Pa B H A MEea i Lm e T e e % e et s e ek e+ bt e

In these courses we cover the whole of ALGOL 60,
mcluding a thorough discussion of “Yensen’s Device”
and of recursiveness {or, more generally, nested acliva-
tions of the same procedure). I mention this, becausc it
is somelimes pointed out that these “advanced features

- of ALGOL 60 wiil frighten and repel potential users.

Our experience quife definitely points in the opposite
direction: the audience was thrilled by them every time
the course was given. In practical computations these
features are not too {requently used, but the bare fact
that the progranumers could use them if they wanted to
made the language very appealing. '

We have given the course four times, with a total
number of about 240 participants, and one may ask how
many machine users have been created in this way. For
our own installation it js about thirty people, filteen of
whom are to be considered as regular machine users; the
other fifteen turn up at less frequent intervals. I consider

- this 2 very good result, because these thirty people had
to be recruited from those attendants that did not have
their own machine at their disposal. At least one
half of the participants were from other computing

" centres.)

Actual use of our ALGOL 60 system is steadily
increasing. 1 cannot give figures for other X1 installa-
tions, which have received copies of our translator,
At the installation at the Mathematical Centre we started
with 2097 machine time spent on ALGOL programs;
in the meantime this has been increased to 509,

Omission of syntactical checking in translation has
proved to have been a grave error, Every user finds that
his first program contains a number of silly, clericat errots.
This number of errors per program decreases very fast
as the programmet gets more experience, and it is there-
fore my impression that it is hardly worth the trouble to
let the translator look for the next error after the first
one has been found, The omission of syntactical checking
is the more regretful as it could have been incorporated
at so little expense.

Furthermore, we find that the program for a particular
problem is often processed in a couple of successive
versions. Roughly: the first version is just plainly
wrong, because it contains some logical errors, neglect
of some exceptional cases, ctc. The second version

Operating experidnce with ALGOL 60

works, but the programmer is not satisfied with its per-
formance. In the third version the programmer, who
in the meantime understands his problem better,
improves his strategy, and in a fourth version he improves
on the programming. This is more or less the back-
ground of the fact that our “irregular users” suddenly
turn up four times within a period of, say, two weeks:
then we don’t see them for quite a long time, but usuafly
they return sooner or Jater . . . with their next problem.
This experience is very encouraging,

The run-time system has no additional diagnostic
facilities. We could include them, but from the fact
that we have not done so one can deduce that the need
for them is regarded as insufficiently urgent. In the case
of longer programs it is quite usual to insert sonie con- .
ditional output statements in the earlier versions of the
program. If they are enclosed between two pieces of
blank tape on the input tape it is a trivial operation to
remove them in the final version,

Furthermore, there is no possibility of a “post-
mortem dump.” There is no point in just printing out
the contents of the store: as storage allocation is fully
dynamic these data would be too hard to interpret, If
a post-mortem dump were {0 be of any value it would
have to produce the values of variables in store together
with their identifiers in source language. This, however,
would imply the availability of the complete “identifier
table,” but this is nowhere available in its entirety, not
even during translation (this is only account of storage
limitations}.

The translator gives no print-out of the object progrant,
again because there is no point in it. The structure of
the object program has so ittle in common with that of
handwritten programs that with a thorough knowledge
of just ALGOL 60 on the one hand and just the X1 on
the other, the print-out of the object program still won’t
be very helpful. As a consequence, all modifications
and corrections must be made in'the source-language
program: we have made it virtually impossible to correct
or to modify the object program, and we have done so
on purpose. Some people like to have this possibility in
order fo avoid retranslation, but we regard this as an
obsolete technique, which is not to be encouraged.
Quite the contrary.

Report on the Elliott ALGOL translator

By C. A. R. Hoare

The Elliott ALGOL programming and operating sysiem
has been designed to suit the neéds of an Elliott 503
computer installation which allocates at least part of its
tme to running programs on a service basis. The main
‘problem in operating a computing service is to maintain
a high average number of programs processed in a given

period, and in particular to reduce to a minimum the

time spent in changing over from one program tfo the
next.

E .

