on
Software Engineering 21(2):99-106.

L. Jagadeesan, C. Puchol, and J. V. Olnhausen 1996. A formal approach to reactive
systems software: A telecommunications application in Esterel. Formal Aspects of
Computing 8(2):123-151.

R. Janicki, D. L. Parnas, and J. Zucker 1996. Tabular representations in relational
documents. Tn Relational Methods in Computer Science. C. Brink, Ed., Springer-
Verlag.

C. B. Jontes 1986. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, New York.

M. Kaltenbach 1994, Model checking for UNITY. Technical Report TR94-31 (Dec.),
The University of Texas at Austin.

D. Kapur and D. Musser 1987. Proof by consistency. Artificial Intelligence 31:125-
157.

M. Kaufmann and J. S. Moore 1995. ACL2: A Computational Logic for Applicative
Conmmmon Lisp, The User’s Manual (Version 1.8). Available from:
ftp://ftp.cli.com/pub/acl2/vli-8/ac12-sources/doc/HTML/ac] 2-doc. htm],
T. King 1994. Formalising British Rail’s signalling rules. In FME'94: Industrial Ben-
efit of Formal Methods. Number 873 of Lecture Notes in Computer Science (1994),
Springer-Verlag, 45-54.

D. Kindred and J. Wing 1996, Fast, automatic checking of security protocols. In
Proceedings of the USENIX Workshop on Electronic Commerce Protocols (1996).

I. Xljaich, B. Smith, and A. Wojcik 1989. Formal verification of fault tolerance using
theorem-proving techniques. IEEE Transactions on Computers 38:366-376.

11

Kue95 A. Kuehlmann, A. Srinivasan, and D. P. Lapotin 1995. Verity-a formal verifica-
tion program for custom CMOS circuits. IBM Journal Research and Development
39(1/2)%:149-165.

Kuh90 D. Kuhn and J. Dray 1990. Formal specification and verification of control software
for cryptographic equipment. In Sixth Compuler Security Applications Conference
{1990).

Kur93 R. Kurshan and L. Lamport 1993. Verification of a multiplier: 64 Bits and beyond.
In Computer Aided Verification. Number 897 of Lecture Notes in Computer Science,
C. Courcoubetis, Ed., Springer-Verlag, 166-179.

Kur94a R.P.Kurshan 1994a. Computer-Aided Verification of Coordinating Processes. Prince-
ton University Press, Princeton, NJ.

Kur94b R. P. Kurshan 1994b. The complexity of verification. In Proceedings 26th ACM Sym-
posium on Theory of Computing (STOC). (Montreal), 365-371,

LamB84 L.Lamport 1984, The temporal logic of actions, ACM Transactions on Programming
Languages and Systemns 872-923.

Les83 P.Lescamme 1983, Computer experiments with the REVE term rewriting system gen-
erator. In Proceedings of the Tenth Symposium on Principles of Programming Lan-
guages (Austin, Texas, Jan.), 99-108.

Lon93 D. L. Long 1993. Model checking, abstraction, and compositional reasoning. Ph.D,
Thesis, Carnegie Mellon Univ., Computer Science Dept.

Low96 G.Lowe 1996. Breaking and fixing the Needham-Schroder public-key protocol using
FDR. In Tools and Algorithms for the Construction and Analysis of Systems. Number
1055 of Lecture Notes in Computer Science. Springer-Verlag.

Lr092 7.1no and R. Pollack 1992, LEGO proof development system: User's manual, Tech-
nical Report ECS-LFCS-92-211 (May), Computer Science Department, University of
Edinburgh.

Lyn87 N. Lynch and M. Tuttle 1987. Hierarchical correctness proofs for distributed algo-
rithms. Technical Report (April), MIT Laboratory for Computer Science, Cambridge,
MA.

Man81 7. Manna and A. Pnueli 1991. The Temporal Logic of Reactive and Concurrent Sys-
tems, Springer-Verlag, New York.

Mat95 P. Mataga and P. Zave 1995. Multiparadigm specification of an AT&T switching sys-
tem. In Applications of Formal Methods. M. G. Hinchey and], P. Bowen, {editors),
Prentice-Hall International, Englewood Cliffs, NJ, 375-398.

