Journeys in Non-Classical Computation

A Grand Challenge for Computing Research

Susan Stepney and John A. Clark, University of York
Colin Johnson, University of Kent
Derek Partridge, University of Exeter
Robert E. Smith, University of the West of England

1 The Challenge

A gateway event (a term coined by Murray Gell-
Mann) is a change to a system that leads to the
possibility of huge increases in kinds and levels of
complexity, It opens up a whole new kind of phase
space to the system’s dynamics. Gateway events
during evolution of life on earth include the
appearance of eukaryotes (organisms with a ceil
nucleus), an oxygen atmosphere, multi-celled
organisms, and grass. Gateway events during the
development of mathematics include each
invention of a new class of numbers (negative,
irrational, imaginary, ...), and dropping Euclid’s
parallel postulate.

A gateway event produces a profound and
fundamental change to the system: once through
the gateway, life is never the same again. We are
currently poised on the threshold of a significant
gateway event in computation: that of breaking free
from many of our current “classical computational”
assumptions. The Grand Challenge for computer
science is

to journey through the gateway event
obtained by breaking our current
classical computational assumptions,
and thereby develop a mature science
of Non-Classical Computation

2 Journeys versus Goals

To travel hopefully Is a better thing than to arrive,
—Rebert Lonis Stevenson, “Bl Dorado™, 1878.

Many Grand Challenges are cast in terms of goals,
of end points: “achieving the goal, before this
decade is out, of landing a man on the moon and
returning him safely to earth”, mapping the human
genome, proving whether P = NP or not. We
believe that a goal is not the best metaphor to use
for this particular Grand Challenge, however, and
prefer that of a journey.

The metaphor of a journey emphasises the
importance of the entire process, rather than
emphasising the end point. In the 17" and 1gh
centuries it was traditional for certain sections of
“polite society” to go on “a Grand Tour of
Europe”, spending several years broadening their
horizons; the experience of the entire journey was
important. And in the Journey of Life, death is
certainly not the goal! Indeed, an open journey,
passing through gateway events, exploring new
lands with ever expanding horizons, need not have
an end point,

A journey of a thousand miles begins with a single step.
—Lao Tzu, Tao Te Ching, Chapter 64, ~600 B.C.

Journeys and goals have rather different properties.
A goal is a fixed target, and influences the route
taken to it. 'With an open journey of exploration,
however, it is not possible to predict what will
happen: the purpose of the journey is discovery,
and the discoveries along the journey suggest new
directions to take. One can suggest starting steps,
and some intermediate way points, but not the
detailed progress, and certainly not the end result.

Thinking of the Non-Classical Computation
Challenge in terms of a journey, or rather several
journeys, of exploration, we suggest some carly
way points that appear sensible to aim for. But we
emphasise that these are early points, that we spy
today as we peer through the gateway. As the
community’s journey progresses, new way points
will heave into view, and we can alter our course to
encounter these as appropriate, Other members of
the comnmunity may spy other way points, and are
encouraged to explore these, too.

The Road goes ever on and on.
—J. R. R, Tolkien, The Lord of the Rings, 1954.




3 Background to the Challenge

Modern-day computing has radically changed our
lives. It is an extraordinary success story,
However, there is a growing appreciation that what
passes as classical computing is an extremely small
subset of all computational possibilities.

In many avenues of life, we often create
unnecessary limitations, Perhaps the most
invidious of these are the assumptions we make,
patticularly the implicit. ones. We need to
distinguish the true this has to be the case from
the merely this has always been the case.
Discoveries may emerge when what was
considered an instance of the former is found to be
an instance of the latter. Thus, for example,
dropping Euclid’s parallel postulate gave rise to
non-Euclidean geometry. We wish to encourage
similar revolt (with good academic motives)
against the assumptions of classical computing. So
we identify several features that define classical
computing, but that may not necessarily be true in
all computing paradigms, and we encourage the
cominunity to drop, invert, or otherwise perturb
these in whatever ways seem interesting. Our
brochure of reality-based journeys is a start.

Many computational approaches seek inspiration in
reality (mainly biology and physics), or seek to

exploit features of reality. These reality-based
computing approaches hold great promise. Offen,
nature does it better, or at the very least differently
and interestingly, Examining how the real world
solves its computational problems provides
inspirations for novel algorithms (such as genetic
algorithms or artificial immune systems), for novel
views of what constitutes a computation (such as
complex adaptive systems, and self-organising
networks), and for novel computational paradigms
{such as quantum computing).

When it comes to the science of computation there
is a gulf between the maturity of classical
computing and that of the emerging non-classical
paradigms. For classical computing, intellectual
investment over many years is turning craft into
science. To fully exploit emerging non-classical
computational approaches we must seek for them
such rigour and engineering discipline as is
possible.  What that science will look like is
currently unclear, and we propose here to
encourage exploration. The community must
venture on its journeys of exploration, and report
back its discoveries.

The development of a science of non-classical
computing is a challenge indeed.

