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Abstract

Dagger-compact categories have been proposed as a categorical framework suitable
for quantum reasoning [1, LiCS’04]. Modelling classical operations in this framework
seemed to require additional completeness assumptions, most notably biproducts. In
the present paper, we show that classical operations naturally arise from the quantum
structures, with no additional assumptions. Formally, the distinct capabilities of clas-
sical data – that they can be copied and deleted – are captured by means of special
coalgebra structures of classical objects. Conceptually, this suggests that the connec-
tion of the classical and the quantum reasoning extends the connection of the classical
and the resource sensitive logics. Technically, the connection of the classical and the
quantum structures thus echoes the connection of the additive and the multiplicative
connectives in Linear Logic. In this familiar conceptual framework, we propose a com-
prehensive formulation of axioms of quantum informatics, which essentially improves
on previous work. The underlying graphic calculus allows a very succinct presenta-
tion of several quantum informatic protocols. The underlying structural analysis also
provides the elements of an abstract stochastic calculus, and points towards possible
refinements of resource sensitive logics, which arise from the quantitative content of
quantum mechanics and the limited observability of quantum data.
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1 Introduction

One of the central logical concerns of Computer Sci-
ence has been resource sensitive reasoning, in particular as
captured through linear decomposition of logical operations
[13]. From the outset, the central feature of linear logic was
its distinction of the multiplicative and the additive connec-
tives. The main technical and conceptual challenges of lin-
ear logic hinge on this distinction.

When Abramsky and Coecke [1] gave the long quest
for “quantum logic” a categorical twist, and extended the
framework of compact categories beyond its established use
in semantics of programming languages, to encode quantum
protocols, the interplay of the multiplicative structure of
dagger-compact tensors with the additive structure of biprod-
ucts, played a crucial role. When Selinger [23] and Co-
ecke [6] tackled the task of specifying a system of quan-
tum types, an echo of the multiplicative/additive structure
of Hilbert spaces still seemed appropriate. However, as
pointed out in [6], the total additive operations, as given
by the biproducts, do not yield to a natural physical inter-
pretation. On the other hand, according to the No-Cloning
and No-Deletion theorems [26, 20], the copying and delet-
ing capabilities arise only locally, over classical data, and
do not correspond to global operations over quantum types.
A method to capture and analyze such local additive oper-
ations as a certain coalgebra structure of classical objects
was proposed in [8].

In the present paper, we complete that conceptual devel-
opment, and propose a comprehensive categorical axiomat-
ics for the information flows relating the quantum and the
classical data. While it echoes the structural distinction be-
tween the multiplicative and the additive operations of lin-
ear logic, there are also significant differences. The obvious
one is that the multiplicative structure of the quantum op-
erations, captured by compact categories, is a degenerate
case of the multiplicative fragment of linear logic, where
the two linear tensors boil down to one. But this simpli-
fication may be a feature of early work, and one can eas-
ily envision frameworks for quantum reasoning that would
accomodate two different linear tensors, e.g. arising from
non-commutative geometries [19]. A deeper, and more sig-
nificant distinction of the additive operations in the quan-
tum world is their locality. Just like in linear logic, the
additive operations arise from internal comonoids over the
multiplicative operations; in contrast with linear logic, we
do not use the explicit additives, or the universal construc-
tion of cofree comonoids, viz the linear exponentials, but
just arbitrary types with classical structure. On a technical
level, this leads to significant practical simplifications, of
the graphic calculus. As a consequence, even in the cate-
gories which do have biproducts and cofree comonoids, it
turns out to be simpler to describe protocols in purely mul-

tiplicative terms.1 On the conceptual side, the paradigm
of propositions-as-types and proofs-as-terms, which pro-
vided a logical foundation for type theories, including lin-
ear, now extends in a new direction, towards propositions-
as-physical-systems and proofs-as-physical-operations.

However, even with the categorical refinements, the logi-
cal paradigm of morphisms-as-physical-operations appears
to be too coarse to capture a relevant fragment of quantum
mechanics. Distinguishing the quantum operations from the
classical operations, and even separating the quantum ob-
jects from the classical objects, does not suffice. In order to
manipulate and combine the two kinds of data, we also need
to distinguish and axiomatize classical operations, control
operations and measurements.

The axiomatics offered in the present paper is a step in
this direction. In summary, our contributions are as follows:

pure mixed
entanglement as ⊗ Abramsky & C [1] Selinger [23]

single operations from ⊗ Abramsky & C [1] Selinger [23]
classical data from ⊗ C & Pav [8] this paper

classical operations from ⊗ this paper this paper
measurements from ⊗ C & Pav [8] C & Paq [7]

control operations from ⊗ this paper this paper
Building upon the initial, in some case crude definitions
from [8, 7], we now propose a unified, comprehensive ax-
iomatics of quantum information flows. While measure-
ments induce the information flows Q → Q ⊗ C, from the
quantum world to the classical world, control operations
induce information flows Q ⊗ C → Q, from the classical
world to the quantum world. However, the apparent duality
of these two types of operations stops at their type annota-
tions, as their semantics turn out to be based on quite differ-
ent mathematical structures, viz on †-Frobenius coalgebras
in former case, and on relativized unitaries in the Kleisli cat-
egory for a classical object in the latter case. The proposed
axiomatic framework provides grounds for understanding
their actual structural relationship.

