DRAFT 04/04/03
Theories for Ubiquitous Processes and Data
Platform for a 15-year Grand Challenge

OvERVIEW This paper is written as background for a proposed Grand
Challenge in Computing Research, entitled Science for Ubiquitous Com-
puting, The paper has a specific purpose: to trace the evolution of theo-
retical models for distributed and mobile computing, and the mutuoal inftu-
ence between these models on the one hand and software design.and-de=™
velopment on the other. It also discusses.many’ cotitepls that are necessary’
for understanding global and umq21tous computing. Some predictions are
given of what may be achle$ed_.t wards the Grand Challenge within the
short term.

We aim in this paper to establish the case that a theoretical approach is

essential. 'We do not here explore ways in which research commumty'

should organise ifself to fieef the Challenge; but it is clear to us that it ¢an
only be met by a close interplay between theoretical work and practical

expcrunentallon By
LT e s ARV e OV \”H,\,\.o 59\1..%\,@&”“»&'"

PAGE

I Models for distributed computing 2

2 Security 6

3 Boundaries, resources and trust 9 -

4 Distributed data 13"

5 Game semantics 16

6 Hybrid systems 19

7 Stochastics 21

8 Model checking 23

References 27

1 Models for distributed computing
Robin Milner

Int this section we trace some theoretical ideas that have become weéll-established in
computer science over the past fifty years, These ideas begin with stand-alone compu-
tation, and develop into a concepts for concurrent and interactive comﬁ_utation — which
also embraces communication. As we proceed towards ubiquitous computing more
and more concepts become- relevant, and demand precise definition.At the end of
the section we list several of these concepts; we then explore them individually in the
succeeding sections. ‘

1.1 The separation of models from software

Models of compuiation preceded programiming. A Turing machine [152] (called a
‘paper machine’ by Turing) modelled the way a human performs well-defined calcu-
lational procedures; automata theory arose from a study by McCulloch and Pitts of
neuronal activity, Church’s lambda calculus modelled the evaluation of a mathemat-
ical function represented by an applicative expression. Programming arises via Tur-
ing’s observation that a computing model, even a paper machine, can be universal,
loading a program is no more or less than the presentation of the description of a spe-
cific paper machine to a universal one, so that the latter can ‘enact’ the former. Thus
stored-program computers, such as Wilkes’s EDSAC, are engineering realisations of
the conception of a universal computing machine,

Despite these beginnings, programming has outstripped computational models. Soft-
ware technology has been expanded and adjusted to meet each advance in hardware
technology, more recently including network technology. Loss of tight connection be-
tween models and programnming has been inevitable. On the one hand, the market
for software has been so demanding that no sofiware company could afford the de-
lay caused by basing their software production process upon scientific analysis; on the
other hand, scientific models of computing have not kept up with opportunities afforded
by the enormous increase in computing power.

The resulting separation between software practice and science has had ugly con-
sequences. We are faced with mountains of inscrutable legacy software. More in-
sidiously, the habit of this separation is deeply ingrained in the software engineering
process, which has even come to be treated as a challenge to management rather than
to science. Superficially, it may appear hard to recover from these consequences, and
from the separation that caused them. But our Grand Challenge is founded on the ar-
gument that the separation need not end in divorce, and indeed must not do so if we are
to retain informed control over our computing artefacts,

Here we trace some of the positive — though sporadic — interplay between models
and software over the past four decades, revealing a trend that justifies the Grand Chal-
lenge we are putting forward: nothing less than to reunite software and models so that,
from having deployed divergent formalisms, they come to deal in one and the same
repertoire of ideas and modes of expression.

We do not find a steady pattern in the past interplay between models and soft-
ware. But we can detect three rather distinct phases (overlapping in time): the strongly
developed models for sequential, stand-alone computation; the onset of new models
for interactive computing; and the ramification of concepts essential to understanding
ubiquitous computing phenomena. We now trace these individually.

1.2 The science base for stand-alone computing

The first prominent feature is the steady innovative flow of models informing thie meaii-

ing and structure of programs and data. The list is long, and we only select a few high

spots as illustration. From the 1950s, Automata theory, originating as a model of brain

activity [McCulloch-Pitts], together with a formal language hierarchy, has helped un-

derstand the syntax of programming. In the same decade the lambda calculus[Church], :
dating from the 1940s, fed into McCarthy’s LISP [114], and later predicate calcolus -~
fed info logic programining [Colmerauer-Kowalski}; these are two rare instances of a
programining language founded closely on a logical formalism. Each of them, in re-. \
sponse to the demand for efficient implementation, then burst the bounds of its parent- Virdet,
formalism; this accurately llustrates the tensions between, on the one hand, science
secking tractable concepts, and on the other hand engineering practice in response to
application demands.

Turning to data, the refational database model [52] in the 1960s led to an upsurge % eV
in ways to organise and manipulate large masses of data, and also to a tadition 6f '
special programming languages to access such databases [Buneman). The mutual en- -~
richment of concepts of data and programming is a prominent feature of our Grand i

Challenge. Meanwhile, in the same decade, a search was re-mounted for a mathe-
matical foundation for programming [Strachey, Landin], and new languages inspired
by it (one of them, CPL, led cventually to the modern Tanguage C, though lost some
principled structure on the way). This in turn inspired the mathematical concept of do-
mains [Scott,Plotkin], providing an information-based theory of computational struc-
tures that continues to develop and enlighten later languages,

In the same period, but reaching prominence later, there was increasing concern
to model programs not only abstractly, but in terms of what laws they obey while
renning. This took more at least two forms, both based upon logic; program log-
ics [Floyd, Dijkstra][90] with greater emphasis on analysing how particular programs
behave, and operational semantics [134, 1207 [Kahn] with greater emphasis on defin-
ing the meaning of a whole language as a guide to implementers, Running along-
side this development was an increasing awareness of data rypes (and higher types as
well) [HoareZ, Reynolds, MacQueen] as a tool both for defining languages and for
analysing program behaviour. Simultaneously, computer-based reasoning tools [Good,
Gordon]{ 144] were designed to assist this analysis.

All of these studies are now seen as an inevitable and central developinent of the
science of computing. They are not just about programming; they constitute the first
detailed models of discrete dynamical systems, of which computer programs are a
leading ecample. Why is their impact on engineering practice delayed and incomplete?
A sufficient answer is the force of the market; the demand for languages and systems
has been too urgent to allow scientifically informed design.

» AV At/ (V L& [L\,\W\g}'\r "_) iﬂ‘\,_/}‘g-\f""\ L) PRAY VN AN f/’),é\v A

1.3 Models of concurrency and interaction

The models discussed above are largely concerned with what happens in a single se-
quential process, such as the execution of (say) a program written in Fortran. But
increasingly it became important to model the way in which such sequential systems,
running simultancously, might interact. Surprisingly, although neuronal activity in the
brain is massively concurrent, the classical theory of automata that it prompted did
not model this interaction adequately. The well-knowi Crone-Rhodes [Crone-Rhodes]

decomposition theorem.showed that any. finite_automaton_can be_decomposed into a

number of cooperating ones, but they cooperate only in pipelining fashion.

Among early models of truly interactive behaviour, Petri nets {130] — invented in
the 1960s — are a conceptual landmark. A simple Petri net models the interaction
between two automata by requiring them to synchronise certain of their transitions.
Furiher, Petri used the nets to model not only interacting computers, but real everyday

~concurrent processes such as office sysiems. It became clear that compuier science

would contiibute modelling concepts across a broad spectrum of human and mechan-
ical activity. In the late 1970s came compositional process caleuli such as CSP, CCS
and ACP [91, 117, 25], with semantic models originally inspired by the sequential
models already discussed. Around the same time came new logics, such as temporal
logic [Pnuelil, specifically concerned with interactive behaviour. These models con-
tribute not only to computer science but also to mathematics and logic.

Matching the sequential development, computer-assisted tools emerged to analyse
the behaviour of concurrent systems. A rich tool-kit grew up for Petri nets, exploit-
ing their topographical nature. An essential development was the arrival of model-
checking [49]; it permits a fuily automated analysis of whether a finite state system
satisfies a certain property expressed (say) in temporal logic.

A missing ingredient in the earlier models of interaction was mobility. The interact-
ing components of a complex system often have a fixed topography, but equally often
they do not; indeed, the very effect of a component’s interaction can be that it gains
new neighbours for further interaction. This lack was addressed around 1990; new
medels, exemplified by the w-calculus [119], introduced the necessary extra theory, A
large new domain of modelling became accessible, including systerns interacting over

the internet. Experimental programming languages and analytical tools were extended .-

to match [PICT, Mobility WB]. e

As in the case of sequential computing, models of interaciion have influenced ™

widely-used programming languages, notably Ada-and Java-but 6nly incompletely.

This is partly due to t@ébituateﬁseparation of software from science; it is also due

to need, realised perhaps iiostly in the last decade, for the many new or imperfectly
understood concepts that must underpin both the design and the modelling seriously
distributed — now called ubiguitous — coinputation. To these we now turn.

1.4 Conceptual ramification

All computational models are concerned both with what is computed and with how it
is computed. In concurrent systems, the emphasis shifts towards the latter; theories of
concurrency describe the degree of parallelism in a computation. Further, in distributed

; m.{j\ LA

systems, we become concerned with where things happen, i.e. localities; in mobile
computing, with movement among those localities; and so on.

Before extending this Tist, we note that locality and movement for concurrent pro-

. cesses have long been studied. In a comprehensive survey, Castellani [42] distinguishes
between abstract localities, those introduced (somewhat like types) 1o assist the un-
derstanding of processes, and concrete localities that can model their actual move-
ment, Mobile ambients, introduced by Cardelli and Gordon [39], are an important step
forward in the latter respect; they model movement between regions (which may be
physical or administraiive}, complemeiiting the mobile connectivity modelled by the
w-calculus. These two forms of movement are generalised in graphical reactive sys-
tems [73, 118], where arbitrary reconfiguratitns of may opeur.

