Problems of Software Development

C.A.R. Hoare

Summary.,

The maln part of this paper Is a reprint of the summary
of a "teach-in" devoted Yo problems of software development.
Of continuing Interest is the diagnoslis of the causes of
fallure of large software projects, and a summary of the
seventeen criterla of the quality of software. The historlical
backgfound is surveyed In an Introduction.

R Qwaﬁﬁ] o{} SoFLwM
Z. Fa@fu@t

196 L

0 Infroduction. x

In the early ninotoen~sixties a small but profitable
Computer Manufacturer decided fto embark on a comprehensive
operating system project for a new machine, of the type now
known as "third generation software™. It Included an
automatic single-fevel store (SPAN), automatlc buffering of
peripheral transfers (TSS), a filing system, Job controi,
editing, a new assembl!y ltanguage and new compllers for FORTRAN
and ALGOL 60, more gencral than anything gone before. This

was known as the Mark |1 Software Project. Documents
describling "concepts and facilities" were sent To customers,
and delliveries were due to start abouf 18 months after ﬁé{aq

Inttiatlon., A veam of about Twen#@ programmers started work.

Moanwhile the attentlon of the Company turned to a new
machine, cheaper, smaller and more fashionable than the other.
Software designs for the new machine were to be scaled-down
verslons of the software of The previous machinhe, and work
started with a team of about five programmers. |1 was soon
decided that sales of the old machine were falling off, and
that software development for I+ would cease on completion of
the existing software commitmnent, tThesreby releasing programmers
for the new machine.

But somehow the completion of this software dld not seem

~Jo get any closer. Promlsed deltivery dates passed, and the

romises were dul renewcd crea numbers of inexperlencead
0 / alC i TE. P

O vl
G y’
e

programmers werc recruiﬁed. en?ua y aome experienced

programmers (and even managers) were recalfed te the projJect,and
the speciflcations were drastically curfalled, and progress
charts werg made giving targets wesk by week for each momber
of every team. These showed that the delivery of +the first
item of Mark |l sofiware (the ALGOL 60 compiler) could take
place In about four months, By dint of extremely arduous work
on night shift +hls target was met - the first actual software
dellvery The Company made during a period of two years.
Unfortunately, It was undelliverable., Iis speed of
compl!lation was only two characters per second, whlch parhaps
would be acceptable by prescent~day standards, but compared

unfavourably with a speed of near a thousand characters per second

2

of the previous ALGOL compller for the same machine.

The maln reason for thls was insufficlent planning in tThe
use of the "single-level® store concept, which was crippling
even though the backing store was what was subsequently known:
as "extended core", only fiftecen times slower than the maln
store. Over theo next few woeks, an Intensive investigation
of this trouble was conducted and resulted in a factor-of-
four lmprovement in performance. Further improvoments were
possib!e'bUT would give diminishing refrrns., There was a
hardware 1imit on the size of the main store of the machine,

which prevented the usual solution of frae store handouts to

cystomers.
With some anguish, the whole Mark 11 software project

all

and thirty man-years of programming offort was abandoned. A
meeting of customers was called to explain The sttuation. It
was gal@ing to find that many of them were not surprised.

qﬂ&ﬁw
Y it was at thls point, on October 22, 1965, +hat a '"feach-

ln"CLas held of all senlor programmers and sectlon leaders fo

l‘\‘

\&ﬂ§47 0 attempt to understand the causes of the disaster and agree on

\5? \L’ a remedy. The following sections arc an unedited Transcript

{VQ) of notes which | made of the dlscussion - only the names of
1 t+he machlnes have been removed. A final sectlon on the

\;kéﬁg 1} management structure of the soffware group has also been omitted.

|+ ts pleasant to report that the Company wont on to

§§%k§‘“ Eﬁgsfgn and produce (mors or less on schedule) ‘some qulte
?W ®

\\yw presentable software, both for its old machine and for ifTs new
/ﬁﬂbne, for example, The February 1966 date for delivery of ALGOL

Qgﬁ/ " on the new machine was met. However great care was taken to
J EJ“}Jﬁzivoid promising software with over-ambitious specifications
i%} VN, or impossible delivery dates. Unfortunately ifs competifors
%§p jere not so cautious (or perhans scrupulous) In avoiding such
> "{/¢“ % promises, and many customers were lost,
g{ .}< Ww Evenfually the Company was taken over by a larger one,
}yﬂf\v)#ﬂgvunrh was shortly taken over by an even larger one stilf. Its
U}p identity Is thus so completely submerged that 1 cannot even

Ji"
§§W&N¢'\gﬁ% glve the usual acknowledgement., Nevertheless, my thanks go
; .

to all who worked for me at the time and afterwards, since they

7

TNEY ‘
QMN}&!QS} have %gyghi @g}(the hard way) all | .know about the design
i- }}%ﬂ I
?\}}J\\) \ s
f,ﬁ
P

e

el

W X o

s

and management of large software projects.