McM93 K. L. McMillan 1993. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer.

Mil80 A.].R.G. Milner 1980. A Calculus of Communicating Systems, Number 92 of Lecture
Notes in Computer Science. Springer-Verlag.

Mil89 Robin Milner 1989. Communication and Concurrency. Prentice Hall.

Mil95 S. P. Miller and M. Srivas 1995. Formal verification of the AAMPS microprocessor:
A case study in the industrial use of formal methods. In WIFT'25: Workshop on
Industrial-Strength Formal Specification Technigues (Boca Raton, FL), [EEE Computer
Society, Washington, DC, 2-16.

Moo86 [. S. Moore, T. Lynch, and M. Kanfmann 1996. A mechanically checked proof of the
correctness of the AMDSKS6 floating point division algorithm.

Available onlineathttp://devil.ece.utexas.edu:80/1ynch/divide/divide.html.

Nie89 M.Nielsen, K. Havelund, K. Wagner, and C. George 1989. The RATSE language, method
and tools. Formal Aspects of Computing 1:85-114.

Owr92 S. Owre, J. Rushby, and N. Shankar 1992, PVS: A prototype verification system. In

Eleventh International Conference on Automated Deduction (CADE). Number 607 of

Lecture Notes in Artificial Intelligence, D. Kapur {editor), Springer-Verlag, 748-752.

12

0xf96 University of Oxford. 1996. http://www.comlab.ox.ac.uk/igdp/. Master of Sci-
ence in Software Engineering.

Pel96 D. Peled 1996. Combining partial order reductions with on-the-fly model-checking.
Journal Formal Methods in System Design 8(1):39-64.

Pnu81 A. Pnueli 1981, A temporal logic of concurrent programs. Theoretical Computer
Science 13:45-60.

Que82 J. Queille and J. Sifakis 1982. Specification and verification of concurrent systems
in CAESAR. In Proceedings of Fifth ISP.

Raj95 S.Rajan, N. Shankar, and M. Srivas 1995. An integration of model-checking with au-
tomated proof checking. In Computer-Aided Verification '95. Number 939 of Lecture
Notes in Computer Science P. Wolper {editor), Springer- Verlag, 84-97.

Ric89 D.Richardson, T. O'Malley, and C. T. Moore 1989. Approaches to specification-based
testing. In ACM SIGSOFT 89: Third Symposium on Software Testing, Analysis, and
Verification,

Ros94 A. W. Roscoe 1994, Model-checking CSP. In A Classical Mind: Essays in Honour of
C. A. R. Hoare, A. W. Roscoe {editor), Prentice-Iall, Englewood Cliffs, NJ.

Ros98 A. W. Roscoe 1998, The Theory and Practice of Concurrency. Prentice Hall.

Roy90 V. Roy and R. de Simone 1990. Auto/Autograph. In Computer-Aided Verification
'90. Number 3 of DIMACS Series on Discrete Mathematics and Theoretical Computer
Science (Piscataway, NJ, June), E. Clarke and R. Kurshan (editors}, American Mathe-
matical Society, Providence, RI, 235--250.

Rue96 H. Ruess, N. Shankar, and M. Srivas 1996. Modular verification of SRT division. In
Proceedings of the Eighth International Conference on Computer-Aided Verification.
Number 1102 in Lecture Notes in Computer Science (July), Springer-Verlag, 123-134,

Rus96 D. Russinoff 1996. A mechanically checked proof of the correctness of the AMD K5
fleating- point square root algorithm.

Sch00 Steve Schneider 2000. Concurrent and Real-time Systems. Wiley.

SPC93 Consortium requirements engineering guidebook. Technical Report SPC-92060-CMC
version 01.00.09, Software Productivity Consortium, Herndon, VA.

Spi88]. M. Spivey 1988. Understanding Z: a Specification Language and its Formal Seman-
tics. Cambridge University Press, New York.