Localities and mobility well iIlustratq{{he‘shhﬁ; romspecifying a program, i.e. say-
ing what it should do, to modelling a phe\:ib'ri:enmﬁ}rhether natural or artificial. The
chatlenge to understand ubiquitous computing arises because the variety of relevant
phenomena is large, and not fully explored. Nonethetess, many such phenomena have
been identified. Here are several of ther:

Security The management of privacy, both of data and of communication;

Boundaries, Resources, Trust The discipline of access to resources (including space,
time, hardware and services) and the criteria for authorising such access;

Distributed data multiply located databases, semi-structured data, provenance of data;
Game semanties Understanding agent-environment interaction as a strategy;

Hybrid systems The modelling of continuous variables (including space, time) in a
systein that is part computational, part real;

Stochastics Probabilistic modelling: guantifying uncertainty, evaluating pexformance;

Madel-checking automatic verification of a system against a logical specification, via
state-space search.

(The list cannot be exhaustive.) In the following sections we treat these concepts indi-
vidually. For each one we indicate its relevance to ubiquitous computing and outline
what has been achieved hitherto. We also discuss what may be achieved within a few
years; we regard these as steps that are both predictable and necessaty to meet the
Grand Challenge.

I K

.

2 Security

Andrew Gordon

At least a decade ago, Marc Weiser of Xerox PARC predicted that sometime before
the beginning of this century we would enter a third wave of computing, Ubiguitous
Computing [158], in which each person has many computers at their disposal, at work,
at play, and in the home, with form factors receding from the foreground into the back-
ground.- This would reverse the situation during the first wave, the- mainframe-ers; and
take the number of the world’s computers well beyond the second wave, the era of the
one-to-one relationship between person and desktop PC,

Today, in fact, we still use mainframes, though these days we tend to call them
websites, We are grateful that the ones on the public internet mostly ailow us to login
anonymously (well, as anonynmous as an IP address) thoogh sometimes they don’t and
then we have a hard time tracking all those unguessable passwords we have to think
up. The ones on private intranets provide work-related services like tracking customer
relationships, arranging travel and having it authorised, and so on; we need work-
related credentials to login to these services, so they are inconvenient to access from
anywhere but work, and it is next to impossible to access services on other intranet,
such as those of a business pattner.

Today, we still use PCs, but they no Ionger sit merely on every office desktop, but sit
in the study at home and beside the TV, with an old model in the guest room, and they
are around us in other form factors like laptops and tablets, Dialup connections seem
5o Last Century; broadband is finally taking off, and fnstitational and home wireless
networks are a hmge market. We no longer care much about viruses spreading via boot
sectors of floppies. Instead, we worry about attacks over the internet, via macros in
emails or via buffer over-run attacks on protocol stacks, and so on.

Additionaily, many of us use an array of other kinds of computerized gadgets, such
as mobile phones, digital cameras, PDAs, weather sensors, and so on, that increasingly
interoperate with each other and with PCs via various kinds of wireless network, What
used to be a burden mainly for professional IT staff, the task of managing networks—
installing patches, configuring firewalls, making backups—is rapidly becoming a bur-
den for everyone, since all of us are running networks,

In summary, ubiquitous computing has yet to emerge quite as Weiser predicted, but
clearly computers have tended to be smaller, more interconnected, and more numer-
ous. Mainframes and PCs have not gone away. Meanwhile, the security landscape has
shifted; some old threats (e.g., viruses on floppy discs) are receding, new threats have
arisen (e.g., macros in email), and future threats loom (e.g., unprotected home wireless
networks).

2.1 State of the art

In parallel with the trend towards ubiquity, informal principles of security engineer-
ing are emerging from more than thirty years of experience and are being codified in
baoks and articles [2, 19, 145], To risk oversimplification, security engineering should
be based on analysing the threats—physical, human, legal, and technological—faced

by a system, weighing up the costs of prevention, detection, and recovery, and hence
adopting explicit stances—policies—towards each threat. It has become a truism of
contputer security that we need to consider security at the level of systems, rather than
focusing just on particular mechanisms. We need to articulate clearcut policies, and
find suvitable undeslying mechanisms, and continue to monitor their effectiveness after
deployment.

Given this background-—the gradual influx of ubiquitous computing, and the grad-
ual distillation of security experience into informal engineering principles—the pur-
pose of this note is to identify some areas where theoretical computer science has made
and can make useful contributions. Inevitably, this note omits many important prob-
lems and important theoretical work, but I hope it will nonetheless be a useful starting
point for discussing challenging future directions.

2.2 Buiffer Overruns

Buffer overruns are a dreadful source of attacks on networked PCs; currently, a large
proportion of software patches concerns buffer overruns, A buffer overrun occurs when
input data is not properly validated, and hence overwrites memory beyond the input
buffer, Hence, it can be possible for an attacker to constract an input that deposits
runnable code in a victim computer’s memory, in such a way as to gain contrel of the
machine.

The programming fanguage community has long advocated memory safe languages,
like ML or Java, as a solution, There has been some progress in their adoption, but
hardly an overwhelming wave. Nonetheless, there is going to be an enormous legacy
of critical computing infrastructure (operating systems, network stacks, browsers) writ-
ten in unsafe languages—largely C—for the forsecable future.

There are two competing responses. One is to build tools to find defects such as
buffer overruns in existing C codebases. Microsoft uses Prefix {133] to search for
defects in Windows. Engler’s group at Stanford uses metacompilation [80] to find
defects in the Linux kernel, Wagner and others at Berkeley have built tools for finding
various code defects [156, 147] in C. Necula’s CCured [126] uses a combination of
static analysis and runtime checks to find memory bugs (such as buffer overruns) in
ANSI C programs.

The alternative response is to design safe languages that are so close to C that
large existing codebases may be ported with only minor modifications, Vault [64] from
Microsoft Research and Cyclone [99] from AT&T Research and Cornell are examples.

2.3 Security Protocols

The BAN logic for cryptographic security protocols has been hugely influential [34]; it
is one of the most cited articles in computer science. BAN was not the first formalism
for security protocols, guarantees very little, and indeed never had a completely satis-
factory semantics. Nonetheless, the paper stimulated a wide range of theoreticians to
consider a formal problem properly credited to Dolev and Yao [65]: given that the op-
ponent can monitor and replay network traffic, can encrypt and decrypt messages if it

knows the key material, but cannot simply guess unknown keys, can compliant princi-
pals still enjoy guarantees such as message integrity, authenticity, and confidentiality?

By the mid-90s, several solutions had emerged, along with a trade-off: finite-state
techniques such as model-checking [110] could find defects automatically, but could
not guarantee the absence of Dolev-Yao attacks; symbolic techniques such as theorem-
proving [129] or bisimulation proofs [1] could show the absence of such attacks, but
were rather labour intensive. The race was on to eliminate this trade-off and by now
we may say that the Dolev-Yao problem is largely solved; certainly, there is a range
“of tools [148, 53, 28] that with little or no human intervention can either verify or
detect defects in suites of abstract protocol descriptions, such as the Clark-Jacob col-
lection [461.

Still, in spite of this substantial progress, significant research questions remain.
Properties such as privacy protection and resistance to denial-of-service attacks have
risen in prominence, and need better theoretical support. Verification of the actual
implementation code of protocols--rather than abstract descriptions—has rarely been
achieved, verification of smartcard implementations, for example, should soon be within
reach. Further connections between the formal logics applied to the Dolev-Yao prob-
lem, and the probability- and complexity-theoretic techniques emerging from the cryp-
tography community could usefully be made [3].

24 Mobile Code and Mobile Agents

In the mid-90s, there was a lot of theoretical research on maobile code and mobile
computation [41, 155, 85], inspired in part by the excitement around Java applets,
Much effort was devoted to technologies such as bytecode verification [108] and proof-
carrying code [125] that can protect a host from untrusted mobile code. There was pre-
and post-Java work on mobile agents, envisaged as roaming the network, gathering
information on behalf of the user. But there was no very compelling technology for
protecting mobile code from untrusted hosts, that might rob an agent of its secrets.

Microsoft recently announced au initiative, originally codenamed “Palladium” [55,
20], to build hardware-based security features into PCs. These features could be ex-
ploited to provide safe havens for mobile agents, and so may give a new lease of life
to the idea. Whether or not mobile agents make a come back, formal analyses of
Palladium couid help establish the trustworthiness of the platform, and may suggest
improved APIs.

2.5 Network Management

How can organisations share their infrastructuores, so that an employee A of company
B can access a resource ¢ belonging to another company D? Much basic theory has
been developed over the Tast five or more years [104, 66, 143]. Still, littte has been
deployed, and the next step is implementation on top of technologies for e-science
(Grid computing [124]), e-business (web services {951), and the e-home (UPNP [67]).
There is scope for theoretical work as the basis for tools such as firewalls, intrusion
detection, and configuration analysis; a fine examplar is Guttman’s theory of firewall
configurations [79].

3 Boundaries, resources and trust

Vladimiro Sassone

Ubiquitous computing (UC) concerns (embedded) devices with limited capabilities
moving between unknown, untrusted networks, adapting their bebaviour in response to
changes to their computational environment, using shared network resources accord-
ing to given policies, and maintaining specific key services, and safety and robustness
properties. All-this requires specific-safety provisions, some of which have been ad-
dressed in theoretical work. We review here some of the most relevant contributions.

3.1 State of the art

In this section we consider research centered avound boundaries, resources and trust
and based on work on behavioural models and execution structures, two interwoven
streamns which feed each other reciprocally.

Boundaries Traditional approaches to resource access security rely on operating sys-
tern mechanisms which offer a fixed set of basic safety properties with little flexibility.
A move satisfactory practice offers typing as a fundamental vehicle for the analysis and
enforcement of access control. The development of type systems for process caleuli
originated with [131], and types have been used since to ensure type-consistent data
exchanges on communication channels, and as prescriptions to control access to such
channels and locations as, e.g., in 146, 101, 86].

The work on typing systems for ambient-based calculi has developed static analysis
to control diverse behavioural properties, These include type systems that trace agent
behaviour to gain control over ambient mobility, access and boundary crossing [38,
37, 116]. Properties of boundaries and their control have recently been formalised via
spatial logics, such as the ambient logic [40], whose connectives and modalities speak
of processes’ spatial structure as well as behaviour.