0f course, since the events described above, many larger
software projects have culminated In even more spectacular
and betfter publlcised fallure. The reason for publishing the
following nores is In the hope that It will help others to
avold simllar fallures in the future. [+ Is not oniy by reports
of success that the state of the art can be furthered.

The reasons why the report of an event which occurred
some seven years ago has now been edited is partly for
historical interest, but mainly because | think most of the

problems It dascribes are still occurring today. The only
comment which | would now add [s that the seventeen objectives
of software are far more irreconcilable than | Imaglned at the

*fme, and that any software design can only be based on a

clear appr@csarlon of the relative weight to he gliven to each

of tThem, lr WOUlTd be a8 wel I that These weights weré laid down
\“bV”MéﬁéﬁémeEW ln accordance with the commercial interests of

the Company. I\myseif would prefer to give weights In accoﬁaance

with the pracTEca[Interests of the software usor,lwhlch are

often very d{fferenf.uni belteve that the righT order of priority

for the user fo be roughiy ’

Clear Definition of Purpose.;

] [
2. Simplicity of Use.
‘ 3. Operating Ease. K
; 4, Clear, Accurate and Pr@cise User Documents,
: 5. Ruggedness. ‘ "
; 6. Rellabiii+y, S
; 7. Early Avallabitity. S
| 8., Broxlty, N
E 9. Efficiency. \\\
1 10, Suitabiilty to Conflguration.
‘ {le" Wide range of application. \\\

BUY of course the othor critaris must not be wholly ignored.

Aol WEWA | M\,gw: P - e

St

(6(/ Zéﬁ \12>HN1N # / W M&WWMM Le,w»
bojéva Ao L{\Md oV~ k\{’&e s,

. The Purpose of Software
To iIncrease sales of the Company's computers by providing

a suitable degree of software support; and +o give maximum

satisfaction to customers with resources avallable.
Software support comprises those programs, compi!ers;
sub~routines, etc., which simplify and expedite the task of
applying a computer In a relatively wide area of problem
solving.
2. RecenfﬁMajor Customer Grievances
In recent times the software situation at the Company

has given much cause for dissatisfaction among customers.

Thelr major legitimate grievances are:
2.1, Cancellation of ProjJects.

Several projects have been cancelled at a very late stage
even after thelr descriptions have appeared In The Technical
Manual., The specliflications of other projects have been
significantiy reduced.

Gn our new machine, TSS has been virtually shelved,
and the specificatlion of SPAN will probably be simplified

before implementation on backing store.

2.2, Faiture to meel Deadiines,.

For our MK.l| software on our current machine, deadlines
set In March and again in June 1965 were passed without
notice; and on our new machine, the November deadline for
ALGOL has had fo be postponed to February 1966,

2,3, Excesslve slze of Softwara,
In the specificatlion and planning of software insufficlent
thought was given to predicting the size of the subroutines
and of the programs which used them; and In the event +he
size has proved not fo be justified by the usefulness of
the facilitles provided,.
On our new machline, earty predictions of the size of the
ALGOL compiler and systeoms programs were over-optimlstic,
but lack of effort has protected us from the worse excesses

of the earller machine,

2.4. Excessively slow programs,
fn the design of software insufficient thought was given

to predicting the speed of the programs; and in the event

!

the ALGOL and probably also the FORTRAN compilers have been
found to be qulte unacceptably slow,
On our new machine, the absence of two-level stTorage

has protected us from the worst errors of the previous machine,

2.5. Fallure to take account of Customer Feedback.

Earlier attontion paid to the quite minor requests of
our customers might héve pald as great dividends of goodwli!
as even the success of our most ambitious plans.

2.6. Poor Information flow to Educatlion Dept. Sales
and Customers,

As a result of hasty Improvisation undertaken at the
last minute to get the programs dellvered, the documentation
of the programs actually delivered is sadly tacklng; and
the education department has had no chancse to keep up To
date and train customers programmers in the use of fhe

programs aciually available.

3. lInvestigatlon of Causes

The causes of thoe fatlure summarised 1n the previous

section may be classifled roughly as:

!+ Failingwithin the software group due malnly to
inexperisnce In planning and prediction. -

2. Failings within the software group due malniy to
organisational and communication problems,

3. Grievances, which relate to clrcumstances wholly or
partly out of the control of the software group.

3.1, Failure in prediction.