4 Six traditional paradigms to disbelieve before breakfast

We outline some classical computation
assumptions, and ways they are being challenged
by researchers in different fields. (Some of the
categories arguably overlap. Later sections discuss
alternatives in more detail.)

It ain’t necessarily so.
-- George Gershwin, Porgy and Bess, 1934

I. The Turing paradigm

classical physics: information can be can be freely
copied, information is local, states have particular
values. Rather, at the quantum level information
cannot be cloned, entanglement implies non-
locality, and states may exist in superpositions.

atomicity: computation is discrete in time and
space; there is a before state, an after state and an
operation that transforms the former into the latter.
Rather, the underlying implementation realises
intermediate physical states.

infinite resources: Turing machines have infinite
tape state, and zero power consumption. Rather,
resources are always constrained.

substrate as implementation detail: the machine
is logical, not physical.  Rather, a physical
implementation of one form or another is always
required, and the particular choice has
consequences,

universality is a good thing: one size of digital
computer, one size of algorithm, fits all problems.
Rather, a choive of implementation to match the
problem, or hybrid solutions, can give more
effective results.

closed and ergodic systems; the state space can be
pre-determined.  Rather, the progress of the

computation opens up new regions of state space in ;

a contingent manner.
2. The von Neumann paradigm

sequential program execution. Rather, parallel
implementations already exist.

fetch-execute-store meodel of program execution.
Rather, other architectures already exist, for
example, neural nets, FPGAs,

A




the static program: the program stays put and the
data comes to it. Rather, the data could stay put
and the processing rove over it.

3. The output paradigm

a program is a black box: it is an oracle
abstracted away from any internal structure,
Rather, the trajectory taken by a computation can
be as inferesting, or more interesting, than the final
result,

a program has a single well-defined output
channel. Rather, other observations can be made
of the physical system as it executes,

a program is a mathematical function: logically
equivalent systems are indistinguishable. Rather,
correlations of multiple outputs from different
executions, or different systems, may be of interest.

4. The algorithmic paradigm

4 program maps the initial input to the final
output, ignoring the external world while it
executes,  Rather, many systems are ongoing
adaptive processes, with inputs provided over time,
whose values depend on interaction with the open
unpredictable environment; identical inputs may
provide different outputs, as the system learns and
adapts to its history of interactions; there is no
prespecified endpoint,

randomness is noise is bad: most computer
science is deterministic. Rafher, nature-inspired
processes, in which randomness or chaos is
essential, are known to work well.

the computer c¢an be switched on and off:
computations are bounded in time, outside which
the computer does not need to be active. Rather,
the computer may engage in a continuous
interactive dialogue, with wusers and other
computers,

5. The refinement paradigm

increntental transformational steps move a
specification to an implementation that realises that

specification. Rather, there may be a discontinnity
between specification and implementation, for
example, bio-inspired recognisers,

binary is good: answers are crisp yes/no,
true/false, and provably correct.  Rather,
probabilistic, approximate, and fuzzy solutions can
be just as useful, and more efficient.

a specification exists, either before the develop-
ment and forms its basis, or at least after the
dovelopment. Rarher, the specification may be an
emergent and changing property of the system, as
the history of interaction. with the environment
grows,

emergence is undesired, because the specification
captures everything required, and the refinement
process is top-down. Rather, as systems grow
more complex, this refinement paradigm is
infeasible, and emergent properties become an
important means of engineering desired behaviour.

6, The “computer as artefact” paradigm

computation is performed by artefacts:
computation is not part of the real world, Rather,
in some cases, nature “just does it”, for example,
optical Fourter transforms.

the hardware exists unchanged throughout the
computation, Rather, new hardware can appear as
the computation proceeds, for example, by the
addition of new resources. Also, hardware can be
“consumed”, for example, a chemical computer
consuming its initial rcagents. In the extreme,
nanites will construct the computer as part of the
computation, and disassemble it at the end,

the computer must be on to work. Rarther, recent
quantum computation results suggest that you
don’t even need to “run” the computer fo get a
result!

Doubtless there are other classical paradigms that
we accept almost without question. They too can
be fraitfully disbelieved.

5 The Real World : breaking the Turing paradigm

5.1 Real World as its own computer

The universe works! It doesn’t need to calculate, it
Jjust does it. We can take the computational stance,
and view many physical, chemical and biological
processes as if they were computations: the
Principle of Least Action “computes” the shortest
path for light and bodies in free fall; water
“computes” its own level; evolution “computes™

fitter organisms; DNA “computes” phenatypes; the
immune system “computes” antigen recognition.

This natural computation can be more effective
than a digital simulation, Gravitational stellar
clusters do not “slow down” if inore stars are
added, despite the problem appearing to us to be
0@, And as Feynman noted, the real world
performs quantum  mechanical computations
exponentiatly faster than classical simulations can,




5.2 Real World as our computer

Taking the computational stance, we may exploit
the way the world works to perform
“computations” for us. We set up the situation so
that the natural behaviour of the real world gives
the desired resuit.