Pict [132], the first programming language based on the primitives of the w-calculus,
underlined the implementation difficulties involved with synchronous exchanges and
nondeterministic composition, and contributed to a shift of focus towards asynchironous
calculi [69, 86]. JoCam! [54] is a distributed implementation of the distributed join-
calculus [70]; only purely local synchronisation mechanisms are present in such cal-
culus, and this very limitation of synchronisation primitives stresses the distinction
between ‘local’ and ‘remote.” Implementing ambient mobility raises considerable dif-
ficulties, due to the presence of muliiple, unsynchronised threads inside ambients.
In [71] a distributed implementation of ambient migration is achieved via ingenious
protocols of (asynchronous) synchronisation messages; SAM [153], a distributed ab-
stract machine for SA, takes advantage of the type system of [107] to simplify the
mechanisms for the execution of well-typed terms. '

Resources Spanning from CPU cycles, to memory blocks, from networking services
to database access, the notion of resource is truly pervasive in UC, where third-party

1416

Plaec s

P

-

i

~.,)' ‘:f\‘-“;’\-f}, ".._é:"\,.‘-zi e

d

<!

resource usage is inirinsic to the paradigm. Relevant theoretical work includes [86,
127] which use systems of capabilities (o control resource usage, and [159, 141, 84]
where behavioural and dynamic types account for policies varying over time.

Space control has recently been the focus of important research. Crary et al. {57]
use a typed intermediate language to control safe deallocation of memory regions. Hof-
mann {92] introduces a notion of resource type, which can be thought of as an abstract
unit of space, and uses a linear type system to guarantee linear space consumption.
Crary and Weirich [58] guarantee quantitative bounds on time usage using a depen-

“dently typed assembly language;-[96] puts forward the first general formulation of re-
source usage analysis, Canceming jmbient—based calculi, [76] develops a calculus of
mobile resources whichcan be moved across locations provided suitable space is avail-
able at the target locations; [1517 and [44] use static techniques respectively to control
resource usage and to analyse the behaviour finite control processes. Regarding spec-
ification languages, the logic of bunched implications, BI [128], has been applied to
notions of resource, most notably program pointers [142].

Iyped assembly languages [121] are execution models embodying methods of ex-
plicit resource accounting, based on sophisticated dependent type systems. Current
research is investigating provision of resource usage guarantees for mobile code; this
gave tise o a virtual machine, Grail [111], together with a cost model for memory
consumption and a bytecode logic [109] based on BL

Trust Management Systems for trust management constitute essential parts of actual
access and resource control systems. They define languages to express policies of
authorisation to access resources, together with evaluation engines to grant or deny
requests accordingly. Typical instances are described in [30, 51]. Most of the formal
models in the literature are based on logics, as e.g. [140, 35], which can express notions
such as ‘belief’ and ‘authority’ and can, therefore, be used to formulate trust policies.

A mathematical formalisation has been proposed in [157], A principal’s policy is
modelled there as a function of the other principals’ trust levels (delegation), and the
actual trust levels it expresses can be obtained from the least fixed point of the collection
of the individual policies. Current research aims at modelling trust evointion [36].

Existing execution models for trust, frust engines, provide essenlially authentica-
tion services based on trusted key servers, protocols and system for public-key infras-
tructures. Among these, PolicyMaker [30], KeyNote [29], Referee [45].

3.2 Expected advances over the next three years,

Transient resource usage, whereby migrating programs access resources owned by oth-
ers, lies at the very heart of UC. In a near future scenario, devices will have severely
limited capabitities, and programmers will need to secure their applications’ needs re-
lying on services on remote execution environments.

Boundaries are very special entities in this respect: crossing them marks a transition
to new resources, local to the new enclosing environment. Knowledge of one’s own
surroundings will be very limited in the global network. Agents and hosts will have
to learn about each other dynamically, and this will have to rely on frust mechanisms:

10

trust will be the infrastructure underpinning decision taking in UC. Future research
themes will then include:

¢ negotiation, monitoring and protection of resource bounds, whereby owners and
users dynamically agree on transient resource allocations;

o exploration by migratory code of the Iargely unknown and untrusted neighbour-
hoods they inhabit and consequent adapfive behaviour.

These will rely on a notion of trust informed also by the principals’ past histories.
Below are some relevant open issues that we expect to be successfully tackled in the
next 3/5 years.

Boundaries As it is not conceivable tc endow processes with a static acquaintance
with the global network, we need to formulate protocols to acguire and manage such
knowledge and equip process with adequate such mechanisms. A form of access ne-
gotiation will be needed as a basic infrastructure for agent-based computational en-
vironments. Types for access control need a general mechanism to make an agent’s
type depend on the different contexts where it resides, so as to allow different types of
exchanges at different locations, while preserving the safety of such interactions. Be-
havioural types can then be used to express and enforce policies depending on forms
of process ‘behaviours’ or ‘modes.” Foundational work on systems of capabilities is
needed to express actions typical of UC (e.g. copy, move, upload), as well as primi-
tives for their management (e.g. duplicate, forward, and revoke).

As for abstract machines, we need to focus on mechanisms for communication
across boundaries and access negotiation, and on ensuring failure resilience,

Resources Upon crossing boundaries, migrating agents need to secure resources from
the target environment, Protocols will be needed for host and agent to exchange infor-
mation and requests, and engage in complex negotiations of resowrce bounds, This
calls for foundational calculi which capture the essence of resource and their control,
and underpin techniques for usage analysis and quantitative resource bounds, Spatial
logics will serve to develop logic formalisms able to express properties of resource-
aware computation, which will evolve to fully-fledged logics of resources suitable for
UC applications.

The work on computational mechanisms for negotiation of access will need to be
progressively lifted to design abstract machines accounting for the features of negotia-
tion and guarantees of resource bounds, and implementing the relative protocols,

Trust Management None of the cxisting trust models covers dynamic trust evolu-
tion and re-evaluation satisfactorily. Still, real migrating agents evolve, interact, learn
about each other and, therefore, change opinion. We need to develop models of trust
accounting for its formation, evolution, and propagation. These must designed in ac-
cordance with the highly dynamic prerogatives of UC entities, take into account the
dynamic formation of spontaneous networks between them, and be realistic about the
speed of propagation of trust information. In particular, knowing the ‘global’ web of

11

frust at any particular instant is beyond the ability of any single process in our frame-
work. We will need techniques to approximate such knowledge using local exchanges
and information, and protocols of asyachronous remote communications.

Work is needed to develop the basic computational mechanisms entailed by such
vision, and in particutar a set of primitives for distributed rrust evaluation engines and
for distributed delegarion and propagation of trust levels between principals. Tt will
be important to design suitable languages to express trust policies and their dynamic
~ upgrading in response to events,

3.3 Relevance to Ubiquity Theory

UC’s inherent difficulties originate in the extreme dynamic reconfigurability of the
computationat infrastructure. They include the Iack of reliable mechanisms for coor-
dination and trust between agents unknown to each other, the migration of vntrusted
agents to untrusted sites, the corresponding access control policies and their enforce-
ment, the protection and safe management of resources, the privacy and confidentiality
of data.

This requires the acquisition of a wide-spectrum conceptual understanding of foun-
dational issues and computational models relying on principles built upon novel se-
mantic models, The integration of all such aspects is fundamental for success. Theory
plays a pivotal role in unifying notions and yielding flexible, adaptable mechanisms.
Reciprocally, feedback from implementations is needed for the theory to be robust:
«theoretical and experimental mvcstlgatwns ought not to be kept apart at such an early

stage in the development of & Tiew computatlonal infrastructure.

3.4 A list of the leading groups worldwide

Aarhus, DEN; Bologna, ITA; CMU, USA; Cambridge, UK; Cornell, USA; Edinburgh,
UK; Florence, ITA; INRIA (Rocquencourt, Sophia), FRA; London, UK; Lisbon, POR
Microsoft Cambridge, UK; Munich, GER; Princeton, USA; Santa Clara, USA; Sussex,

UK Tokyo, JAP.

12

4 Distributed data

This is some background material on distributed databases and ubiquitous computing.
It provides a very briel survey of relevant background in databases and a selection of
recent work that is, in the author’s opinion, likely to be relevant to the development of
databases in ubiquitous computing.

The topic of databases was emerged from the interplay of two requirements. The
first was to have a siinple abstraction for large quantities of structured data; the second
was t0 make the manpulation of this data both robust and efficient. The relational
model [52] was invented for the first of these. It proposed a simple tabular data model
and an algebra of operations on tables. What was remarkable about this algebra is that
its equational theory served as a basis for query optimisation and that queries could be
efficiently implemented through indexing and join techniques. This accounied for the
success of relational databases; the details are described in good database textbooks
[139]. :
Even though databases are often designed in an attempt to contain all the infor-

mation relevant to some “enterprise”, they can never achieve this goal. In practice,

the resources needed to answer a query are often to be found in a variety of databases

distributed across a network., The need to query distributed data sources gave rise to

otie of the early, practical, examples of mobile code [77, 98, 161]. In distributed query

optimisation one may decide to decompose a query and move parts of it to another

- - “>site’in order to reduce network traffic. ‘The problems of this form of data integration

were compounded by the emergence of new data models and the need to deal with

-7 a variety of data formats. For these it was necessary to find appropriate query lan-

) guages in which one could generalise the optmisation systems developed for relational

databases [50, 31].

The last ten years have seen a steady progression towards higher degrees of distri-

bution and increasing mobility of data. An interesting case study is the field of bioin-

- formatics in which there are some 500 public databases and many times that number

in commercial use. Although the computing substrate in bicinformatics is far from
ubiquitous, the trends towards ubiquity are evident,

¢ Only an handful of these databases are source data. The others are constructed
by a process of filiering, tranforming, cleaning and annofating data in other
databases. These databases have added value because of the effort that that has
gone into constructing them,.

» The structure of the databases evolves to capture new forms of scientific knowl-
edge.