Spi92]. M. Spivey The Z Notation: A Reference Manual, 2nd edition. Prentice Hall, 1992,

Ste96a B, Steffen, T. Margaria, A, Classen, V. Braun, and M. Reitenspiess 1996. An envi-
ronment for the creation of intelligent network services. In Intelligent Networks:
IN/AIN Technologies, Operations, Services, and Applications-A Comprehensive Re-
port {Chicago), I. E. Consortium (editors), 287-300.

Ste96h B. Steffen, T. Margaria, A. Classen, and V. Braun 1996. The Meta '95 environment.
In Proceedings of Computer-Aided Verification '96. Lecture Notes Computer Science,
Springer-Verlag.

Var86 M. Y. Vardi and P. Wolper 1986. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of Logic in Compuler Science.

Win85]. Wing 1985. Specification firms: A vision for the future. In Proceedings of the Third
International Workshop on Software Specification and Design (London, August), 241-
243.

Wo094]. C. P. Woodcock, P. H. B. Gardiner, and J. R. Hulance The formal specification in Z
of Defence Standard 00-56. Proceedings of the Z User Workshop. Workshop Series
in Computer Science, Springer Verlag. 1994, Keynote speech.

Woo096 Jim Woodcock and Jim Davies 1996, Using Z—Specification, Refinement, and Proof.
Prentice Hall.

13

Zavas P. Zave 1095, Secrets of call forwarding: A specification case study. In Proceedings
of the Elghth International IFIP Conference on Formal Description Techniques for
Distributed Systems and Communications Protocols (FORTE '95). Chapman & Hall,
London, 153--168.

Zav936 P. Zave and M. Jackson 1996. Where do operations come from? A multiparadigm
specification techmique. JEEE Transactions on Software Engineering 22(7):508-528.

B Towards a work-plan for an exemplar project

B.1 The verifying compiler

A verifying compiler [Lei98] uses automated mathematical and logical reasoning methods to check
the correctness of the programs that it compiles. The criterion of correciness is specified by types,
assertions, and other redundant annotations that are assoctated with the code of the program, often
inferred automatically, and increasingly often supplied by the original programmer. The compiler
will work in combination with other program development and testing tools, to achieve any desired
degree of confidence in the structural soundness of the system and the total correctness of its more
critical components. The only limit to its use will be set by an evaluation of the cost and henefits
of accurate and complete formalization of the criterion of correctness for the software,

An important and integral part of the project proposal is to evaluate the capabilities and perfor-
mance of the verifying compiler by application to a representative selection of legacy code, chiefly
from open sources. This will give confidence that the engineering compromises that are necessary
in such an ambitious project have not damaged its ability to deal with real programs written by real
programmers. It is only after this demonstration of capability that programmers working on new
projects will gain the confidence to exploit verification technology in new projects.

Note that the verifying compiler itself does not itself have to be verified. 1t is adequate to rely
on the normal engineering judgment that errors in a user program are unlikely to be compensated
by errors in the compiler. Verification of a verifying compiler is a specialized task, forming a suitable
topic for a separate grand challenge.

'B.2 The criteria

This proposed grand challenge is now evaluated under a relevant selection of the standard headings
suggested for evaluation of a Grand Challenge Project.

B.2.1 Historical

The idea of using assertions to check a large routine is due to Turing [Turd49]. The idea of the
computer checking the correctness of its own programs was put forward by McCarthy [McCG3].
The two ideas were brought together in the verifying compiler by Floyd [Flo67]. Early attempts
to implement the idea [Kin69] were severely inhibited by the difficulty of proof support with the
machines of that day. At that time, the source code of widely used software was usually kept secret.
It was generally written in assembler for a proprietary computer architecture, which was often
withdrawn after a short interval on the market. The ephemeral nature and limited distribution for
software written by hardware manufacturers reduced motivation for a major verification effort.

Since those days, further difficulties have arisen from the complexities of modern software prac-
tice and modern programming languages [Str85]. Features such as cancurrent programming, object
orientation and inheritance, have not been designed with the care needed to facilitate program
verification. However, the relevant concepts of concurrency and objects have been explored by
theoreticians in the ‘clean room’ conditions of new experimental programming languages [Iga99,
Has03]. In the implementation of a verifying compiler, the results of such pure research will have
to be adapted, extended and combined; they must then be implemented and tested by application
on a broad scale to legacy code expressed in legacy languages.

