~ BIT 12 (1972), 334—341

A NOTE ON THE FOR STATEMENT

0. A.R. HOARE

Abstract.

This note discusses methods of defining the for statement in high level languages
and suggests a proof rule intended to reflect the proper role of & for statement in
computer programming. It coneludes with a suggestion for possible generalisation.

1. Definition by substitution rule.

In most high-level programming languages, the for statement is de-
scribed as a useful abbreviation for a piece of program which could
equally well be substituted for it. For example, the for statement can be
defined by stating that the form

“for x:=a to b do Q"

is equivalent to

(13

2= a;
while z < b do {@; z := succ(z)}”

“for x:~ b down to a do Q”
Is equivalent to

“xi= b
while ¢ < z do {Q; = := pred(z)}”’,

where succ and pred give the successor and predecessor of their argu-
ments. The notations are borrowed from PASCAL [1].

One of the purposes of singling out a particular common construction
and defining an abbreviation for it is to signal a special case which
may be susceptible of more efficient machine implementation. For ex-
ample, in some machines it may be more efficient to implement the for
statement

“for x:=a to b do Q"

© " Reccived February 29, 1972.

A NOTE ON THE FOR STATEMENT 335

in a manner more similar to

(11

x 1= pred(a);
while z < b do {#:= succ(z); @

In order to permit this kind of machine-dependent optimisation, ALGOL
60 and FORTRAN state that the value of the counting variable # is
undefined on normal exit from the for statement. There is also a restric-
tion against jumping into the middle of a for statement from outside.
These riders spoil the simplicity of the original method of defining the
for statement,

A remedy to the defect is adopted in ALGOL W [2] and ALGOL 68
[3], which define the counting variable to be local to the for statement,
which is accordingly defined as equivalent to: ,

begin integer x;

= a;

while # £ b do {@; = := succ(z)}
end

Then the fact that z is undefined on exit is a natural consequence of
the normal scope rules, and so is the prohibition against jumping into
the middle. The localisation of # also seems to express more clearly the
programmer’s intention of using « as a counting variable; and it may
make it easier for an implementation to use special registers to store its
value and achieve additional efficiency. At least, the implementor would
not have to take special action on exit of the loop by a jump, ag he does
in the case of FORTRAN and ALGOL 60. An inevitable consequence of
this view is that the controlled variable must be a simple unsubscripted

-variable, a restriction which must recommend itself to all implementors
" of the language, if not to all users.

. In ALGOL 60 and many subsequent languages the bounds ¢ and &
of the counting variable may be specified by general expressions. If the
definition given above is adopted, the expression for & would have o be
re-evaluated in order to make the test “z<5” in each iteration of the

i ..ﬁoow. For this reason, ALGOL 68 specifies that the value of the limit
~-shall be computed once and for all before the iteration starts, Thus the

: ffect of a for statement is defined:

336 C. A.R. HOARE

As an alternative to this more complicated definition, it is possible to
forbid alteration of the limit b from within the loop body @, as is done
in PASCAL. This has the additional advantage that if b is a simaple vari-
able, the implementor is not forced to take an extra copy of its value.

But unfortunately there still remains a serious conceptual defect, that
the counting variable takes on one value more than it should. This defect
is clearly illustrated in PASCAL by the case in which a counting variable
is expected to range over the whole of a type defined by enumeration.
Then the final execution of:

x 1= succlx)

is actually illegal, since it takes the value of x beyond its permitted range.
This defect could be remedied by a more complicated definition of the
for statement:

begin integer z, §';
x:=a; b :=b;
while x < & do {Q; x := suce(z)};
@

end

In PASCAL itself the defect is avoided in a similar fashion. But by this
stage the definition by substitution has become rather complicated, and
it no longer expresses clearly the intention of the for statement, or the
role which it plays in computer programming.

2. Definition by proof rule.

Apart from indicating the possibility of efficient implementation, there
is a theory that a high-level language feature should also simplify the
task of proving the correctness of programs expressed in the language.
Even if few programs actually undergo formal proof, this will make it
easier to ‘“‘see’’ the correctness of a program, with less risk of unexpected
conditions arising to invalidate it. So it seems worth while to investigate
the simplest possible proof rules for any proposed language feature, and
in particular the for statement.