» Many of the databases make use of purpose-built data formats. Our query lan-

. N s . ;
GV _\ ANV . guages and optimisation techniques must be adapted to cope with these.
8 N

. . 1AL . . . P P .
v ”\D/W“v\w "o An increasingly important activity is monitoring other data sources for new infor-

LN N . . - . . [L1
5 AN mation, Some important discoveries have been made by monitoring the “stream
\ of genetic sequence data. {

13

In addition to challenging conventional database technology [61], bicinformatics
raises new issues that have largely been jgrioréd.by database research. One is prove-
nance. Given that fragmentis of data are! beig@pied between databases on an un-
precedented scale, how do we record whe}e‘&l)gs fragments have come from? Under-
standing and recording where data comes from and the route by which it arrived in a
given database is crucial to data quality. Moreover, provenance is essential for almost
any form of data exploration. The revolution caused by the proliferation of scientific
databases on the Web has also damaged scientific research by making it difficult or im-
“possibie to cite, attribute and verify one’s data sources. Part of provenance is archiving, ™
Scientists expect to cite a data source and expect that the source will be preserved for
others to verify. Yet databases change, they do not record their history, and citations
become invalid. Archiving techniques are needed [32] in order to preserve past states
of the data in an accessible form.

A related issue is annotation. Scientists are starting to communicate by a process
of overlaying their annotations on existing data and making those annotations visible
to others [149]. This brings up new challenges for database research: How do we
describe the attachment of annotations to data? How do we carry annotations through
queries? How do we organize owr databases to receive annofations, and how do we
attach annofations to most “legacy” databases that do not store annotations,

Although bioinformatig is a1t interesting step towards ubiquitous data, it is only a
first step. Most bicinformatics application depend on conventional “pull” technology.
The databases are largely unmovable, and queries are moved to the data. Also, the
connection with mobility — in the programming language sense — though real is sim-
ple. Distributed query optimisation seldom involves more than a handful of databases,
and most techniques are static: the optimisation strategy does not change during the
evaluation of a query.

The emergence of XML as a vniversal data exchange format is having a profound
impact on how we think of distributed data. In theory, XML oniy solves a low-level data
serialisation problem — one that was arguably solved 50 years ago by Lisp. In practice
it has had two important consequences. First we have had to revisit all the work that .
has been developed for databases — the query languages, type systems, the storage and
optimisation techniques — and rework them for this form of semistructured data [4).
The second is that XML, being serial in nature, is suited to “push” technology. Rather
than thinking of the database as static and the queries being mobile, one can consider
the data being mobile and “streamed” past the queries that are static and filtering out
information of interest, This dual version of data processing has been explored in recent
work on data sireams [43, 78].

To speculate on how databases will be used in ubiquitous compuling, consider a
distributed health-care system. There are huge problems associated with keeping pa-
tient records, One increasingly popular proposal is that each individual should “own”
their medical record and give out all or part of the record to trusted parties on demand,
Now assume that a medical record is not just a sequence of tests and (reatments, but
contains vast amounts of sensor data and, say, cne’s genetic sequence. Now suppose
that a researcher wants to correlate the occirgnce of a cardiovascular condition with
some genetic structure. The task is not to infégrate a few databases, but literally mil-
lions of them. The task requires a mixture of push and pull technology. Assumning that

14

the exchange formats are agreed, there is still a heterogeneous integration and optimi-
sation problem, because some medical records will be held in conventional databases
while others will be available from individuals via web services. Worse, the medical
record itself may be distributed and parts of it may only sporadically be connected to a
network. There has been some speculation on how databases will evolve to meet this
challenge [72]. It is likely that we will also require models of mobility that have been
developed in progranuning languages.

15

5 Game Semantics

Samson Abramsky

Game semantics has developed, from various antecendents in logic (especially the
work of Lorenzen and his school, and Andreas Blass), and to a lesser extent combi-
natorial game theory and category theory (Conway, Joyal), into a signficant approach
in the semantics of both programming languages and logics. Beyond the study of spe-

—cific-languages; it is awemerging theory of interaction ingeneraf, As such, it stands

comparison with the theory of concurrent processes — which also forms one of the
intellectual and technical ancestors of game semantics.

Like process theory, game semantics allows the modelling of systems of interacting
agents or processes, The main differences are as follows:

» The distinction between System and Environiment — the two protagonists in the
‘game’ — is made explicit in Game Semantics, This apparently small step has
profound repercussions in the way the theory is structured.

¢ Game Semantics naturally organizes itself into structured categories (in which

the objects are games and the morphisms are strategies), and hence into models

of type theories, logics, A-calculi and high-level programming languages, in a
way in which process calculi do not (despite the efforts of the present author and
others).

5.1 Achievements \‘,\

Game Semantics has achieved striking successes in giving precise models for a wide
range of logics, type theories, and A-calculus based programming languages. In partic-
ular, it has proved possible to capture exactly which interactive processes are definable
using certain computational features, such as; purely (sequential) functional means,
local state, reference types, control operators, exceptions, nondeterminism, probabili-
ties, ... and vavious combinations of these, in terms of which structural constraints are
imposed on strategies. Thus for example, being purely functional involves only local
information being available in each branch of a computation; relaxing this constraint
characterizes stateful programs. Again, obeying a well-formed call-return discipline is
captured by indentifying moves (basic actions) as questions or answers and imposing
a ‘bracketing constraint’. Relaxing this constraint characterizes those processes which
can make use of non-local control features, In this way, an understanding of the space
of programming languages begins to emerge; and it is becoming increasingly routine
to capture subtle combinations of computational features with appropriate choices of
forms of game semantic structure.

These foundational developments are increasingly leading to applications of vari-
ous kinds, In particular:

¢ A significant cuirent development is towards Algorithmic game semantics; tak-
ing advantage of the concrete nature of games and strategies to capture the se-
mantics in machine representable form (e.g. representing strategies by automata)

16

GV e A
s

S A },;"“ ot
v

as a basis for program analysis and software model-checking. The inherent com-
positionality of game semanltics — the ability to give direct meaning to incomplete
program [ragments - is one of the main attractions of this approach.

o Game semantics also offers a natural perspective for analyzing information flow
and security properties, and for specifying and refining reactive program mod-
ules or components.

On the foundational lelvel, there are also significant developments towards a better
understanding of the axiomatic basis for game semantics, and its connections with
domain theory. These developments are important for improving the mathematical
tractability, robustness and generality of the theory.

5.2 Expected advances in the near term

We anticipate the following advances over the next three or four years:

o Thus far, most of the applications of game semauntics have been to sequential
languages. It seems clear that concurrent languages can be treated with rela-
tively minor modifications. (Non-determinism has already been handled with
reasonable success).

¢ Object-oriented languages will similarly be treated. In fact, recent work by Jef-
frey and Rathke, although not explicitly game semantical, is of a clearly related
flavour.

e A ‘nominal’ version of Game semantics, incorporating the same kind of capabil-
ities for scoped name creation as the m-calculus and related ‘nominal’ caleuli, is
being developed by the present author. This will certainly interact with both the
previous directions.

¢ (ni the foundational side, the recent work by Jim Laird on sequoidal categories,
and on locally boolean domains and bistable functions, promises some excit-
ing progress on making game semantics more algebraic and mathematically
tractable, and leading to a deeper understanding of the ‘landscape’ of interac-
tive models, and how they relate to more traditional, extensional models.

¢ Another current development is towards physics-based models of computation,
and in particular reversible and quantum computation. Game semantics is one of
the promising ingredients towards a ‘high-level’ approach to quantum computa-
tion.

¢ Finally, we mention the theme of combining qualitative and quantitative ap-
proaches to information (to be discussed more extensively elsewhere). Again,/

it seems that game semantics is likely to play a role in these developments, e.g.
in the study of information flow.

17

5.3 Relevance to Ubiquity
Why is Game Semantics relevant to Ubiquity?

¢ Firstly, a key part of the challenge of mastering ubiquitous computing is to thor-
oughly embrace the standpoint that every piece of hardware or software is a
component, embedded in a larger system — and moreover this larger system is
never known in advance, and is in fact constantly changing, What we need then
is to understand components in terms of their interactions with their environ-

ment across some boundary, Tt is t?;q;ﬂy"ﬁﬁs kind of understanding which Game
sematics offers, in a highly stryettired form.

+ Behavioural proper i@”fﬁ'ide variety of forms, rather than traditional notions
of *extensional’ c: n'esgness, will increasingly be a primary concern in the anal-
ysis of ubiquitous?syst ms. Again, game semantics is well-adapted to the precise
formulation and compositional verification of such properties,

o Finally, it is likely that agent-based views of computation, with explicit consider-
ations of rational decision-making and maximization of utilities, which is already
a significant research area in view of Internet applications, will be important in
the context of ubiquitous computing. A rapprochement betwen Game Semantics
and Game Theory, already the subject of some ongoing research, would be a
powerful tool in a theory of ubiquily,

54 Leading groups worldwide
e The U.K.

— Oxford {Abramsky, Ong}
— Cambridge (Hyland)
— Sussex (McCusker, Laird)

Other interested rescarchers: Lazic (Warwick), Reddy (Binmingham), Malacaria,
Honda (Queen Mary London), Schalk (Manchester), ...

¢ Fraince

= Paris (Curien, Melligs, Danos, Laurent, Baillot) |
— Marseille (Girard)

e Italy
~ Udine (Honsell, Lenisa, i Gianantonio)
¢ Canada

— Montreal/Calgary (Seeley, Cockett, Panangaden)'_

18

6 Hybrid systems
Marta Kwiatkowska

A discrete (boolean) syslem is one in which state changes occur in a discrete fash-
ion, between states that can be coded as boolean vectors. Sensor inputs, on the other
hand, exhibit confinnous dynamics, typically described in terms of differential equa-
tions in a multi-dimensional real-valued space. Hybrid systems are characterized by a
combination of discrete and continuous components: they take the form of a discrete
controller embedded in an analogue environment, where the analogue part of the sys-
tem may concern variations of the ambient temperature of the system, the volume of
coolant in a chemical process, or, more simply, the passage of time (between system
events).