14

B.2.2 Feasible

Most of the factors which have inhibited progress on practical program verification are no longer
as severe as they were.

1.

Experience has been gained in specification and verification of moderately scaled systems,
chiefly in the area of safety-critical and mission-critical software; but so far the proofs have
been mainly manual [SteQ0, Gal98].

. The corpus of Open Source Software [http://sourceforge.net] is now universally available

and used by millions, so justifying almost any effort expended on improvement of its quality
and robustness. Although it is subject to continuous improvement, the pace of change is
reasonably predictable, It is an important part of this challenge to cater for software evolution.

. Advances in unifying theories of programming [Hoa98] suggest that many aspects of cor-

rectness of concurrent and object-oriented programs can be expressed by assertions, supple-
mented by automatic or machine-assisted insertion of instrumentation in the form of ghost
(model} variables and assignments to them.

. Many of the global program analyses which are needed to underpin correctness proofs for

systems involving concurrency and pointer manipulation have now been developed for use in
optimiging compilers [Rufg5].

. Theorem proving technology has made great strides in many directions. Model checking

[Hol91, Ros94, Mus02, Sha97] is widely understood and used, particularly in hardware design.
Decision procedures [Gor88] are beginning to be applied to software. Proof search engines
[Sha96] are now well populated with Iihraries of application-dependent theorems and tactics.
Finally, SAT checking [Mos01] promises a step-function increase in the power of proof tools. A
major remaining challenge is to find effective ways of combining this wide range of component
technologies into a small number of tools, to meet the needs of program verification.

. Program analysis tools are now available which use a variety of techniques to discover relevant

invariants and abstractions [BalO1, Nim02, FlaQ1]. Tt is hoped that that these will formalize
at least the program properties relevant to its stiuctural integrity, with a minimum of human
intervention.

Theories relevant for the correctness of concurrency are well established [Mil99, Ros98, Cha88];
and theories for object orientation and pointer manipulation are under development [OHe{1,
Hoa99).

B.2.3 Co-operative

Thework can be delegated to teams working independently on the annotation of code, on verification
condition generation, and on the proof tools.

1,

The existing corpus of Open Source Software can easily be parcelled out to different teams for
analysis and annotation; and the assertions can be checked by massive testing in advance of
availability of adequate proof tools.

. Tt is now standard for a compiler to produce an abstract syntax tree from the source code,

together with a data base of program properties. A compiler that exposes the syntax tree
would enable many researchers to collaborate on program analysis algorithms, test harnesses,
test case generators, verification condition generators, and other verification and validation
tools.

. Modern proof tocls permit éxtension by libraries of specialized theories [Gor88]; these can be

developed by many hands to meet the needs of each application. In particular, proof proce-
dures can be developed that are specific to commonly used standard application progranmer
interfaces for legacy code [Ste94].

15

B.2.4 Effective

The promulgation of this challenge is intended to cause a shift in the motivations and activities
of scientists and engineers in all the relevant research communities. They will be pioneers in the
collaborative implementation and use of a single large experimental device, following a tradition
that is well established in Astronomy and Physics but not yet in Computer science.

1. Researchers in programming theory will accept the challenge of extending proof technology
for programs written in complex and uncongenial legacy languages. They will need to design
program analysis algorithms 1o test whether actual legacy programs observe the constraints
that make each theoretical proof technique valid.

2. Builders of programming tools will carry ocut experimental implementation of the hypotheses
originated hy theorists; following practice in experimental branches of science, their goal is to
explore the range of application of the theory to real code.

3. Sympathetic software users will allow newly inserted assertions to be checked dynamically in
production runs, even before the tools are available to verify them.

4. Empirical Computer Scientists will apply tools developed by others to the analysis and verifi-
cation of representative large-scale examples of open code.