The most obvious simplification in proof methods for a for statement
(as compared with a while statement) is that there is no need for an
explicit proof of termination. The counting variable can only take on a
finite range of values, and when the range is exhausted the loop termi-
nates. But this simplification is valid only if no assignment is made to
the counting variable from within the body of the loop. This restriction

A NOTE ON THE FOR STATEMENT 337

seems to be a genuine advantage to the writers and readers of programs,
and has been incorporated in ALGOL W, ALGOL 68, and PASCAT.

A second great simplification oceurs when the counting variable is
specified as a type or subrange of a type which is also the subseript
range of an array referenced from within the body of the loop, using the
counting variable as a subscript. In this case it is logically impossible
that the subscript should be out of range when it is used, and there is
no need for the programmer to make an explicit proof of the validity of
the reference. Furthermore, the validity can be enforced by a compile-
time check, thereby obviating the expense of a run-time subscript check
on each iteration of the loop. The most that is required is that the values
of a and & be checked before entry to the loop, and often even this is
unnecessary. But again, the validity of this simplification depends on
the fact that the counting variable is not changed from within the loop.
For further elaboration (even over-elaboration) of this idea, see [8].

In order to express the other aspects of correctness proofs of for state-
ments we introduce the following notations for open and closed intervals:

[...0] = §| a=i=b} (closed)
[...2) = {i| a=i<z} (open at top)
(...0] = {i] x<i=b} (open at bottom)
[] = the empty set

Note that {a...a)=(...b]=[].

Let I(s) be an assertion about the interval s. Let ¢ be the body of a
loop, which has the property that if I is true of an open interval [a. . . z)
before execution it will be true of the closed interval [a. . . z] on termina-
tion.

Now suppose that I is true of the empty set (=[a...a)) before em-
barking on the for statement. After the first iteration it will be true of

fa...al=[a...succ(a)). On completion of the second iteration (if any)
it will be true of

@...2] = [a...succ(a)] = [a...succ(succ{a)));
and so on until finally it is true of [¢...5]. This proof rule may be
expressed formally using the notation of [4]*:
esz=sb & I(fa...2)){Q} I([a...x])
I([]) {for z:= 0 to b do @} I{[a...b])

* The notation P{Q}R may be interpreted as “if P is a true assertion about the values
of the program variables before entry to the piece of program @, then R will be & true
assertion after exit from Q™. Tn a proof rule the formula above the line expresses what

PRI AT, I . I T T L. T I L. T T L T T e ma

338 C. A. R.HOARE

Similar reasoning leads to the proof rule for down to:

esx=b & I((z...0)){Q} I([x...B])
I([]) {for x:= b down to a do @} I([a...b])

These rules are fairly simple, but their validity depends on the ob-
servance of yet further restrictions in the body of the loop, in that not
only but also ¢ and b must remain unchanged throughout the loop.
Furthermore, the invariant 7 must not contain the variable z. If these
restrictions are violated the proof rule would become more complicated,
and eventually would equal in complexity the proof procedures required
for the alternative method of achieving the same effect using a while.

Even though the rules suggested above are more restrictive than those
imposed by any currently fashionable programming language, it is prob-
able that the vast majority of loops expressed in them conform to the
restrictions; and those that do not would probably be more clearly ex-
pressed as a while loop anyway. It is this clarity of expression which is a
far stronger motivation for observing the restrictions than the marginal
possibility of better implementation. Surely the restrictions will be felt a,
burden only by those programmers whose delight it is to use their pro-
gramming tools for purposes for which they were not originally intended.

3. Generalisation.

The for statement as described above deals only with, the case where
the counting variables range over a set of consecutive integers, or ele-
ments of an enumeration. Many languages also permit an arbitrary
arithmetic progression. Although these cases are very common, it is
well worth while to enquire whether the simplicity of the proof rules
for for statements can be extended to more general kinds of progressions,
and more general types of counting variables. For example, in normal
mathematical notation, a counting variable can range over members of
arbitrary sets or sequences; and in a language like PASCAL, which per-
mits sets and sequences as data types, it is very attractive to attempt
the same generalisation. In both cases it seems very likely that the im-
plementor can achieve extra efficiency in a machine-dependent way,
and the programmer can simplify his proofs.

Consider, for example, a sequence (file) s; we can introduce the nota-
tion:

for z in s do Q,

as a for statement which causes .wrm. counting variable = to take in turn

A NOTE ON THE FOR STATEMENT 339

the value of each successive item of the sequence s, and perform the
action € upon it. If s is empty, no action takes place.
The proof rule for such a for statement is slightly more complicated:

§ = 8;"[2]"8y & I(s){Q}(s,"[])
I({D){for = in s do Q}I(s)

where

™ is the sign of concatenation

81,8, are arbitrary fresh variables, not appearing except as shown above
[x] is the sequence whose only item is x

[] is the empty sequence.