The failure to predict successfully the consequences
of the Company's plans and policles might be sald to be the
main cause of the Trouble, since if we had foreseen the
trouble, we would cerfalnly never have embarked upon the
plans.
3.1.1+ Overambition, _
The goais which we have attempted have obviously proved
to be far beyond our grasp. Even if it were theoretically
possible to implement so great a volume of Interlinked programs,
it was obviously not a practical possibility In the prevallling

circumstances. On our new machine, the attempt to achieve

3

compatibility with commercial software developed outside
the group, has hasically failed because It was more difficult
to achleve than was axpected,
3.1.2. Estlmation, and consideration of program size,
and speed,

Early and correct eostimates of the slze ancd spoed of
complilers and other programs would have lad to the use of
more successful fTechnliques of implementation - or abandon-
ment of the project.

The fact that it was exiremely difficult to make these
estimates In advance mlight have heen a warning net to adopt
such complex techniques, or at least to keep a closer watch

on these factors during The course of implementation.
3.1.3. Estlimation of effort requlired,

Tha amount of effort required fto get a program to a
state of dolivery has been consistently underestimated., For
simple applications programs, a Typical productivity figure
for a programmer engaged on flowcharting coding, and testing
is 100 slngle~address Instructions a week. For complex
intertinked programs, compilers, and for software in general,
a figure of 40 instructions/wk ts quoted and borns out by
our experienca. For systems proarams floating polnt routines,
input/output reutines, and other programs which occupy core
store space durling the running of customers' programs, the
uwimost care in coding is required; and 20 instructions/waek
would be a good figure, if it can bs afforded.

All these figures are based on:

Iv feaslible otriginal speclifications

Z. minimal changes o specification

3, TQe best planning,coding, and testing technlques

There Is no known way of estimating how long I+ will
take to deliver a program which has been partially developad
without satisfyling these criteria.
5.1.4, Fallure to Plan Coordination and Interacticn

of Frograms,

Where the ccordination and dapendency of programs has
tesn accepted as Jdesirable or necessary, the greatest possiblo
care must be exerclsed in planning and clearly deflnling the

simplest possible Inferface between the programs. On both

sldes of the Interface the programmer should try to
understand the major requirements of the other side, and

a contlnuous watch should be kept on the situation by

both sldes. Even whon the greatest care has been exercised,
some trouble is to be expected and allowed for in the

final !inkup.

3.1.5., No Early Warning of Faitlure.

Even the best based predictions will sometimes prove
Incorrect, so that it ls wise to draw up a 1ist of the
assumptions on which sach prediction has been based, and 1o -
check regularly whether the assumptions are stili Justitied
or not, Since many predictlons are based cn a breakdown of
a task Into its component parts, a contlinucus check of
actual agalnst estimated achlevement on each of the parts is

the best Indicatlon of llkely success or fallurs,

3.2, Communication and Organisational Problems.

The problems of organisation and communlca+ticn In
software design and Implementation are extremely severo,
owing to the great mass of specialised and interacting details
which must be conirolled and coordinated withln some cléar
goneral framework,

the severity of the problem means that especlial care
must be taken by all members of tho department that Information
s distrituted and gathered In the right places at the right
time,
3.2.1. Proper Procedures for Program Changes.

bt is In the matter of changes to program specification
that fallure t¢ consult ".and communicate result In the greatest
difficulfles, Each programmer rnust malnftaln a continuous
awareness of the activities and needs of other programmers
who are relying on him, as well as the pregress of those on
whom he is relying. Draft changes to specification must be
clrculated to interested partlss, and authorisod by the

group leader before they are implemented.

3.2.2. Ccherency of Serics of Documcnts.

Whsn a sertes of documents Is issued relating to the
sams project or subjoct, the documenis should be numberead,
and each successive document should Indicate In what way it

is ratated to Its predecessors; for examplc, whother |+

supplements I+, adapts i+, or supercedes it.
Fallure to do this can lead to grave confusion.

3.2.3, Lialson with Education and Sales.

In addition to the problems of communication within the
programming group, There are equally severe problems of passing
up-to-date Information to the Education Dapt. for teaching
to our customers, and to Sales Department so that Sales Policy

may be based on a reallstic appreciation of the situation.

3.2.4, Management Lialson.
A clear plcture of all the aims, acTivities, and diffl-

culties of the department must be presented to management,

so that longer term and even shorter term decisions may be

based on a correct appreciation of the sttuation rather than

upon qussswork,
3.2.5. GCustomer Lialson.