There are various forms of real workd sorting and
searching, for example. Centrifuges effectively
exploit differences in density {o separate mixtures
of substances, a form of gravitational sorting, if
you like, Vapours of a boiling mixture are richer in
the components that have lower boiling points (and
the residual mixture is richer in those that have
higher boiling points); distilfation exploits this to
give a form of thermal sorting, Chromatography
provides another physical/chemical means of
separation. In junk yards, ferromagnetic objects
can be separated out by the use of industrial
strength magnets. Other kinds of computations
exist: optics can be exploited to determine Fourier
transforms, '

Maggots perform the “computation” of eating dead
flesh: historically, maggots were used to clean
wounds, that is, to perform their contpufation in a
context to benefit us. More recently, bacterial
metabolisms have been altered to perform the
“computation” of cleaning up pollntion.

Access control computations abound.  Suitably
constructed shape is used to calculate whether the
key inserted in a tumbler lock is the correct one,
Physical interlocks are exploited for safety and
practical reasons across many industries: it is
impossible to insert a nozzle from a leaded petrol
pump into the fuel tank of a unleaded petrol car.

5.3 Real World as analogue computer

Properties of the real world may be exploited in
other ways. The “computations™ of the “real world
as our computer” are very direct. Often we are
concerned  with more absiract  questions.
Sometimes the physical world can be harnessed to
provide results that we need: we may be able to set
up the situation so that there is an analogy between
the computation performed by the real world, and
the result we want,

There is an age-old mechanism for finding the
longest stick of spaghetti in an unruly pile,
exploiting the physics of gravity and rigidity: we
can use this to sorf by setting up an analogy
between spaghetti strand length and the quaatity of
fnterest. Mercury and alcohol thermometers use a
physical means of computing temperature by fluid
expansion: the analogy is between the length of the
fluid column and the temperature. Millikan’s
calculfation of the charge on an electron exploits
relationships between velocity of falling oil drops,

viscosity of air, the charge on those drops and the
strength of surrounding electric fields.

Classical computing already exploits physics at the
level of electron movements. But there are other
ways of exploiting nature,

Analogue computing itself exploits the properties
of electrical circuits as analogues of differential
equations.

DNA computing encodes problems and solution as
sequences of bases (strands) and seeks to exploit
mechanisms such as strand splitting, reconmbination
and reproduction to perform calculations of
interest. This can result in vast parallelism, of the
order of 10 strands.

Quantum computing presents one of the most
exciting developments for compufgt;.\seienc'e”in-- »»»»» -
recent times (the CS community-greatly thanks the )
physicists for this). It breaks out™of-the classical ..~
Turing paradigm. As its name suggests, it is based
on quantum physics, and can perforin computations
that cannot be effectively implemented on a
classical Turing machine.' It exploits interference,
many worlds, entanglement and non-locality.
Newer work still is further breaking out of the
binary mind-set, with muitiple-valued “qudits”, and
continuous variables.  Research in quantum
computing is mushrooming, and it is apparent that
we are not yet in position to fully exploit the
possibilities it offers. If only small quantum
computers were to prove practical then uses could
still be found for simulating various quanfum
phenomena, However, if larger computers prove
possible we will find ourselves unprepared.

o Why are there so few distinet quantum
algorithms? How can new ones be found?

+ How do we discover new a quantum algorithms
to solve a given problem? How do we use
existing algorithms to solve new problems?
How can we find the best aigorithms to use
given limited computational resources? More
generally....
¢ What would a discipline of quantum

software engineering look like? (Appendix
A addresses this question in more detail.)

1 Analogue (as in continuous) computing also breaks
the Turing paradigm. But the real world is neither
analogue nor classically discrefe; it is quantum. So
analogue computing might be dismissed as of
theoretical interest only.  However, the same
dismissal might then be made of classically discrete
(classical) computation! (The real world is also
relativistic, but that paradigm has not been embraced
by computation theory, yet.)




e How can quantum computers be harnessed most
effectively as part of a hybrid computational
approach?

5.4 Real World as Inspiration

Many important techniques in compufer science
have resulted from observing the real world.
Meta-heuristic . search techniques have drawn
inspiration from physics (simulated annealing),
biology (genetic algorithms, genetic programming),
social networks (ant colony optimisation) and other
domains. Neural networks (based very loosely on
the way the brain works) have proven remarkably
useful. L-systems (based on plant growth) have
proved more generally applicable. More recently
computational approaches inspired by immunology
have arisen.

These have all proved remarkably successful, or
look  highly promising, yet the science
underpinning their use comes nowhere near
matching the science of classical computing.
Given a raft of nature-inspired techniques we
would like to get from problem to solution
efficiently and effectively, and we would like to
reason about the performance of the resulting
systems, But this falls outside the classical
refinement paradigm.

¢ What would a science of non-classical
refinement look like? A science would allow
us, for example, to reason confidently about the
behaviour of neural networks in critical
applications, to derive highly effective systems
targeted at highly limited resources.

In the virtual worlds inside the computer, we are no
longer constrained by the laws of nature. Our
simulations can go beyond the precise way the real
world works. For example, we can introduce novel
evolutionary operators fo our genetic algorithms,
novel kinds of neurons to our neural nets, and
even, as we come to understand the embracing
concepts, novel kinds of complex adaptive systems
themselves, The real world is our inspiration, not a
restriction.