Again, the validity of the rule depends on not changing s or 2 within
the loop body Q.
In the case of a set s, we can formulate the rule:

5,8 & wxe(s—s) & I(s){QH(su {&])
I{{}) {ffor z in s do Q}I(s) ’

where

§; 18 an arbitrary fresh variable, not appearing except as shown
{=} is the unit set of z
{} is the empty set.

Again, the validity of the rule depends on not changing x or s from
within ¢. But it is most interesting to note that the validity of the rule
does not depend on the ordering of the set of values taken by z; the
values may be processed in arbitrary order. Thus if the proof rule given
above is taken as the definition of the meaning of the for statement,
we have found a method of defining a language which does not force
the programmer to express decisions about the order of execution of
his program which are perhaps for his current purposes irrelevant. The
need for avoiding such irrelevant decisions has been expressed by
C. Strachey.

4, Conclusion.

It has been suggested [4, 5] that specification of rules for the proof
of correctness of programs would throw light on good methods for lan-
guage design; and this note has attempted to illustrate the suggestion
by its application to the for statement. It has been revealed that the

observance of certain programming disciplines is of simuitaneous benefit
ta the analitv of Imhlermentation and +a the writors amd roadora of -

340 C. A. R. HOARE

grams. The reconciliation of the needs of the implementor and user is
the highest goal of the language designer.

In the case of the for statement it can be argued that the benefits are
quite small, and do not justify the inclusion of this feature in a high-
level programming language. On the other hand, if the feature can be
very commonly used, it is justified even if the benefits in each case are
only marginal.

Many of the ideas of this paper were propounded in the context of
ALGOL 60 in [7]. An example of the use of the proof rule, borrowed
from [6], is given below.

Appendix.

Prosrem. Find the largest value maz of the elements between o
and & of the array 4, and assign its subscript value to m.

The desired result of this program may be formalised as I([a...5]),
where

Is)=ifasmz=b & mar = A[m] & Vi(tes A[i] £ max).
The body @ of the loop is

if A[x] > mox then {max:= A[»]; m:= z}.
Define

S=if Alz] > mox then o £ x £ b & A[x] = A[x]
& Vitela... 2] o A[f] < A[z])
else I([a...x])

It is a mechanical matter to verify that
SQM(a...a)).
We next need to prove the tedious but trivial lemma:
a2x2b & Ia...2)) = §,
and this gives us (by the rule of consequence):
a b & I{a...0)){@H([a..
The proof rule for the for statement enables us to conclude
I([N)ffor x:=a to b do QY ([a...b]).
Thus we have shown that

I =

HA

m =<b & mar = Alm]

A NOTE ON THE FOR STATEMENT'

is the precondition which we must ensure before msﬁ&w do QH@ HooHu
This may obviously be achieved by the initialisation: .

; max 1= Ala];

m:i= g
provided that e 586.

REFERENCES

1. N. Wirth, The Programming Language PASCAL, Acta Informatica 1.1 (1971}, 35-63.

2. N. Wirth and C. A, R, Hoare, A contribution to the development of ALGOL, C.A.CM,
9.6 (June 1986).

3. A. van Wijngaarden {ed.), Report on the Algorithmic Language ALGOL 68, Numerische -
Mathematik 14 (1969}, 79-218, .

4. C. A. B. Hoare, An Awiomatic Approach to Computer Programming, C.A.C.M. 12. 10
(Oct. 1969), 576-580, 583.

5. R. W. Floyd, 4ssigning Meanings to Programs, Proc. Amer, Math. Soc. Symposium
in Applied Mathematics, Vol. 19, pp. 19-31.

6. P. Naur, Proof of Algorithms by General Snapshots, BIT 6 (1966), 310-316.

7. C. A. R, Hoars, Cleaning up the For Statement, ALGOL Bulletin 231.3.4 (July 1965),
32-35.

8. C. A. R. Hoare, Subscript Optimisation and Subscript Checking, ALGOL Bulletin 29.3.6
{Nov. 1968), 33-44,

DEPARTMENT OF COMPUTER SCIENCE
THE QUEEN’S UNIVERSITY OF BELFAST
BELFAST, NORTHERN IRELAND