6.1 State of the art

INOTE FROM RM: We'd like a bit more here on hybrid models, e.g. Hen-
zinger, with references. They should balance the references concerned with,
hybrid model-checking in the next paragraph]

Formal models for hybrid systems typically take the form of a finite-state automa-
ton (representing the discrete component) equipped with a finite sef of realt-valued vari-
ables (representing the continuous component), though we are aware of a first attempt
to define a process calculus for such systems (the ®-calcultus). The values of the vari-
ables may influence the transitions among the states of the antomaton (for example,
by enabling particular transitions for choice), and, conversely, the transitions between
such states and the passage of time when control remains within the states can affect the
values of the variables (for example, a transition may reset the values of some continu-
ous variables to a particular value, and differential equations describe how the variables
change over time when control resides in a given state). A subclass of hybrid automata
called the timed aufomata, which admits real-valued clocks that increase at the same
rale as time as the only continuous variables, has been applied successfully to model
and verify real-time systems,

The presence of real-valued variables in formalisms for hybrid systems means that
the underlying semantic model of such formalisms is infinite-state. In contrast, model
checking is applied traditionally to finite-state systems. A breakthrough result concern-
ing the developiment of automatic verification methods for real-time systems was made
by Alur and Dili {18], who presented a technique for obtaining a faithful finite-state
representation of timed automata. Unfortunately, the decidability of basic sub-tasks of
verification such as reachability are undecidable for many classes of hybrid automata
{for example, the reachability problem for timed automata equipped with one clock
which can be stopped in some states and restarted in others is, in general, undecid-
able), although some decidability results have been developed [?, 87, ?]. Typically,
model checking tools for timed automata, such as UPPAAL and KRONOS, implement
decidable algorithms, whereas semi-decidable model checking algorithins are imple-
mented in model checkers of hybrid automata, such as the tool HYTECH. The devel-

19

opment and implementation of efficient algorithims for timed automata [?, 105, 160]
has made possible the verification of several (moderately-sized) industrial case studies.

6.2 Expected advances

[NOTE FROM RM: We should also have some expected advances in the
models, not just in the model-checking. |

The successfult-development of imed-automaton modet-checking tools-such-as1P-
PAAL will be consolidated in two respects: on one hand, there will be further advances
in the development and implementation of efficient algorithms for timed automata veri-
fication; on the other hand, methods for the verification of extensions of the basic timed
automata model - for example, with parameters, probabilities, and costs/rewards — will
be implemented and applied to real-life systems. In the context of timed automata, and
also the more general hybrid antomata, the development of high-level system descrip-
tion languages, using appropriate concepts of hierarchical and paraliel composition,
will continue to be developed, along with associated modutar verification techniques.
Finally, the challenge of obtaining appropriate representations of state sets generated
by complex continnous dynamics of hybrid automata will be addressed, developing
ideas implemented thus far in tools such as HYTECH, CHECKMATE and d/dt.

6.3 Leading groups
¢ UPPAAL team of the universities of Uppsala and Aalborg (Larsen, Yi)

¢ VERIMAG (Sifakis, KRONOS)
¢ University of California at Berkeley (Henzinger)

+ University of Pennsylvania (Alur)

20

7 Stochastics

Marta Kwiatkowska

[NOTE FROM RM: We should include something a litstle more detailed on
stochastic process calculi, ar present only mentioned in passing in para-

graph 2. |

Many systerns exhibit stochastic dynamics, either in-the form of discrete proba-
bilistic behaviour that is the outcome of coin tossing, or as described by continuous
probability distributions (the probability of the system moving to a given state within
a specified time is given by a probability density function). Probabilistic models, typi-
cally some varfants of discrete or continuous Markov processes, are those whose tran-
sition relation is probabilistic (i.e. with probability 1/3 the next state is left, and with
probability 2/3 it is right). Probabilistic modelling is used to represent and quantify
uncertainty; as a symmelry breaker in distributed co-ordination problems; to model
unreligble or unpredictable behavior; and to predict system behaviour based on the
calculation of performance characteristics.

7.1 State of the art

Performance evaluation, historically the earliest, began in the early 1910s with A K. Er-
lang’s stochastic capacity planning for telephone exchanges, and developed into queu-
ing theory much studied throughout the 20th century. The now established field of
performance evaluation [150] aims to develop formalisms and tools for modelling sys-
tems and analysing their performance measures, as a means to support the process
of design and engineering. The analysis involves building a probabilistic model of
the system being considered, typically a continuous time Markov chain (CTMC), but
often more general probability distributions are needed [74]. Such models can be de-
rived from high-level descriptions in stochastic process calculi [89] or Petri nets [113].
The model serves as a basis for analytical, simulation-based or numerical calculations
which result in steady-state or transicnt probabilities and the associated performance
measures (resource utilisation, average call waiting time, etc). The focus is on gnanti-
tative characteristics, including measurement and testing, and covers a broad spectrum
of issues. '

Probabilistic model checking is an extension of model checking techniques to prob-
abilistic systems, first introduced in [83] and further developed in [154, 56]. As in
conventional model checking, a model of the probabilistic system, usually in the form
of a discrete or continuous time Markov chain (DTMC/CTMC) or a Markov decision
process (MDP), is built and then subjected to algorithmic analysis in order to estab-
lish whether it satisfies a given specification. The model checking procedure combines
traversal of the underlying transition graph with numerical solutions of linear optimisa-
tion problems (for Markov decision process models) [26, 24] and linear equation sys-
tems and linear differential equation systems (for DTMC/CTMC models) {81, 21, 231

Model checking of non-probabilistic systems has developed very quickly from first
algorithms into implementations of industrially relevant software tools. In contrast,

21

model checking of probabilistic systems has not followed the same path: although
the algorithms and proof systems have been known since the mid-1980’s, little imple-
mentation work has been done up until recently, culminating in the development of
tools PRISlval (for DTMCs/CTMCs and MDPs) and ETMCC? (for CT MCs), with the
help of which a number of systems have been studies (IEEE 1394 FireWire, Crowds
anonymity protocol, etc). As in the case of conventional model checking, state space
explosion is a particular difficulty, and has been tackled through an adaptation of sym-
bolic, BDD-based, methods [22, 881 and parallel, distributed, disk-based techmiques
1100, 63]. Compositionality in the form of assume-guarantee reasoning has proved
particularly difficult [62] and is not yet satisfactorily resolved. The direction being
pursued is to seek out new algorithms, modelling and specification languages, indus-
trially relevant case studies, as well as tool building and experimentation.

7.2 Expected advances

The challenges for ubiquitous systems are: spatial mobility, where we expect progress
based on the stochastic pi-calculus [136] and the @-cateulus or hybrid automata; and
scalability, where a broader range of methods, ranging from sampling-based, through
analytical and numerical solutions will be needed. Along with the very large sys-
tems, infinite-state systems also pose significant difficulties, which will require proof
techniques. We anticipate that industrial-strength probabilistic model checkers will be
developed and applied to a number of relevant case studies.

7.3 Leading groups
¢ University of Birmingham
» Twente (Katoen, Haverkoort)
¢ Bonn (Baier)
¢ Brlangen (Siegle)
¢ University of California at Santa Cruz (de Alfaro)

o UNSW/Maquarrie (Carroll Morgan and Annebelie Mclver)

Rice U (Vardi)

» U Toronto (Craig Boutilier, planning)

lhttp:wm«u cs.bham.ac. uk/ “dxp/prism/
2http: //wwwd . informatik.uni-erlangen.de/etmec/

22

8 Model Checking

Marta Kwiatkowska

The concept of antomated software verification is attributed to Floyd, author of the
influential 1967 paper on the verifying compiler, but it was already apparent to Turing
in 1950. The crux of Floyd's proposal was to annotate programs with assertions and
involve a theorem prover to establish program correctness with respect to specification.
Assertion-style reasoning, a-methodology for-manually deriving-progrant correctness-
proofs, was developed over the following years, notably by Hoare and Dijkstra. The
inherent complexity of real software and its features (concurrency, for example, posed
a particular difficulty for the proof rules, as can be seen from the work of Owicki &
Gries and CIliff Jones), combined with the relative inaccessibility of theorem provers
for this task, have delayed the acceptance of the methodology in practice. '

8.1 State of the art

A first breakthrough for automatic verification came with the advent of model check-
ing, an alternative, model-based, software verification approach already implicit in
Pnueli’s seminal paper on Linear Time Temporal Logic (LTL} [135]. Model check-
ing consists of model building (automatic derivation of a state-transition systein from a
model description in some appropriate language, possibly concurrent) and algorithmi-
cally checking by exhaustive state-space search if the executions of the model satisfy a
given property, typically stated as a temporal logic formula; otherwise, error diagnos-
tics are returned in the form of an execution up to property violation, Model checking
was developed in 1981 independently by Clarke & Emerson [49] (for logical circuits |
and the logic CTL, Computation Tree Logic) and Quielle & Sifakis [137] (for protocols
modelled in CCS and modal mu-calculus specifications). Some model checkers val-
idate equivalence or refinement between two systems. Equivalence checking is often
employed in hardware verification, to ensure that the modifications introduced in the
circuit have not affected its functionality. Refinement checking is used to establish a
relation between a specification and implementation.

Since model checking is an algorithmic procedure, the model representation must
be finite to enable automatic analysis. In its simplest form, modef checking reduces to
a traversal of the underlying state-transition graph of the model, and hence is guided
by fundamental research in the pertinent theories of automata, graph, formal language
and logic. However, a distinctive feature of model checking is its emphasis on practice,
In tandem with research effort invested in studying decidable classes of model check-
ing problems and their complexity, as well as expressiveness of property specification
and rigorous design of modelling languages, there is work on designing efficient data
structures and engineering of software tools. This, together with the fully aufomatic,
push-button technology nature of the model checking process, has contributed to wide
acceptance of model checking in industry (Intel, IBM, Motorola, Siemens, Lucent/
Cadence). Its advance was aided by the ability to detect previously unknown errors,
such as the Futurebus protocol (CMU SMYV tool), Needham-Schroeder authentication

23

protocol (CSP/FDR fool) and mote recently the AODV (An Ad-hoc On demand Dis-
tance Vector routing protocol) (SPIN tool).

The 1980s saw major effort directed towards finite-state model checking, largely
towards combating the stafe-space explosion problem, namely when the model size
can become prohibitively large, which is characterized by the exponential growth of
the number of states of the model with respect to the number of concument com-
ponents®. Symbolic model checking, a heuristic approach based on Binary-Decision
Diagrams (BDDs) introduced by Bryant and adapted to temporal logic verification in

"[33], contributed much to the success of model checking in practice. Symbolic model
checking uses BDDs as a compact data structure to represent the state-transition graph
that performs well if regularity and sharing occurs in the model, The primitive opera-
tions manipulate sets of states, and traversal is performed via fixed poin{ calculation (in
powerset lattice), First implemented in the SMV tool [115], symbolic model checking
has been the single most important development that resulted in industrial exploitation
of automatic verification, particularly in the context of circuit design. More recently,
SAT solvers, their underpinning software technology having substaniially advanced re-
cently, were also employed in bounded model checking [27], a verification method
applicable up to a fixed execution depth, in some cases resulting in real-time improve-
ment over symbolic model checking. Unfortunately, these heuristic methods can be
unpredictable and rarely scale up well to industrial size systems.