¢« How can we use nature inspired computation
to build “better than reality” systems? What
are the computational limits fo what we can
simulate?

s What is the best you can do given many

components, ecach with highly restricted
memory and processing ability?

6 Massive parallelism : breaking the von Neumann paradigm

Parallel processing (Cellular Automata, etc) and
other non-classical architectures break out of the
sequential, von Neumann, paradigm.?

Under classical computational assumptions, a
parallel computation can be serialised, yet
parallelism has its advantages.

Real-time respense to the environment, The
environment evolves at its own speed, and a single
processor might not be able to keep pace.
{Possibly the ultimate example of this will be the
use of vast numbers of nanotechnological
assemblers (nanites) to build macroscopic artefacts.
A single nanite would take too long, by very many
orders of magnitude.)

Better mapping of the computation to the
problem structure. The real world is intrinsically
parallel, and serialisation of its interactions to map
the computational structure can be hard,
Parallelism also permits colocation of each

2 The fact that the sequential paradigm is named after
von Neumann should not be taken to imply that von
Neumann himself was an advocate of purely
sequential computation; indeed, he was also one of
the early pioneers of CAs.

processor and the part of the environment with
which it interacts most.

And once the classical computational assumptions
are challenged, we can see that serialisation is not
necessarily equivalent.

Fault tolerance. Computation requires physical
implementation, and that implementation might
fail. A parallel implementation can be engineered
to continue working even though some subset of its
processors  have  failed. A sequential
implementation has only the one processor.

Interference/interaction between  devices,
Computation requires physical implementation,
and those implementations have extra-logical
properties, such as power consumption, or
electromagnetic emissions, which may be
interpreted as computations in their own right (see
earlier). These properties may interfere when the
devices are running in parallel, leading fo effects
not present in a serialised implementation.
(Possibly the ultimate example of this is the
exponentially large state space provided by the
superposed parallel qubits in a quantum compnter.)

The wvse of massive parallelism introduces new
problems. The main one is the requirement for

t: \,a)l«;\’;




decentralised control. It is just not possible to
have a single centralised source exercising precise
control over wvast numbers of heterogeneous
devices (this is merely a covert attempt to serialise

the system). Part of this problem is tackled by the
sister Grand Challenges in Ubiquitous Systems,
and part is addressed in the later section on open
processes.

7 In the eye of the beholder : breaking the output paradigm

The traditional paradigm of program execution is
that of an abstract computation processing an input
to produce an output, This input-output mapping is
a logical property of the computation, and is all
that is important: no intermediate states are of
interest, the computation is independent of physical
realisation, and different instances of the
computation yield precisely the same results,

Computation, however, is in the eye of the
beholder. Algorithms are implemented by physical
devices; intermediate states exist, physical changes
happen in the world, different devices are
distingurishable.  Any information that can be
observed in this physical world may be used to
enrich the perceived computation.

Logical Trajectory Observations. An executing
algorithm follows a frafectory through the logical
state space. (Caveat: this is a classical argument:
intermediate quanium computational states may be
in principle unobservable.) Typically, this
trajectory is not observed (except possibly during
debugging). This is shockingly wasteful: such
logical information can be a computational
resource in its own right. For example, during
certain types of heuristic search the trajectory
followed can give more information about a sought
solution than the final “result” of the search itself.

s How can logical observations made during
execution be used to give useful information?

Physical Trajectory Observations. An executing
algorithm is accompanied by physical changes to
the world: for example, it consumes trajectory-
dependent power as it progresses, and can take
trajectory-dependent time to complete.  Such
physical resource consumption can be observed
and exploited as a computational resource, for
example, to deduce features of the Ilogical
trajectory. (For example, some recent attacks on

smart cards have observed the power consumption
profile and data-dependent timing of internal
operations to deduce secret key information,) Such
physical observations provide a very powerful
source of information, currently exploited mainiy
by atfackers, but available for more general
computational use,

¢ What physical observations are feasible, and
correfated. with logical trajectories?

¢ What new uses can be found for such physical
observations?

Differential Observations, An  executing
algorithm is realised in a physical device. Physical
devices have physical characteristics that can
change depending on environmental conditions
such as temperature, and that differ subtly across
logically identical devices. (Indeed, much of the
rationale for digitisation is the removal of these
differences.) So one can make observations not
merely of the output of a single execution, but of
set of outputs from a family of executions, of
muitiple systems, of different but related systems.
For example, if repeated executions of a search
each get 90% of elements of a sought solution
correct then repeated executions might be
combined to give an overall solution.

* How can diversity of multiple computations be
exploited?

* How should diversity be engincered? By
repeated mutation of a source program? By
embracing technologically diverse solution
paradigms?

Higher-order  Observations. These are

observations not of the program execution itself,

but of the execution of the program used to design

(the program used to design. ..} the program.