5. Compiler writers will support the proof goals by adapting and extending the program analyses
currently used for optimisation of code; later they may even exploit for purposes of further
optimization the additional redundant information provided with a verified program.

6. Providers of proof tools will regard the project as a fruitful source of low-level conjectures
needing verification, and will evolve their algorithms and libraries of theories to meet the
needs of actual legacy software and its users.

7. Teachers and students of the foundations of software engineering will be enthused to set
student projects that annotate and verify a small part of a large code base, so contributing to
the success of a world-wide project.

B.2.5 Incremental

The progress of the project can be assessed by the number of lines of legacy code that have been
verified, and the level of annotation and verification that has been achieved. The relevant levels of
annotation are: structural integrity, partial functional specification, specification of total correct-
ness. The relevant levels of verification are: by testing, by human proof, with machine assistance,
and fully automatic. Most software is now at the lowest level: integrity verified by massive testing,.
it will be interesting to record the incremental achievement of higher levels by individual modules
of code, and to find out how widely the higher levels are reasonably achievable; few modules are
likely to reach the highest level of full verification.

B.3 References
Bal01 T.Ball and S. K. Rajamani 2001, Automatically Validating Temporal Safety Properties
of Interfaces, SPIN 2001, LNCS 2057 pp.103-122.

Bus00 W.R. Bush, J. D. Pincus, and D. J. Sielaff 2000. A static analyzer for finding dynamic
programming errors. Software—Practice and Experience 30:775-802.

Cha88 K. M. Chandy and J. Misra 1988, Parallel Program Design: a Foundation, Adison-
Wesley.

Eva02 D. Evans and D. Larochelle 2002. Improving Security Using Extensible Lightweight
Static Analysis, IEEE Software.

Eva96 D. Evans 1996. Static detection of dynamic memory errors, SIGPLAN Conference on
Programming Languages Design and Implementation.

16

Fla01 C. Flanagan and K. RM. Leino 2001. Houdini, an annotation assistant for ESC/Java.
International Symposium of Formal Methods Europe 2001, INCS 2021, Springer-
Verlag pp.500-517.

Flo67 R. W. Floyd 1967. Assigning meanings to programs. Proceedings of the Amer. Soc.
Symp. Appl. Math. 19, (1967) pp.19-31.

Gal98 A.]. Galloway, T. J. Cockram, and J. A. McDermid 1998. Experiences with the appli-
cation of discrete formal methods to the development of engine control software.
HISE York.

Gat02 W. 1. Gates, Internal communication, Microsoft Corporation.

Gor88 M.]J. C. Gordon 1988. HOL: A proof generating system for Higher-Order Logic, VI.SI
Specification, Verification and Synthesis, Kluwer pp.73-128.

Gra99 J. Gray 1999. What Next? A Dozen Information-technology Research Goals, MS-TR-
50, Microsoft Research.

HaloZ2a A.Hall and R. Chapman 2002, Correctness by Construction: Developing a Commer-
cial Secure Systern, IEEE Software 19(1); 18-25,

Halozpk S. Hallem, B. Chelf, Y. Xie, and D. Engler 2002. A System and TLanguage for Building
System-Specific Static Analyses, PLDI 2002,

Has03 Haskell 98 language and libraries: the Revised Report, journal of Functional Pro-
graniming 13(1) Jan 2003.

Hoa98 C. A.R. Hoare and He Jifeng. Unifving Theories of Prograrmming, Prentice Hall.

Hoa99 C. A.R. Hoare and He Jifeng 1999. A Trace Model for Pointers and Objects, ECOOP,
LNCS 1628, Springer-Verlag, pp.1-17.

Hea02 C. A.R. Hoare 2002. Assertions, to appear, Marktoberderf Summer School.
Hol91 G. J. Holzmann 1991. Design and Validation of Computer Protocols, Prentice Hall.

Iga99 A. Igarashi, B. Pierce, and P. Wadler 1999. Featherweight Java: A Minimal Core
Calculus for Java and GJ, OOPSLA'99, pp.132-146.