Ultimately, +he most important form of liaison Is that
with the customer, who must be glven a fair and accurste
indication of the nature and purpose of the programs which
he is to expect, and when he Is to expect them. Comments and
feedback from customers must be given The greatest waight,

but must not lead to any rash promises.
5.2.6. Cleoar and Stable Definltion of Responsihilities,

tn the recent pas+t, The clear division of rasponsibiliiias
among the wembers of a programming team has often been lacking;
and programmers have been uncertain about the extent of Their
Fresponsiblitities for the programs they are developing.
Furthermore, programmers have been moved from one project to
another orather more freely than is consistent wlth the

establlishment of proper long-term responsibilities.
fundamentally, the task of sach software programmer [s to
deliver programs which other programmers (infernal or external)
are willing and glad to use,.
3.3. GRIEVANCES.
3.3.1. Lack of Machine Time,
The tack of suitable machine time during software

development is likely to be & permanent foature, sincs soft-
ware usually has to be developed simultaneousty with tho

6

hardware which i+ uses. The original destgn and planning

of +the software should take *this fact Into account.

3,3,2, Struggle for Machine Tine.

Small amounrts of machine time would be mors acceptable
if its avaitabifity Is considered to be beycnd question. In
fact, it has been a constant struggle to malntaln any
allocatlon Inviolate from encroachment; it Is this struggle

which millitates against efficient planning of the use of the

+1me avaliéble.

3.%.3, Unpredictability of Machine Time.

When machine Time is made avallable (espectially from
the productlon floor) this Is usualiy only at short noetice.
This makas planning lmposslible, and encourages precipitate
and unprofitable use of everd that Time which becomes avallable,
This is particularly trus when a programmer attempts to make
up for a lang perlod without machine time by a long session at
the console. ; |
3.3,4, Lack of Suitable Peripherals.

The non-avallability of suitable peripheral equipment Is
often even more difficult to overceme than that of central
procassor tlme, which ls sometimes oifered in exchange.,
Agaln, This fact should Le taken Into account in the planning

of software for peripherals.

3.3.5., Unreliabliity of hardware,.

Even when machine time is avallable, the unreilabiiity of
processor and peripheral equlpment offen causes more frustraiion
and waste of time fThan 1+s comniste absence. This is also due
t+o the need to test programs on early protolype or production
modols, and the unavaldable inexperlience of commissloning and
maintenance personnal,

In general, a regular guarantsed allucation of rellable
machine time, even quite small, is far bettsr than the constant

struggle to make up for loss of machine time by oTher means.

3,3,6, Dispersion of Staff.
Problems of communication, which are already sufficiently
troublesoms In software development, are further aggravated

by the dispersion of staff throughout the bullding.

3.3.7. Lack or Absence of Tape Preparation Eguipment.

On our new machine the absence of propor paper taps
preparatlion equipment has and will continue to prevent Inter-
change of progrems and data between ourselves and our customars,

I+ necessitates maintenance of twe versions of avery progranm,

3.3.8., Lack of Firm Hardware Dollvery Dates.
Delivery dates for hardware on which software development
depends are extremely difficult to obtaln, and when obtalined

arg often warthless,

3.3.9. Lack of Technlical Writing Effort.

For some time [+ was hoped that deficiencies in original
program specificalions could pbe made up by The skill of a
technical writing department. When This hope proved to be

unjustified, there was a natural ground for complaint.

In fact the original hope was misguided; the deslign of
a program and the design of Its speclification must be under-
taken In parallel by the same person, and they must Interact
on each other. A tack of clarity in the specification is one
of the surest signs of a deficlency in the program |t describes,
and the two faults must be removed simultanecusly before the
project is enmbarked upon. This means that the program deslgner,
usually the section leader, must be responsitie for the

description zs well,

3.3.10. lack of Softwarc Knowledge Outside Programming Grbup.
The lack of knowledge and interost In software which

s prevalent outside the programming group I1s not entirely a

grievance, since It can be remedied by more care taken by The

programming group In presenting the nscessery information in a

simple and, palatable form,

3.3.11. [Interference from Above,

On our new machlne?ggg?é?ons impinging on softwars
design (e.g. character codes, papor tape preparation equipmend,
etc.) were taken by management possibly without & full realis-
ation of the more intricate implications of the matter. Again
this circumstance can be partiaily remcdied by better information

flow from the programmers,

3.3,12, Over-cptimlsm to Customers.