8 Open processes : breaking the algorithmic paradigm

In the classical paradigm, the ultimate goal of a
computation is reaching a fixed point: the final
output, the “resunit” of the computation, afier which
we may swifch off the computer. The majority of
classical science is also based around the notion of
fixed-point  equilibrinm  and  ergodicity

(ergodicity is the property that the system has well
defined spatial and temporal averages, because any
state of the system will recur with non-zero
probability),




Modern theories of physics consider systems that
fack repetition and stability: they are far from
equilibrium and non-ergodic. Perhaps the most
obvious non-ergodic, far from equilibrium system
is that of life itself, characterised by perpetual
evolution (change). Most human problems are also
best described in such terms; since computation is
ultimately in service of such problems, the
implications of non-ergodic, far from equilibrium
physics must be considered in relationship to
computing’s future.

Consider the most basic of chaotic systems: the
logistic process, parameterised by R,

2
Xl ™ er (1 - xt) B

The behaviours of various logistic processes as a
function of R are shown in Figure 1, where each
point on the plot is a point on the attractor,

For values of I < R < 3, these logistic processe
have a fixed point atiractor. For R = 3 the)raj
attractor of period two. As we raise R, the attractor
becomes period four, period eight, etc. This period
doubling continues as we raise R, and the values of
R where each doubling occurs get closer together.
For R > 3.569945671... the logistic process’s
attractor goes through an infinite number of values
{except for a few “islands” or order, of attractors
with multiples of odd periods).

1

1
*
: 25 ¥ 35 ‘ 4

Figure 1: Poinis on the attractors of various logistic
processes, versus the parameter R

There is a phase transition from order (the region
of period doubling) to chaos (“random”
behaviour). The phase transition point at R =
3.569945671.., is the so-called edge of chaos.

Imagine taking measuremenis from a process
whose underlying (continuous) dynamics are those
of the logistic equation. Take wvery coarse
measurements: say the process outputs symbol 1 if
x>0.5, and ¢ otherwise, and take samples of
length L bits. Construct an automaton machine that
srepresents the process, for a given L. So the
logistic processes generated by various values of R
can be interpreted as a variety of logisfic machines.
There is a clear phase fransition {a peak in the

v

machine size versus the entropy of the bit
sequence) as we move from the period doubling
region to the chaotic region.

At the phase transition, the machine size versus the
length of the sequence L, expands without bound.
That is, at the edge of chaos, the logistic machine
requires an infinite memory machine for accurate
representation.  There is a leap in the level of
intrinsic computation going on in the logistic
machine at the edge of chaos. {In terms of the
Chomsky hierarchy, the machine has gone from the
level of regular grammars to the level of context-
free grammars.)

At the edge of chaos, the addition of new resources
{computational or physical) can yield results that
are neither redundant (as in the structured period
doubling regime) nor random (as in the chaotic
regime). Within the classical paradigm, such
conditions would be anathema, indicating
unceasing variety that never yields “the solution”.
But in life-like systems, there is simultancously
sustained order, and useful innovation, New matter
can be brought into such systems and used in ways
that are neither redundant nor random. In this
sefting, emergence of the unforeseen is a desirable
property, rather disruptive noise,

Computing often attempts to exploit the biological
paradigm:  cellular  automata, evolutionary
computation, recurrenf networks (autocatalytic,
neural, genomic, inmune systetn, ecological webs,
...), social insect and agent-based systems, DNA-
computing, and nanite-systems that build
themselves. However, in most of these cases, the
implementations of such systems have been locked
into themselves, closed, unable to take on new
matter or information, thus unable to truly exploit
emergence,

We should consider open systems, systems where
new resources, and new kinds of resources can be
added at any time, either by external agency, or by
the actions of the system itself, These new
resources can provide gateway events, that
fundamentally alter the character of the system
dynamics, by opening up new kinds of regions of
phase space, and so allowing new possibilities.
Computational systems are beginning to open
themselves, to unceasing flows of information if
not so much to new matter. The openness arises,
for example, through human interactivity as a
continuing dialogue between user and machine,
through unbounded networks, through robotic
systems with energy autonomy. As computers
become ubiquitous, the imporfance of open
systems physics to understanding computation
becomes critical. The solutions we expect from
people are ongoing processes, and this should be
our expectation from computers too.

"




So some way points for the Grand Challenge are

¢ Computation as a dynamical process. What
are the various attractors of a dynamical
computation? How can we encourage the
system to move fo a “better” attractor? How
can we map the route through intermediate
attractors that it should take?

¢ Computation at the edge of chaos. What are it
capabilitics? How can we hold a system at the
edge, far from equilibrium, to perform useful
computatons? How can we make it self
orgarnise to the edge?

¢ Open systems science. What are ihe

fundamental properties of open systems? How
can we predict the effect of interventions
(adding new things, or removing things) to the
system? How can we understand the effect of a
gateway event that opens up new kinds of
regions of phase space to a computation?

+ Designed emergence, How can we design
(refine) open systems that have desired
emergent properties?  And do not have
urdesired emergent properties?

9 Maturity means hybrid solutions

Classical physics did not disappear when modern
physics came along: rather iis restrictions and
domaing of applicability were made explicit.