Finiteness of the model is a significant limitation of the model checking approach.
Not only is it cumbersome (for example, a new check has to be performed for ev-
ery instantiation of parameters), but also unrealistic since systems can be infinite-state.
Infinite-state model checking has been a major concern throughout the 1990s. The
sources of infinity vary, and may arise from unbounded data types and control strue- -
tures, parametric specifications, or real-valued data such as time. Clearly, infinite-state
models may give rise to undecidable verification problems, that can only be tackled
with a theorem proving approach, but for certain problems representing the model in
full detail is often unnecessary — an abstract version will suffice, Key techniques that
have accounted for much progress in the last decade, and which we anticipate to yield
further advances, are abstraction, compositional reasoning techniques and atomated
proof support,

Predicate abstraction [48] identifics all states that satisfy the same set of predi-
cates, thus reducing the size of the model (which can be infinite) to a finite quotient.
The success or failure of model checking on the abstract model determines the corre-
sponding property on the concrete system, with possible further abstraction/refinement
steps guided by counterexamples [47]. Several data type reduction fechniques exist,
including symmetry reduction [97] and data independence [106]. Unfortunately, such
methods are rarely fully automatic, often requiring much insight into the modelling
problem.

Compositional reasoning, such as assume-guarantee reasoning, allow to decom-
pose the system and the verification problem into feasible tasks. Originally introduced
by Misra and Chandy (1981) for manual verification, assume-guarantee was adapted to

3For example, a systems composed of 100 concusrent components each having at most 10 states can have
up to 10100 states

24

model checking in [?] (tool MOCHA) and {?] (tool Cadence SMV) and its effectiveness
demonstrated on large examples. Hierarchical verification combined with refinement -
checking can improve scalability further.

There has been much progress made recently regarding verification of systems with
unbounded structures, resulting in decidability and complexity results for push-down -
systems [68] and their implementation (tool MOPED). Unfortunately, verification of
many infinite-state systems is only possible via automated proof support. A suit-
able combination of deductive verification based on theorem proving with algorithmic
model checking clearly Tias potential, and has already been explored in'e.g. [138], but
its success in practice will be determined by how much low-level user intervention is
needed for the task at hand. An alternative is an enhancement of the power of model
checking with automatic support for proof rules (Cadence SMV tool). The verification
of inductive properties is broken up into model-checkable cases, yielding automatic
and efficient verification of large, possibly infinite-state systems, albeit for a restricted
class of systems and properties compared to a theorem proving approach,

The availability of antomated proof support within a model checker brings us a
step closer to Floyd’s vision of ‘the verifying compiler’, but unfortunately does not
address the biggest challenge of software verification — the gap between the model and
real software, be it embedded (which may contain clock and other sensor inputs, elec-
tronic coin tossing, stochastic features, etc) or programs written high-tevel program-
ming languages such as C and Java (which may contain pointers, pointer arithmetic,
dynamic data structures, concurrent threads, recursion, etc), The past five years have
witnessed progress in that direction too, founded on the application of static analysis
and abstraction/refinement methods to exiract a finite-state model from a given C or
Java program, which is then submitted to a model checker, and, in case of errors, con-
cretized executions are derived from the abstract ones of the model’s. Examples of
relevant projects in this area are Bandera* and Java PathFinder® (for Java programs),
BLASTS® at Berkeley (most of C language) and SLAM? at Microsoft Redmond (applied
to driver verification). That the techniques are making inroads into the software devel-
opment practices is evident from the words of Bill Gates (April 18, 2002): “Things like
even software verification, this has been the Holy Grail of computer science for.many™™
decades but now in some very key areas, for example, driver verification ';iéﬁilding
{ools that can do actual proof about the software and how it works in orde t0=g£arantee
the reliability.”

8.2 Expected advances

Despite the successes of model checking in the past 20 years or so, the size and com-
plexity of of industrial designs and software systems is such that their comprehensive
verification is well beyond reach. The challenges pertinent to ubiquity are: mobility and
dynamic scenarios (some progress has been recently made for the pi-calculus in [59]);
infinite-state systems {parametric verification, push-down systems}; scalability of the

Shttp://www.cis.ksu.edu/santos/bandera/
Shttp://ase.arc.nasa.gov/visser/ipE/
Shttp://www-cad.eecs.berkeley.adu/ rupak/blast/
Thttp: //research.microsoft . com/STAM/

25

methods to industrial scale systems (e.g. via hierarchical verification, compositionality,
deductive methods); and real sgfhware (pointers and pointer arithmetic, dynamic data
structures and the heap, procedures and recursion). In theory, we expect progress to
be made in all those, with the successful methods to be developed in practice so that
infinite-state model checking becomes widely accepted in industry. In turn, industrial
demands will enforce greater reusability, more standardization and interconnectivity of
tools. ‘

8.3 Leﬁﬁing groilps .
e CMU (Clarke)
s Rice University (Vardi)
¢ Weizmann (Pnueli}
¢ VERIMAG
¢ IRST Trento
¢ LSV, ENS Cachan
e Oxford (Roscoe, FDR)
¢ Cambridge (Gordon)
¢+ KSU (Bandera)
¢ MS Redmond (SLAM)
¢ NASA Ames (Java PathFinder}
¢ Stanford (Dill, Murphy)
¢ Berkeley (Henzinger, Mocha}
¢ University of Pennsylvania (Alur, Mocha)
o LIAREA, Paris 7 (Bouajjani)
o Uppsala (Jonsson)
¢ Edinburgh/Stuttgart (Esparza, Moped)

26

References

[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148:1-70, 1999,

[2] M. Abadi and R, Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6-135, 1996,

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption), Journal of Cryptology, 15(2):103-
127, 2002.

[4] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Rela-
tions to Semistructured Data and XML, Morgan Kaufmann, 1999,

[5] S. Abramsky. Retracing some paths in process algebra. In U. Montanari and
V. Sassone, editors, Proceedings of CONCUR 96, volume 1119 of Lecture Notes
in Computer Science, pages 1-17. Springer-Verlag, 1996.

6] S. Abramsky. A structural approach to reversible computation, In Proceedings
of LCCS 2001: International Workshop on Logic and Complexity in Computer
Science, 2001.

[71 8. Abramsky. Algorithmic game semantics: a tutorial introduction. In
H. Schwichtenberg and R. Steinbruggen, editors, Proof and System-Reliability.
Kluwer, 2002,

[81 8. Abramsky and R. Coecke. Physical traces: Quantum vs, classical informa-
tion processing. In Proceedings of CTCS 2002, Electronic Lecture Notes in
Computer Science, 2002.

(9] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for
general references. In Proceedings of LiCS, 1998,

[10] S. Abramsky and R. Jagadeesan. Gatmes and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59:543-574, 1994,

[11] 8. Abramsky, R. Jagadeesan, and P, Malacaria, Full abstraction for PCE. Infor-
mation and Computation, 163:409-470, 2000.

[12] S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of CSL
‘97, 1997,

F13] 8. Abramsky and G. McCusker, Linearity, sharing and state. In P. O’Hearn and
R. D. Tennent, editors, Algol-like languages, pages 317-348. Birkhauser, 1997.

[14] S. Abramsky and G. McCusker. Full abstraction for idealized Algol with passive
expressions. Theoretical Computer Science, 1999,

[15) S. Abramsky and G. McCusker. Game semantics. In U. Berger and H, Schwicht-
enberg, editors, Computational Logic, pages 1-36. Springer Verlag, 1999,

27

[(16] S. Abramsky and P-A. Mellies. Concurrent games and full completeness for
multiplicative-additive linear logic. In Proceedings of LiCS, 1999,

[17} Samson Abramsky and Radha Jagadeesan. New foundations for the geometry
of interaction. Information and Computation, 111:53-119, 1994,

[18] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994,

~[191 R: Anderson. Security Engineering Wiley, 2001

[20] R. Anderson. TCPA / Palladium frequently asked questions, 2002. hitp://
www.cl.cam.ac.uk/ rjal4/tcpa-faq.html.

(211 A. Aziz, V. Singhal, E Balarin, R. Brayton, and A. Sangiovanni-Vincentelli, It
usually works: The temporal logic of stochastic systems. In P. Wolper, editor,
Proc. 7th International Conference on Computer Aided Verificarion (CAV'95),
volume 939 of LNCS, pages 155-163. Springer, 1995,

{22] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan,
Symbolic model checking for probabilistic processes. In P, Degano, R, Gorrieri,
and A. Marchetli-Spaccamels, editors, Proc. ICALP’97, volume 1256 of INCS,
pages 430-440. Springer, 1997.

[23] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model check-
ing of continuous-time Markov chains, In J. Baeten and S. Mauw, editors, Proc.
10¢h International Conference on Concurrency Theory (CONCUR’99), volume
1664 of LNCS, pages 146-161, Springer, 1999,

[24] C. Baier and M. Kwiatkowska, Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125-155, 1998.

[25] LA. Bergstra and J.W. Klop. Algebra for communicating processes with ab-
straction, Theoretical Computr Science, 7:77-121, 1985,

[26] A. Bianco aud L. de Alfaroc. Model checking of probabilistic and nondetermin-
istic systems. In P. Thiagarajan, editor, Proc. 15th Conference on Foundations of
Saftware Technology and Theovetical Computer Science, volume 1026 of LNCS,
pages 499513, Springer, 1995,

f27] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, Symbolic model checking
without BDDs. In Proc. TACAS 99, volume 1579 of LNCS, pages 193-207.
Springer, 1999.

[28] B. Blanchet. From secrecy to authenticity in security protocols. In 9t Inter-
national Static Analysis Symposium (SAS’02), volume 2477 of Lecture Notes in
Computer Science, pages 242-259. Springer, 2002.