Jim02 T. Jim, G. Morrisett, D. Grossman, M. Hicks,] Cheney, and Y. Wang 2002. Cyclone:
A safe dialect of C. In USENIX Annual Technical Conference, Monterey.

Kin69 J. C. Xing 1969. A Program Verifier, PhD thesis, Carnegie-Mellon University.

Leig8 K. M. Leino and G, Nelson 1998. An extended static checker for Modula-3. Compiler
Construction CC’98, LNCS 1383, Springer-Verlag 302-305.

McC63] McCarthy 1963. Towards a mathematical theory of computation. Proc. IFIP Cong.
1962, North Holland.

Mey97 B. Meyer, Object-Oriented Software Construction, 2nd edition, Prentice Hall.

Mil99 R. Milner 1999. Communicating and Mobile Systems: the m-Calculus. Cambridge
University Press.

Mos01 M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik 2001, Chaff: Engineering
an Efficient SAT Solver, 38th Design Automation Conferenice (DAC2001), Las Vegas.

Mus()2 M. Musuvathi, D. YW. Park, A. Chou, D. R. Engler, and D. L. Dill 2002, CMC; A prag-
matic approach to model checking real code, to appear in OSDI 2602

Nec02 G, C.Necula, S. McPeak, and W. Weimer 2002, CCured: Type-safe retrotting of legacy
code. In 29th ACM Symposium on Principles of Programming Languages, Portland.

Nec97 G. Necula., Proof-carrying code. In Proceedings of the 24th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL '97).

Nim02 J. W. Nimmer and M. D. Ernst 2001, Automatic generation of program specifications,
Proceedings of the 2002 International Symposium on Software Testing and Analysis,
pp.232-242.

Nip02 Seehttp://www. fbi.gov/congress/congress02/nipc072402. htm, a congressional
statement presented by the director of the National Infrastructure Protection Center.

17

Nis02 Planning Report 02-3. The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing, prepared by RTI for NIST, US Department of Commerce, May 2002

OHe01 P. O’Hearn, J. Reynolds, and H. Yang 2001. Local Reasoning about Programs that Al-
ter Data Structures. Proceedings of CSL'01 Paris, LNCS 2142, Springer-Verlag, pp.1-
19,

Ros94 A. W. Roscoe 1994, Model-Checking CSP, A Classical Mind: Essays in Honour of
C. A. R. Hoare, Prentice-Hall International, pp.353-378.

Ros98 A. W. Roscoe 1998. Theory and Practice of Concurrency. Prentice Hall.

Ruf95 E.Ruf 1995. Context-sensitive alias analysis reconsidered, Sigplan Netices, 30(6).

Sch99 F. B. Schneider (editor) 2002. Trust in Cyberspace, Contmittee on Information Sys-
tems Trusthworthiness, National Research Council,

ShaQ1 1. Shankar, K. Talwar, J. S. Foster, and D Wagner 2001. Detecting format string vul-
nerabilities with type qualifiers, Proceedings of the 10th USENIX Security Symposium.

Sha96 N.Shankar 1996. PVS: Combining specification, proof checking, and model checking.
FMCAD ‘96, LNCS 1166, Springer-Verlag, pp.257-264.

Sha97 N. Shankar 1997. Machine-assisted verification using theorem-proving and model
checking. Mathematical Methods of Program Development, NATO ASI Vol 138, Springer-
Verlag, pp.499-528.
Ste94 A. Stepanov and Meng Lee 1994. Standard Template Library, Hewlett Packard.
Ste(0 S. Stepney, D. Cooper and J. C. P. Woodcack 2000, An Electronic Purse: Specification,
Refinement, and Proof, PRG-126, Oxford University Computing Laboratory.
Str85 B. Stroustiup 1985. The C++ Programming Language, Adison-Wesley.
Turd9 A.M. Turing 1949. Checking a large routine. Report on a Conference on High Speed
Automatic Calculating machines. Cambridge University Mathematical Laboratory
67-609.

Wag00 D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards auttomated detec-
tion of buffer overrun vulnerabilities. In Network and Distributed System Security
Symposiuni, San Diego.

L CPW
26th May 2003

18