Similarly, non-classical computation will not
supersede classical computation: it will augment
and enrich it, And when a wide range of tools is
available, it becomes possible to pick the best one,
or the best combination, for each job. For
example, it might be that using a quantum
algorithm to reduce a search space, and then a

meta-heuristic search to explore that, is more
effective than using either algorithm alone.

¢ Hybrid Solutions. An array of novel
traditional approaches to computation will
become available. Can we create a general
flexible conceptual framework that allows
effective and efficient exploitation of hybrid
approaches?

10 Exemplars — achievements of the journeys

The journey is the important thing. At various
poiufs in journey-space researches will alight to
mark their way, leaving behind diary entries to
which they may return at a later date. In comimon
parlance these intermediate recordings may be
regarded as “achievements”. Opportunities are
manifold, We expect sub-challenges in the sub-
disciplines to be articulated separately. Indeed,
two have already been prepared (see appendices):

+ Non-Classieal Physics: Quantum Soffware
Engineering

* Non-Classical refinement: Approximate
Computation

{And we have noted above the sister Ubiquitous

Systems challenges.) Here we identify some

further expected or possible achievements of the

overall Grand Challenge in  Non-Classical

Computation.

e “pretty good solutions to currently intractable
problems”

¢ quantum software engincering

o cxploiting limited resources (lots of limited
devices, ubiquity / having only a few qubits)

¢ a science of nature-inspired techniques

» understanding the edge of chaos and emergence
¢ many new applications become possible

e Nano-tech-ville

o hybrid solutions

+ a “Buropean Sanfa Fe” that complements the
US’s Santa Fe institute — plus a body of work
that justifies it.

11 The Grand Challenge Criteria

It arises firom scientific curiosity about the
Joundation, the nature or the limits of a scientific

discipline. Tt arises from questioning the




assumptions of the classical paradigms, and aims at
the creation of a new science.

It gives scope for engineering ambition fo build
something that has never been seen before. It aims
to build a new science; the engineering
opporfunities will follow.

It will be obvious how far and when the challenge
has been met (or not). It will never be met fully: it
is an open journey, not a closed goal. The science
will continue to mature, until itself overtaken by
the next paradigm shift.

It has enthusiastic support from (almost) the entire
resegrch commumity, even those who do not
participate and do not benefit from it, No.
However, in the best tradition of paradigm shifts,
the change will occur.

An important sclentific innovation rarely makes its
way by gradually winning over and converling its
opponenis: it rarely happens that Saul becones
Paul. What does happen is that the opponents
gradually die out, and that the growing generation is
Jamiliarised with the ideas from the beginning.

— Max Planck, Scientific Autobiography, 1949

It has imternational scope: participation would
increase the research profile of a nation. Thisisa
new fundamental area of computer science.

It is generally comprehensible, and captures the
imagination of the general public, as well as the
esteem of scientists in other disciplines. Much
popular literature already exists in several of these
areas, written by scientisis in other disciplines
(quantum computing, complexity, nanotech, ...),
and so they and the general public are arguably
already ahead of the CS community!

It was formulated long ago, and still stands. Tts
seeds have been around for a long time, but it has
only recently become of obvious importance.

It promises to go beyond what is initially possible,
and requires development of understanding,
techniques and tools unknown at the start of the
project. The structure of the Challenge mirrors the
journey suggested by this criterion,

It calls for planned co-operation among identified
research feams and communifies. Tt is a multi-
disciplinary Challenge, with contributions needed
from a range of research specialities,

It encowrages and benefits from compelition among
individuals and teams, with clear criteria on who is
winning, or who has won. There need not be a
single “winner”, Diversity of solutions should be
encouraged to be applicable to a range of
application domains. Winners may emerge in
particular application domains, as the strengths of
the various techniques becoine clear.,

It decomposes into identified intermediate research
goals, whose achievement brings scientific or
economic benefit, even if the project as a whole
Jails.  There are several components to the
Challenge that can be explored in parallel.

It will lead to radical paradigm shifl, breaking free
from the dead hand of legacy. WNon-classical
computing is a radical paradigm shifi!

It is not likely to be met simply from commercially
mofivated evolufionary advance.  Applications
might be supported by industry, but it is unlikely
that the development of the underlying science
would be.

Appendix A: Non-Classical Physics: Quantum Software Engineering

This sub-challenge of Non-Classical Computation
covers

the development of a mature discipline
of Quantum Software Engineering

We wish to be ready to exploit the full potential of
commercial quantum computer hardware, once it
arrives, projected to be around 2020 (or, less
optimistically, “20 years from now”, whenever
“now” is).

We might have to wait a while for commercial
guanfum computers, but when they arrive, Moore’s
law suggests they will grow in power very quickly.
Doubling a classical computer’s register fength
(roughly) doubles classical computing power, but
adding just ome bit to a quantum computer’s
register doubles quantum computing power. We

need to be ready to exploit these devices ance they
appear, However, the majority of today’s theory of
computation, algorithms, programming languages,
specification models, refinement calculi, and so on,
is purely classical. The challenge is to build the
corresponding languages, tools and techniques for
quantum software engineering.