A number of published methods of tackling this
problem have involved the use of buffers, interrupt lines,
wired-in programs, time-sharing, and other sophisticated .
hardware and software devices. The aim of the Elliott
syslem is to provide an acceptable operating method
for an installation which is interested in the high speeds
of second-generation computers, but does not wish to
be involved in the heavy capital outlay and maintenance
costs of high-volume backing stores and other peripherat

devices. It is this which provides an explanation for
the differences between the Elliott system and certain

other systems at present projected or in existence,
In the first place, we could not accept the inefficiency
of an interpretive system, which has been favoured by
- many compiler writers whose needs differ from ouss.
On a computer which has no built-in facilities for
floating-point arithmetic, it has been found that the use
of an interpretive scheme will reduce the efficiency of a
program.by a factor of up to six. On the 503, which
performs floating-point arithmetic by hardware, the use
" of interpretation would reduce efficiency by a factor of
. about.thirty.. This is-too high a price to pay for the

, - other advantages of interpretation.

- .. .We have.also rcjected the use of. a multiple-pass
" translating system, which was used by the designers of
~ FORTRAN and other autocodes. The time taken for
- - the output and re-input of the results of intermediate
-, -+ passes would in many cases be longer than the time taken
"+ . .to-run-the program, especially where paper tape. is the
-+ .only .available output medium.. It is. expected that
~ maany of the-problems presented to a service installation
- will be-notlarger than those which have been solved.on
" “slower-machines in the past. Many such problems will
" be solved in under a minute on the 503, The advantages

.of this great increase of speed will be lost if the program -

takes a long time to read in and translate. -

- - System Design IR .
- Themost suitable translating system for our purposes
is one -which accepts a source program in ALGOL,
reads. and translates it at the full speed of the paper-
tape reader (1,000 characters per second), and imme-
_ diately transfers control fo the translated program. The
_normal practice will be to leave the translator per-
manently in the working .store, and to read in and
execute: programs one. after the other with minimum
" delay.-* When a program requires a large amount of
- working “space, it will overwrite the translator, and
then the translator will have to be read into the store
again before the next ALGOL program can be read in.
A. two-pass system will be used to translate only those
programs which are so long that they will not fit into
the store of the computer together with the translator.
The -over-all productivity of an instaflation which
uses this operating method will depend critically on the
frequency- with which the translator has to be re-input,
and -the frequency with which the second pass becomes
necessafy. This fréquency depends largely on the length
of the translator. The necessity of keeping the length
of the translator within strict bounds was the main
" factor in the adoption of two important decisions, which
might otherwise appear to detract from the usefulness
of the. Elliott system. The first of these decisions was
to place some restrictions on the full generality of
ALGOL 60, and the second, to avoid optimization of
all but the most rudimentary kind. The second decision
was easier to take, since the high internal speeds of the
503 will ensure that most programs will be input and

>

The Elliott ALGOL translator

- of an ALGOL program, and those which administer

128

.routine which processes the declarations, and produces

‘the procedure will be' capable of activating other pro-

output limited, especially in the case of a minimum (or '
near minimum} configuration compuiter. NS
The restrictions which we have considered necessary ,
affect facilities which are unlikely to be needed or even
understood by non-professional programmers, who will s
provide the greater part of the work of a service instal-”
lation. When the need arises to adapt a published pro-
gram, this may be done fairly easily by a competent
programmer, Full details of all restrictions, together
with instructions on the easiest methods of getting
round them, will be distributed to all users of the-system, ,

Constraction of Translator

The method adopted in constructing the translato
was also conditioned by the extreme need for brevity:;
The first sections to be written were those which read.
in the consecutive identifiers, numbeys, and basic symbols’

a simple relative-addressing schemefor the output
produced by the translator. Then we constructed -a

a dictionary which gives. a decode for every identifier’
used in the -body of the program. Next, we wrote'a
section which constructs and plants the small open'sitb--
routines {or macros) which perform the necessary- arith-
metic, logical, indexing, and transfer operations of the
object program. This scction accepts as a parameter
of the macro the very same decode as is produced by
looking up the dictionary, R

When these routines had been written and thoroughly
tested, we weie ready to proceed to the actua! task of
translation. The main work is done by a set of pro-
cedures, each of which is capable of processing one of the
syntactic units defined in the ALGOL 60 repott, Where
one syntactic unit is defined as consisting of other units,

cedures, and where necessary, itself. For example, the
procedure “compile arithmetic expression” must “be
capable of compiling the bracketed constituents of an
arithmetic expression, which are themselves arithmetic
expressions; this is achieved by a recursive entry to the
very procedure “‘compile arithmetic expression” whick
is currently engaged on translating the whole expression
Finally, we wrote a version of the main program
This consists of a couple of dozen instructions relating
to the operating system, and ends with an entry i«
the procedure “compile’ statement”. On exit from thi
procedure, control is transferred to the translated pro
gram, which will eventually jump back to -the mal
program of the translator. A test is then made whethe
the procedure “compile statement” has been overwritten
before it is entered again to read in the next program.
The decision to use recursion was not taken from an
desire to use advanced programming technigques, bu
rather as the simplest and shortest way of getting th
job done. At first, we were afraid that a coding erro
in a recursive procedure would be very difficult to tract
and that the advantages of recursion would be ow
weighed by- the difficulties of program check-out. I