[29] M. Blaze, J. Feigenbaum, and A.D. Keromytis. Keynote: Trust management
for public-key infrastructures. In Proc. of Security Protocols, volume 1550 of
Lecture Notes in Computer Science, pages 59-63. Springer, 1999.

28

[30] M. Blaze, J. Feigenbaum, and J, Lacy. Decentralized trust management. Tn Proc.
of IEEE Symposium on Security and Privacy, pages 164-173. IEEE Press, 1996.

[31] Val Breazu-Tannen, Peter Buneman, Shamim Nagvi, and Limsoon Wong, Prin-
ciples of Programming with Collection Types. Theoretical Computer Science,
149:3-48, 1995.

[{32] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan. Archiv-
ing scientific data. In Proceedings of ACM SIGMOD International Conference’
on Management of Data, Madison, Wisconsin, 2002.

[33]1 1. R. Burch, E. M, Clarke, K. L. McMillan, D. L. Dili, and J. Hwang. Symbolic
model checking: 102® states and beyond. In Proc. 5th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’90), pages 428-439. IEEE Computer
Society Press, 1990.

[34] M. Burrows, M. Abadi, and R.M, Needham. A logic of authentication, Proceed-
ings of the Royal Society of London A, 426:233-271, 1989.

[35] M. Burrows, M. Abadi, and R.M, Needham, A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18-36, 1990.

[36] M. Carbone, M, Nielsen, and V. Sassone. Towards a formal model for trust.
Technical Report RS-03-4, BRICS, University of Aarhas, 2003,

[37] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types.
In Proe. IFIP TCS, volume 1872 of Lecture Notfes in Computer Science, pages
333-347. Springer, 2000,

[38} L. Cardelli, G. Ghelli, and A.D. Gordon. Mobility types for mobile ambients. In
Proc. of ICALP’99, volue 1644 of Lecture Notes in Computer Science, pages
230-239. Springer, 1999,

[39] L. Cardelli and A D, Gordon, Mobile ambients. In Proc. of FoSSaC5’98, volume
1378 of Lecture Notes in Computer Science, pages 140-155. Springer, 1998,

[40] 1. Cardelli and A.D. Gordon. Anytime, anywhere: madal logics for mobile
processes. In Proc. of POPL00. ACM Press, 2000.

[41] L. Cardelli and A.D. Gordon, Mobile ambients. Theoretical Computer Science,
240:177-213, 2000,

[42] 1. Castellani. Process algebras with localities. In J. Bergsta, I. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages 947-1045. Elsevier,
2001.

[43] Sirish Chandrasekaran and Michael J. Franklin. Streaming Queries over Stream-
ing Data. In VLDB Conference, Hong Kon, August 2002.

29

[441 W. Charatonik, A. Gordon, and I.-M. Taibot. Finite-control mobile ambients. In
Proc. of ESOP’02, volume 2305 of Lecture Notes in Computer Science, pages
295-313. Springer, 2002,

[43] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M, Strauss. Ref-
eree: Trust management for Web applications. Computer Networks and ISDN
Systems, 29:953-964, 1997,

_[46] 1. Clark and J. Jacob, A survey of anthentication protocol literature. Unpublished
report. University of York, 1997.

[47] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-guided
abstraction refinement. In A. Emerson and A. Sistla, editors, Proc. 12th Inter-
national Conference on Computer Aided Verification (CAV'00), volume 1855 of
LNCS, pages 154-169. Springer, 2000.

[48] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512--1542, 1994.

[49] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skele-
tons using Branching Time Temporal Logic. In D. Kozen, editor, Proceedings
of the Workshop on Logics of Programs, volume 131 of Lecrure Notes in Com-
puter Science, pages 52-71, Yorktown Heighis, New York, May 1981. Springer-
Verlag.

[50] S. Cluet. Designing OQL: Allowing objects to be queried. Information Systems,
2(3), 1998,

[51] B. Frantz C.M. Ellisen, B. Lampson, R.L., Rivest, B.M. Thomas, and T. Ylonen.
SPKI certificate theory, volume 2693, RCF, 1999,

[52] EE Codd. A Relational Model for Large Shared Databanks. Communications
af the ACM, 13(6):377 — 387, June 1970.

[53] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In 13:h IEEE
Computer Security Foundations Workshop, pages 144158, IEEE Computer So-
ciety Press, 2000.

[54] S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective caml. In
Proc. of ASA/MA’99. TEEE Press, 1999,

[55] Microsoft Corporation. Microsoft “Palladium”: A business overview,
2002, http://www.microsoft.com/presspass/features/2002/jul02/
0724palladiumwp.asp.

[56] C. Courcoubetis and M. Yaunakakis. The complexity of probabilistic verifica-
tion. Journal of the ACM, 42(4):857-907, 1995.

[57] K. Crary, D. Walker, and G. Morrisctt. Typed meinory management in a calculus
of capabilities. In Proc. POPL 99, pages 262-275, ACM Press, 1999,

30

[58] K. Crary and S. Weirich. Resource bounds certification. In Proc. of POPL 00,
pages 184198, ACM Press, 2000.

[59] Mads Dam. Proving properties of dynamic process networks. Information and
Computation, 140(2):95-114, 1998.

[60] V. Danos and R. Harmer. Probabilistic game semantics. In Proc. IEEE
Symp. LICS'00. Comp. Soc. Press, 2000.

[61] Susan Davidson, Chris Overton, Val Tannen, and Limsoon Wong, Biokleisli:
A digital library for biomedical researchers. Journal of Digital Libraries, 1(1},
1997.

[62] L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for probabilis-
tic systems. In K. Larsen and M. Nielsen, editors, Proc. 12th International Con-
ference on Concurrency Theory (CONCUR’01), volume 2154 of LNCS, pages
351-365. Springer, 2001.

[63] D. Deavours and W. Sauders. An efficient disk-based tool for solving very large
Markov models, In R. Marie, B. Plateau, M. Calzarossa, and G. Rubino, ed-
itors, Proc. 9th International Conference on Maodelling Techniques and Tools
(TOOLS?97), volume 1245 of LNCS, pages 58-71. Springer, 1997,

[64] R.DeLine and M. Fithndrich. Enforcing high-level protocols in low-level soft-
ware. In Programming Language Design and Implementation, pages 59-09,
2001,

[65] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, IT-29(2):198-208, 1983.

[66] C. Ellison, B, Frantz, B, Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory, 1999. RFC 2693,

[67] C.M. Ellison, Home network security. Infel Technology Journal, November
2002, http://developer.intel.com/technology/itj/2002/volume06issue04/,

[68] Javier Esparza. Decidability of model checking for infinite-state concurrent sys-
tems. Acta Informatica, 34(2):85-107, 1177 1997,

[69] C.Fournet and G. Gonthier. The reflexive CHAM and the join-calculus, In Proc.
of POPL’96, pages 372-385, ACM Press, 1996,

[701 C. Fournet, G. Gonithier, I.-J. Lévy, L. Maranget, and D, Rémy. A calculus
of mobile agents. In Proc. of CONCUR’96, voluine 1119 of Lecture Notes in
Computer Science, pages 406-421. Springer, 1996.

[71] C. Fournet, I.-J. Lévy, and A, Schmitt. An asynchronous distributed implemen-
tation for mobile ambients. In Proc. IFIP TCS, volume 1872 of Lecture Notes
in Computer Science, pages 348-364. Springer, 2000.

31

[72} Michael J. Franklin. Challenges in Ubiquitous Data Management. In R. Wil-
hiem, editor, Informatics: 10 Years Back, 10 Years Ahead. Springer-Verlag,
2001. LNCS #2000,

{731 P. Gardner. From process cafculi to process frameworks, In Proc. 11th Inter-
national Conference on Concurrency Theory, volume 1877 of Lecture Notes in
Computer Science, pages 69-88. Springer Verlag, 2000.

_{74]. R. German.. Performance Analysis.of Commumication Systems; Modeling with
Non-Markovian Stochastic Petri Nets. John Wiley and Sons, 2000,

I75] D. R. Ghica and G. McCusker. Reasoning about idealized Algol using regular
languages. In fn Proc. ICALP’00, pages 103-116. Springer-Verlag, 2000,

[76]1 1.Chr, Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile re-
sources. In Proc. of CONCUR 02, volume 2421 of Lecture Notes in Computer

Science, pages 272-2872. Springer, 2002,

[77] Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator; Ex-
tensibility and Efficient Search. ICDE, pages 209-218, 199,

[78] Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Processing
XML Streams with Deterministic Automata. In Proceedings of ICDT, 2003,

[79} J. Guitman. Filtering postures: Local enforcement for globat policies. In IEEE
Computer Society Symposium on Reseavch in Security and Privacy, pages 120-
129, 1997.

(801 S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for build-
ing system-specific, static analyses. In 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI'02), pages 69-82,
2002.

[81] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512-535, 1994.

[82] R. Harmer and G. McCusker. A fully abstract game semantics for finite nonde-
terminism. In Proc. IEEE Symp. LICS’99, Comp. Soc. Press, 1999,

[83] S. Hart, M. Sharir, and A. Pnueli. Termination of Probabilistic Concurrent Pro-
grams. ACM Transactions on Programming Languages and Systems, 5:356—
380, 1983,

[84] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access
and mobility control in distributed systems. In Proc. of FOSSACS 03, 2003.

{85] M. Hennessy and J. Ricly. Type-safe execution of mobile agents in anonymous
networks. In Proceedings Workshop on Mobile Object Systems, pages 378-390,
1998,

32

[86] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82-120, 2002,

[87] T. A. Henzinger, P. W. Kopke, A, Puri, and P. Varaiya, What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 5T(1):94-124,
August 1998,

[88] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision
diagrams to represent and analyse continuous time Markov.chains. In B. Plateau,
W. Stewart, and M. Silva, editors, Proc. 3rd International Workshop on Numer-
ical Solution of Markov Chains (NSMC'99), pages 188-207. Prensas Universi-
tarias de Zaragoza, 1999.

[891 1. Hillston. A Compositional Approach to Performance Modelling. PhDD thesis,
University of Edinburgh, 1994,

[90] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of ACM, 12, 1969,

[911 C.A.R. Hoare. Conununicating Sequential Processes. Preutice Hall, 1985.