We need to raise the level of thinking about
gquantum programs.  Today we reason about
quantum programs predominantly at the level of
quantum gates: imagine how far classical
computing would have progressed if the only
language we had o describe programs was that of
AND and OR gates! Most importantly, we need a
new paradigm (or paradigms) for thinking about
quantum compuiations, to augment the existing
classical declarative, functional, and imperative
paradigms.




The whole of classical software engineering needs
to be reworked and extended into the quantum
domain,

Foundations

Much foundational work is still needed. We need
further developments of the fundamentals of
quantum computability: the Universal Quantum
Turing Machine, We need to investigate
quantum algerithmic complexity: time, space,
“parallel universe space”, and any other parameters
of interest.

We have models of classical computation — von
Neumann machines with fetch-execute-store,
imperative, functional and logic languages, etc —
that let us write and reason about classical
programs without worrying about logic levels,
transistors, gates, etc. In much the same way we
need metaphors and models of quantum
computation, that enable us design and reason
about quantum algorithms without recourse to QM,
unitary matrices, ete. Does Deutsch’s many-worlds
description provide the best programming
metaphor, or are there better ones? Whatever the
actual metaphors chosen, they must be formalised
into new computational models.

We need theories and models of that weirdest
~quantum process of all; that of quantum
entanglement. Two qubit entanglement is
relatively well understood — but multi qubit
entanglement, and qudit entanglement, are barely
understood.

Languages and Compilers

We need to determine the fandamental building
blocks of quanturm programming: is there a simple
extension of GCL? of classical logic languages? of
classical assembly languages? is an entirely new
paradigm needed?

We need to design suitable assembly level and
high level Q-languages (analogues of classical
imperative, declarative, and functional languages,
at 3, 4™, 5% generation, and beyond). We need to
design and build the corresponding Q-compilers
for these languages.

We need to desigh and implement (initially,
simulate) new Q-algorithms {beyond the current
ones of Min Max, Shor’s period finding algorithm
used for factorization, and Grover’s algorithm for
DB searching). What classes of algorithms may be
quantised? How may certain well-known classical
algorithms be quantised?

We need to develop suitable reasoning systems
and refizement calculi for these [anguages. (Even
sequential composition is different in the quantum
regime, due to the fundamental unobservability of

the intermediate state.) Although higher level
specifications may well abstract away from details
of any underlying classical versws quantum
implementation, there may be certain application-
specific quantum specification Ianguages, for
example, for guantum protocols,

Methods and Tools

Before commercial quanfum computers are
available, we have to make do with simulations on
classical machines. We need to implement
powerful quantum computer simulators, in order
to perform computational experiments and validate
language and algorithm designs. {Computational
resources for simulating quantum algorithms can
be exponentially large, Something like a
simulation engine of multiple FPGAs might be
appropriate, to get the required massive
parallelism.)

We need to discover what higher level structuring
techniques and architectures are suitable for
quantum software. In particular, can classical
structuring  (such as  object-orientation, or
component based software), be extended to
incorporate Q-sofiware? How can classical and
quantum paradigms co-exist? (It seems likely that,
at least to start with, most software will remain
classical, with a “call-out” to quantum power as
needed. Buf the development process needs to be
able to handle such hybrid developments
seamlessly.)

Given that quantum execution is in principle
uncbservable, we need to discover new debugging
and testing techniques for these Q-languages.

We need to design ways of visnalising Q-
algorithm execution, as an aid to understanding,
design, and implementation,

Novel Quantum possibilities

Quantum computing can do some things that
cannot even be simulated by discrete deterministic
classical computers. We need to extend quantum
software engineering to encompass these new
domains.

Quantum devices can produce genuine random
numbers; classical digital simulations can produce
only psewdo-random numbers, We need to
investigate the differences this causes, if any. In
the short term, will a quantum computer simulator
need to be hooked up to a genuinely random
number source? In the longer term, what new
power, what new difficulties, might emerge as a
result of genuine randomness?

Quantum  entanglement offers many new
possibilities, such as information teleportation. We
need to understand how entanglement can be




applied to produce genuinely new algorithms, and

new kinds of profocols.

Appendix B: Non-Classical Refinement: Approximate Computation

This sub-challenge of Non-Classical Computation
is

to develop a science of approximate
computation, and to derive from it a
well-founded discipline for enginecering
approximate software

A radical departure from discrete correct/incorrect
computation is required, a shift away from logics
towards  statistical foundations, such that
meaningful estimates of “confidence’ emerge with
each approximate result.  This impHes that
probabilities play an integral part in computation
throughout the process. The component
probabilities and the eventual confidence estimates,
if secured by large numbers (¢.g. repeated sampling
from a proposed distribution), imply a
computational effort that is becoming increasingly
feasible as a result of hardware advances as well as
innovative developments in statistical modelling
theory (e.g. reversible-jump Markov Chain Monte
Carlo methods),

Classical computation versus approximations

The classical, discrete, view of computation has
each step as either correct or incotrect, and the
middle ground excluded. This naturally leads to
formal logics as the dominant wunderpinning
framework. The programiner devises the
“formula®, which is infended to be an exact
solution to the problem; this symbol structure is
translated into a machine executable form and the
manipuiations that the programmer envisaged are
performed automatically, at high speed and with
complete accuracy.