There has'been somé lack of cautlon on the part of
salesmen and programmers in making promises or near promises
to customers about the merits and availabillity of software.

In fact, the programmer should always promise Just a |lttle
less than he knows to be achlevable, and quite a blt tess

than he hopes will ultimately bo attained. The salesman
should assist the programmer in avelding excessive commltments,

rather than -encourage more ambitious promises,

4. The Criterla for Quality of Software.

in the recent struggle To deliver any software at all,
the first casualty has been conslderation of the quallty of
the software delivered. The quality of soffware is measured by
a number of totally incompatible criteria, which must be care-
fuliy balanced In the design and Impglementation of every progranm,

and in The incorporatlion of Improvements in programs alrgady

delivered,
4.1, Clear Definition of Purpose.

The aim of every item of software must be most clearly
defined; and recommendations on tThe circumstances of its
successftul use must dDe fully explained. Vagueness in this
matter is Intolerabla; and of course, every feature of the

irogram del iveroed must he oriented towards the declared purpose,
g

4.2 Simplliclty of Use,
The software must be very simple to understand and use In
the majority of cases, and the extra comploxity of I+s uso in

less normal circumstances must be kept To a minimum,

4.3. Ruggecness,

As well as heing very simple to use, & software program must
be very difticult fo misuse; it must be kind to¢ programming
errors, giving clear indicatlion of thair occurrance, and never

becoming unpredictable In Its offects,

4.4, Early Avaitability,

Sofftware must be made available tegethor with the first
delivery of the harswaro to which It is relevant. It software
s not available &t ¥his time, ths customer is forced to
davelop his own ad hoc techniques, and may never be weangd
to usc the more elegant methods of software which has arrlved

too lals.

4.5, Reliability,

The original program delivered must be as free from
errors as possible, and if errors are discovered they must
be capable of correction with the greatest rapldity., This
is dependent on simplicity cf programming techniques and
first-class program documentation.

4.6, Extensibility and Improvability in Light
of experisnce.

Since Jdack of hardware and lack of expertience makes
it Imposstble to deliver perfect software in s Mark | verslon,
the softwarc programs should bhe capable of further development
and Improvement. This agaln demands slmplicity of approach
and good documentation,

4.7. Adaptabllity and Easy Extension to Different
Configurations.

The purpose of software Is t¢ satisfy as many customers
as possiule, including those with a wide range of conflguratlions,
Furthermore, a customer who expands his hardware after purchase
will wish to avold changing his programs or hls programmling
techniques and concepts.
4.8, Sultability to Each Individual Confiquration of the

Range.

tn addition to adaptabliity over a range of configurations,
the software azctually avallable for each membar of the range
should be well suited to the capabilities and needs of +hat

particular conflguration,

4.9, Brevity.

Software programs should ba as short as possible,
particularly those which have to co~ex!st in the store wilth
the programs which use them. Furthermore, the use of the
software should not involve extra length in The proaram which
makes use of 1t,

4.10, Efficiency {(Speed),
The speed of softwere programs should ba sufficlent oto

Justify thelr use In most circumstances,

4.11. Operating Ease. ‘

The most critical factor In tho efflelency of an
Installation Is often the smoothness of the operating system.
Softwars should be designed to make the job of fthe operator as

simple as possibloe,

4.12. Adaptibility to Wide Range of Appllcations,
Since the purpose of software is to find wide
applicablility, It is necessary to consider the widest posafbie

areas of appllication In its design and implementation,

4.13, Cohsrencs and Consistency wlth otfher programs.

As far as possible, software programs should be
compatible with each other, and capable of bsing used elither
separately or In conjunction with each other. Furthaermore,
any overiap between the programs available should only be
accepted If The need Justifies I+,

414, Minimum Cost to Develop,
The cost of software development in manpower and
machine time is a vitai factor In the planning of a suite

of software prograns.

4.15. Conformity to Natlonal and International Standards,

When national or internaticna! standards for character
codes, tape formats or tanguages have been set up, or seem
bikely to be set up, these should be observed to the

maximum extent,

4,16, Early and Valid Sales Documantation,

Sales documentation descrlbing the most important
features of the software under dovelopment shouid be avallable
early In the Ilfe of the project; and they shculd remain
valld when thoe product is finally delivereod,

4,17, Clear Accurate and Preclse User's Documents.

In additlion to sates documents, the usor's documents
should contain clear instructions on a program’s proper
method of use, and an accurate description of I+s properties,

The document should be available earty in ‘the |ijfe
of the project, and should be Kept scrupulously up to date.