[92] M. Hofmann. A type system for bounded space and functionai in-place update.
Nordic Journal of Computing, T{4):258-289, 2000.

[93] K, Hondaand N. Yoshida. Game-theoretic analysis of call-by-value computation
(extended abstract). Inn Proc. of ICALP'97. Springer-Verlag, 1997.

[94] J. M. E. Hyland and C.-H, 1., Ong. On full abstraction for PCE. Information and
Computation, 163:285-408, 2000

[95] IBM Corporation and Microsoft Corporation. Security in a web services world:
A proposed architecture and roadmap, Aprii 2002, Version 1.0,

[96] A.Tgarashi and N. Kobayashi. Resource usage analysis. In Proc. of POPL 02,
pages 331-342. ACM Press, 2002,

[971 C. Ip and D. Dill. Better verification through symmetry. Formal Methods In
System Design, 9(1-2):41-75, 1996.

[98]) Matthias JTarke and Jiirgen Koch. Query Optimization in Database Systems.
ACM Computing Surveys, 16(2).111-15, 1984,

[99] T.Jim, G. Morriseit, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of ¢. In USENIX Annual Technical Conference, 2002,

[100] W. Knottenbelt and P. Harrison. Distributed disk-based solution techniques for
large Markov models. Tn B. Plateau, W. Stewart, and M. Silva, editors, Proc. 3rd
International Workshop on Numerical Solution of Markov Chains (NSMC’99),
pages 58-75. Prensas Universitarias de Zaragoza, 1999.

33

[101] N. Kobayashi, B.C. Pierce, and D.N. Tutner. Linearity and the pi-calculus. ACM
Transactions on Progranuming Languages and Systems, 21(5):914-947, 1999,

[102] J. Laird. A categorical semauntics of higher-order store. In Proceedings of CTCS
2002, Electronic Lecture Nofes in Computer Science, 2002,

(103] J. D. Laird. A semantic analysis of control. PhD thesis, University of Edinburgh,
1998,

[104] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4)%:265-310, 1992,

[105] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Software Tools
Jor Technology Transfer, 1(1+2):134-152, 1997,

[106] R. Lazic and D. Nowak. A unifying approach to data-independence. In
C. Palamidessi, editor, Proc. 11th International Conference on Concurrency
Theory (CONCUR’00), voluine 1877 of LNCS, pages 581-595, Springer, 2000,

[107] E Levi and D. Sangiorgi. Controlling interference in ambients. In Proc. of
POPL’00, pages 352-364, ACM Press, 2000,

{108] T. Lindholm and E. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1997, '

[109] H.-W. Loidl, O. Shkaravska, and L. Beringer. Preliminary investigations into a
bytecode logic for grail. Available at http://www.des.ed.ac.uk/home/mrg, 2003,

[110] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing CSP and FDR. In Tools and Algorithms for the Construction and Analysis
of Systems, volume 10355 of Lecture Notes in Computer Science, pages 147-166.
Springer, 1996,

[111] K. MacKenzie. A virtual machine platform for resource-bounded computation.
Available at http://www.dcs.ed.ac.uk/home/mrg, 2003,

[112] P. Malacaria and C. Hankin. Non-deterministic games and program analysis:
an application to security. In Proc. LICS 99, pages 443-452, Comp, Soc. Press,
1999,

[113] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceshinis.
Modelling with Generalized Stochastic Petri Nets. John Wiley and Sons, 1995,

[114] J. McCarthy et al. LISP 1.5 Programming Manual, MIT Press, 1956,
[115] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993,

[116] M. Merro and V. Sassone. Typing and subtyping mobility in boxed ambients.
In Proc. of CONCUR 02, volume 2421 of Lecture Notes in Computer Science,
pages 304-320. Springer, 2002.

34

[117] R. Milner. A Caleulus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer Verlag, 1980.

[118] R.Milner. Bigraphical reactive systems. In Proc. 12th International Conference
on Concurrency Theory, volume 2154 of Lecture Notes in Computer Science,
pages 16-35. Springer Verlag, 2001.

[119] R, Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Informa-
tion and Computation, 100(1):1-77, 1992,

[120] R. Milner, M. Tofte, and R, Harper. The Definition of Standard ML. MIT Press,
1990.

[121] G. Morrisett, D, Walker, K. Crary, and N. Glew. From system f to typed assem-
ply languages. In Proc, of POPL’98, pages 85-97. ACM Press, 1998,

[122] A. S. Murawski and C.-H. L. Ong. Exhausting strategies, joker games and full
completeness for IMLL with unit. In Proc. 8th CTCS, volume 29 of Electronic
Lecture Notes in Computer Science, page 31, 1999,

[123] A.S.Murawski and C.-1. L. Ong. Discrete games, light affine logic and PTIME
computation. In Proe. CSL'00, volume 1862 of Lecture Notes in Computer
Science, pages 427-441. Springer-Verlag, 2000,

[124] N. Nagaratnam, B Janson, J. Dayka, A, Nadalin, F. Sicbenlist, V. Welch, 1. Fos-
ter, and 8. Tuecke. The security architecture for open grid services, 2002, Ver-
sion 1. http://www.globus.orgfogsa/Security/OGSA-SecArch-vi-07192002.pdf.

[123] G, Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 106-119. ACM Press, 1997.

(126] G Necula, S, McPeak, and W. Weimer. CCured: type-safe retrofitting of legacy
code. In Symposium on Principles of Programming Languages, pages 128-139,
2002.

[127} R. De Nicola, G. Ferrari, R, Pugliese, and B. Venneri. Types for access control.
Theoretical Computer Science, 240(1}:215-254, 2000.

{128] PW. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, 1999.

[129] L.C. Paulson, The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85-128, 1998.

[130] C.A. Petri. Kommunikation mit automaten, Technical Report 2, Institut fur
Instrumentelle Mathematik, Bonn, 1962,

[131] B.C. Pierce and D, Sangiorgi. Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, 6(5):409-454, 1996.

35

[132} B.C. Pierce and D.N. Turner. A programming language based on the w-calculus.
Technical Report 476, CSCI, Indiana University, 1997,

[133] J. Pincus. User interaction issues in defect detection tools, August 2001, http.//
research.microsoft.com/specncheck/docs/pincus.ppt.

[134] G. Plotkin. A structural approach to operational semantics. Technical Report
DATMI FN-19, Computer Science Department, Arhus University, 1981,

1977,
[136] C. Priami. Stochastic pi-calculus. The Computer Journal, 38(7):578-589, 1995,

[137] 1. Queille and J. Sifakis. Specification and Verification of Concurrent Systems
in CESAR. In Proc. 5th International Symposium on Programming, pages 337
351, 1982. Available as Volume 137 of LNCS.

[138] S. Rajan, N. Shankar, and M. Srivas. An integration of model-checking with au-
tomated proof checking. In P. Wolper, editor, Proc. Computer-Aided Verification
{CAV’95), volume 939 of LNCS, pages 84--97. Springer, 1995.

[139] Raghu Ramakrishnan and Johannes Gehrke. Database Managemenr Systems.
MecGraw-Hill, 2002,

[140] P.V. Rangan. An axiomatic basis of trust in distributed systems. In Sympbsr’um
on Security and Privacy. IEEE Press, 1988.

{141] A. Ravara and V.T. Vasconcelos. Typing non-uniform concurrent objects, Tn
Proc. of CONCUR’00, volume 1877 of Lecture Notes in Computer Science,
pages 474488, Springer, 2000.

[142] J. Reynolds. Separation logic: A logic for shared mutable data structures, In
Proc. of LICS'02, pages 55-74. IEEE Press, 2002,

{143] R.L.Rivest and B. Lampson. SDSI - a simple distributed security infrastructure,
1996, http://theory.lcs.mit.edu/ rivest/sdsil0.ktmi,

[144] J.A. Robinson. A machine-oriented logic based upon the resolution principle.
Journal of ACM, 12(1):23-41, 1965,

[145] B. Schneier. Secrets and Lies. Wiley, 2000.

[146] P. Sewell. Global/local subtyping and capability inference for a distributed pi-
calculus. In Proc. of ICALP’9S, volume 1443 of Lecture Notes in Computer
Science, pages 695706, Springer, 1998,

[147]) U. Shankar, K. Talwar, J. S. Foster, and ID. Wagner. Detecting format string
vulnerabilities with type qualifiers. In 10th USENIX Security Symposium, 2001,

36

{148] D.X. Song. Athena: a new efficient antomatic checker for security protocol anal-
ysis. In /2th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, 1999.

[149] Lincoln Stein. The Distributed Annotation System. http://
www . biodas.orq.

[1501 W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994,

[151] D. Teller, P. Zimmer, and D. Hirschkoff. Using ambients to control resources.
In Proc, of CONCUR’'02, volume 2421 of Lecture Notes in Computer Science,

pages 288-303, Springer, 2002.

[152] A. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Sec, 42:230-265, 1937,

[1531 A. Valente and D. Sangiorgi. A distributed abstract machine for safe ambients.
In Proc. of ICALP 2001, volume 2076 of Lecture Notes in Computer Science,
pages 408420, Springer, 2001,

[154] M. Vardi, Automatic verification of probabilistic concurrent finite state pro-
grams. In Proc. FOCS’85, pages 327-338, 1985.

[155] 1. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
Internet Programming Languages, number 1686 in Lecture Notes in Computer
Science, pages 47-77. Springer, 1999,

[156] D. Wagner, 1. S. Foster, E. A. Brewer, and A. Aiken. A first step towards au-
tomated detection of buffer overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3-17, 2000,

[157] S. Weeks, Understanding trust management systems. In Proc. of IEEE Sympo-
sinm on Security and Privacy. IEEE Press, 2001.

[158] M, Weiser. Ubiquitous compuiing. hitp://www.ubiq.com/hyperiext/weiser/
UbiHome.html.

[159] N. Yoshida. Graph types for monadic mobile processes. In Proc. of
FST&TCS’96, volume 1180 of Lecture Notes in Computer Science, pages 371-
386. Springer, 1990,

[160] S. Yovine. Kronos: A verification tool for real-time systems. Sofhware Tools for
Technology Transfer, 1(1/2):123-133, 1997.

[161] Clement T. Yuand C. C. Chang. Distributed query processing. ACM Computing
Surveys, 16(4):399-433, 1984,

37