Consider the symbol structures being manipulated
by a trained a multilayer perceptron (MLP), for
example. These are not formulae composed of
operators and variables that admit a ready mapping
to the operations and parameters of the human
conception of the problem. One consequence is
that any adjustment to the function to be computed
by an MLP involves complete retraining, because
code-fixing is not an option. The “formulae”
cannot reasonably be devised by a programmer;
they must be automatically generated from data
samples.

Typically, the output of an MLP classifier, a real-
value, is arbitrarily thresholded to obtain a class
label. This and other inherent weaknesses of an
approximate classifier constructed with empirically
determined (suboptimal} values for its parameters

are widely acknowledged. Ad hoc-ery is rife in
neural computing, but work on error-bars already
points the way towards a well-founded science.,

These innovative developments to move beyond
the constraint of correct/incorrect results from
hand-crafted formulae are but piecemeal strategies;
they need to be woven into the basic fabric of a
comprehensive  model for approximate
computation, not stitched-on to  classical
computation as useful extras, or mere curiosities.

How would the classical paradigm be shifted?

Taking the viewpoint that the computational task is
an unknown (or infractable, see later) function, the
computational goal is to approximate it in a way
that holds the promise of reasonable optimality, but
crucially associates a meaningfid estimate of
confidence with every output computed. Tn general
terms, data-driven sofiware development supplants
specification-driven; computational tasks are
viewed as data-defined rather than (abstract)
specification-defined.

In detail, the approach might be through a survey,
sampling by, say, Markov Chain Monte Carlo
methods across a continuum of potentially viable
models, By doing this within a Bayesian
framework, rationalisable probabilities are attached
to various elements throughout the computational
process. The outcome is a weighted average across
a range of modelling possibilities, Tt is a well-
founded approximation whose validity emerges as
a secure estimate from the computational processes
employed. The infrastructure of the new paradigm
seeks to avoid searching, comparing and selecting
from amongst a discrete set of alternative models
{and hence commitment to a specific model, or
even discrete set of alternative models} by
maintaining the range of potential models as a set
of continuous parameters; probability theories,
secured by large-number sampling, provide the
over-arching framework.

A fundamental basis of continuity avoids the
brittleness  inherent in  discrete, classical
computation.  Notice, for example, that the
necessary discretisation of the real numbers that
plagues classical computation is not similarly
problematic for MLPs, despite their fundamental
dependence upon the real continuum.

Initially at least, classical computation will provide
the virtual machine upon which the approximate
computations will run, but hardware innovations




coupled with the establishment of generally
applicable approximation algorithms could change
that dramatically. However, building the required
confidence in a classically programmed. virtual
machine is not the same scale of problem as doing
it individually for every piece of application
software.

The initial challenge is fo begin to establish the
limits and the potential infrastructure of such a
science of approximate computation. This includes
major subdomains, such as a discipline of
engineering approximate software. It also involves
the identification and integration into a coherent
framework of many activities that are currently
pursued under a variety of labels, for example,
statistical pattern recognition, some varieties of
data mining, statistical data modelling, some
technologies of inductive generalization or data-
driven computation.

A science of approximate computation: when
and where?

The new science of approximate computation will
not oust the classical one; it will sit alongside it as
a néw weapon in an armoury of well-founded
alternative computational techniques to be used
when appropriate,

It will be appropriate to use whenever a
computational task is defined more by samples of
desired or observed behaviour than by an absiract
specification, Tt will also be appropriate to use
whenever the problem is well defined but
computationalty intractable, where the particular
task is appropriate for approximate solations, albeit
with a ‘confidence’ measure attached; there is no

prohibition on certainty emerging as an extreme of
approximation.

Consider an illuminating extreme --- safety-critical
software. Such systems would seem to absolutely
require the classical strategy: they must be correct.
However, the practical impossibility of this
requirement leads to a slight relaxation: it is
typically couched in terms of a very low
failure/error rate, and the major component of the
required assurances is extensive testing. The
bulwark of statistical reasoning, as an integral part
of the testing, is thus dragged in by the back door
{as.it were) — how much better to integrate it into
the fabric of the computation from beginning to
end, instead of tagging in on the end as a stopgap
Tor verification failure?

Will ‘programming’ an approximation computer be
more difficult than conventional programming?
All we can say is it will be fundamentally different
— for example, data analysis, selecting sampling
strategies, rather than formula derivation. The
‘programming’ difficulties that confront the user of
this new paradigm will be directly determined by
how successful we are in formulating the
fundamental model(s) of approximate computation,

Nothing in the above requires a new paradigm: any
of the innovations envisaged could be realised
within the scope of classical computation, as scme
already are. However, although a screwdriver can
be used to open a tin, it is quicker, neater and
generally preferable to use a well-designed tin
opener for the task.