The Elliott ALGOL franslator

fact, i has been found to be exceptionally easy to trace
such errors, since a print-out of the push-down list
gives a good indication of what has been happening in
the computer. Recursive techniques may be warmiy
recommended in all translators which do not have {o
go into the most advanced methods of optimization:
The greatest difficulty we have found is in providing the
possibility of continuation of program checking after a
syntactic error has been found in the source program.
In many cases, it seems, this will be altogether impossible,
and in other cases a single error will cause a large
number of totally misguided error indications to be
printed out subsequently. This is a problem which we
are at present investigating,

Progress to Date

The following facts and figures will indicate to what
extent we have (ulfilled our aims. ' .

The total length of the tramslator is about eight
thousand instructions, and the dynamic housekeeping
routines require about four. hundred instructions. In
combination, therefore, these occupy about half of the
store of the computer. This means that the translator
will not have to be re-input during the running of any

set of programs which can at present be run on the.

standard version of the 803 computer. Furthermore, the
“translator can process ALGOL programs of its own size
without necessitating two-pass operation. The speed
of transiation will be 1,000 characters of source program
per second, and therefore, owing to the conciseness of
ALGOL, program input will in general be faster than
machine-code programs. In fact, the operating dis-
advantages of using ALGOL instead of machine code
will have little effect on the productivity of a service
installation, ' ,

1 expect you will be interested in the amount of pro-
gramming effort expended in the project. The coding
of the translator .and dynamic routines took _about
- one-and-a-half man-years, general discussion and plan-
ning- took about half a. man-year, and about half a
man-year has already been spent on various associated

pursuits such as delivering lectures, attending meetings, -

working out specifications, writing manuals, conducting
courses, and answering queries, The programming
team consists of three people, two of whom have been
engaged on the project since April 1961, and the third
since November 1961, The first ALGOL program was
run on |5 February 1962, and accomplished the simple
task of reading two integers and Printing their sum and
difference, -

Since that date we have successfully run programs for
the solution of cubic equations, the addition and multi-
plication of matrices, the calculation of the Sievert
integral, calculation of the greatest common divisor of

. nothing left to be done.

129

two infegers by recursion, the solution of linear equa-
tions, the calculation of Bessel functions, the generation
of permutations, a recursive sorting method, etc.

Most of these programs were translated and ran
carrectly at first atlempt, but some of them uncovered
errors in the translator and dynamic routines. When

./.—

the errors had been corrected, the programs were suc-’

cessiully run. In the next few months we intend to
translate and run as many ALGOL programs as possible.
Experience of maintaining 803 Autocode has shown
that the correction of errors after publication of a
translator can be a troublesome business. We are in
the fortunate position of being able to ensure that most
of the serious errors can be eliminated by exhaustive
checking before publication of the system, :

Future Developments

Although we have already started testing the {rans-.

lator on real live programs, this does not mean there is
At present, where standard
procedures are used, these have to be declared at the
head of the program, which will not be necessary in the
final version.

planned. These deficiencies will be removed in the next
few weeks,*

The present version of the translator has been designed
to provide the most convenient possible operating
system for use on a minimum-configuration 503. How-
ever, possessors of a non-basic machine “will not be

ignored, and we will make it possible to take advantage :

of any extra available facilities. In the first place, the

translator may be held on any available form of backing =~ °

store, to reduce the time taken on re-input; in the seeond

place, standard procedures. will be provided to enable
the ALGOL programmer to use the various peripheral . -
devices. - .- : e LR L s

In writing and ‘testing the various sections of the

translator, continuous use has been made of the. 803 .
computer, which has the same instruction code as the. .
503. In the last few months we have been using up to.
This has been the

seven hours a week on this machine,
main factor in the achievement of a rare distinction in

the field of systems programming. The Elliott ALGOL -
translator has been programmed, and can be proved to”

work, nearly six months before the availability of the
prototype of the computer for which it was designed.

Acknowledgement -

This report is published by kind permission of Elliott
Brothers (London) Ltd. R

* This forecast has proved correct,

Facilities for varying the format of the -
- ouiput are at present non-existent, Finally, the operating _
system does not yet allow all the facilities which are .