In [1, 2] pictures were used to display the quantum in-
formation flow. Building upon the seminal work of Kelly
and Laplaza [17], Selinger [23] provided the formal foun-
dation, and the coherence theory for such graphical calculi.
The importance and power of these graphic representations
is presently illustrated by our protocol analyses, combin-
ing the classical and the quantum structures in a way which
makes direct algebraic presentations practically unfeasible.

This paper also exposes that quantum structure and clas-
sical probability share a common high-level structure. This
should not be a surprise. For example, when encoding a
message as an encrypted message together with an encryp-
tion key, all data is transformed in pure correlations, leaving
no trace of it with the individual components, exactly as it
is the case for maximal quantum entanglement.

1In finitely dim. Hilbert spaces, every choice of a base gives a classical
and hence a comonoid structure, but only an involved Grassman algebra
construction [3] yields a cofree comonoid, and the linear exponentials.
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Classical and quantum objects are defined in Sec. 2. Sec. 3
introduces fully comprehensive purely multiplicative cate-
gorical quantum axiomatics. Sec. 3.5 illustrates its use by
providing a succinct description of several quantum pro-
tocols. We also extract axioms for an abstract theory of
stochastic operators, as arising from the quantum world.
The relevant proofs are presented in the Appendix.

2 Classical and quantum data

We will only consider symmetric monoidal †-categories
i.e. symmetric monoidal categories with a strict monoidal
involution [23]. Below (C,⊗, I, †) is always such a cate-
gory. Of key importance to this paper is the category of
finite dimensional Hilbert spaces and linear maps FdHilb.

2.1 Quantum data

A compact structure on an object A of C is a quadruple

(A,A∗, η : I → A∗ ⊗A, ε : A⊗A∗ → I)

which is such that the diagrams

A∗

η⊗A∗

��

id

))RRRRRRRRRRRRRRRRR A
A⊗η //

id
((RRRRRRRRRRRRRRRRR A⊗A∗ ⊗A

ε⊗A

��
A∗ ⊗A⊗A∗

A∗⊗ε
// A∗ A

commute [17]. Given such a compact structure,A∗ is called
the dual to A, and we call A self-dual whenever A∗ = A.

Definition 2.1. A quantum structure in C is a pair

(A , η : I → A⊗A)

for which (A,A, η, η†) is a compact structure (and hence
withA self-dual). We denote by Cq the category with quan-
tum structures (A, ηA) in C as objects and with Cq((A, ηA), (B, ηB)) :=
C(A,B).

Proposition 2.2. Quantum structure induces two identity-
on-object functors (−)∗ : Cop

q → Cq and (−)∗ : Cq → Cq

such that (f∗)∗ = (f∗)∗ = f†, explicitly

f∗ := (1A ⊗ η†B) ◦ (1A ⊗ f ⊗ 1B) ◦ (ηA ⊗ 1B)

f∗ := (1B ⊗ η†A) ◦ (1B ⊗ f†⊗ 1A) ◦ (ηB ⊗ 1A) .

In FHilb the operation (−)∗ transposes matrices while
(−)∗ conjugates the phases of all matrix entries. Hence in-
variance under (−)∗ stands for absence of phase data.

In [1] Abramsky & C axiomatised Cq in terms of the
involutions (−)∗ and (−)∗ and defined pure operations or
unitaries are morphisms which satisfy U† = U−1. Selinger
constructed (not normalised) mixed operations, showed that
this construction preserves quantum structure, and that cap-
tured the passage from pure to mixed operations and states.

Definition 2.3. [23] Let CPq(C) be the category with the
same objects as Cq and with CPq(C)(A,B) containing all
morphisms (1B⊗η†C⊗1B)◦(f⊗f∗) ∈ Cq(A⊗2, B⊗2) for
f ∈ Cq(A,B ⊗ C), with composition inherited from Cq.
Morphisms in Cq of the above form are completely positive.

Proposition 2.4. [23] Objects in CPq(C) inherit quantum
structure from objects in Cq and the monoidal functor

Hq : Cq → CPq(C) :: f 7→ f ⊗ f∗

preserves this structure. Morphisms in CPq(FdHilb) ex-
actly are completely positive maps in the usual sense, and
elements are (not normalised) density matrices.

2.2 Classical data

A Frobenius algebra structure in C is a quintuple

(X,m : X⊗X → X, e : I → X, δ : X → X⊗X, ε : X → I)

where (X,m, e) is an internal commutative monoid and
(X, δ, ε) is an internal commutative comonoid which sat-
isfies the Frobenius equation i.e.

X ⊗X
m //

δ⊗X

��

X

δ

��
X ⊗X ⊗X

X⊗m // X ⊗X

commutes [5, 18]. It is special whenever m ◦ δ = 1X .

Definition 2.5. A classical structure in C is a triple

(X , δ : X → X ⊗X , ε : X → I)

for which (X, δ†, ε†, δ, ε) is a special Frobenius algebra.

For Hilbert spaces, we set δ : |i〉 7→ |ii〉 and ε : |i〉 7→ 1,
and specifying this classical structure means fixing a base,
since the only vectors |ψ〉 which are not mapped on an en-
tangled state by δ, i.e. δ(|ψ〉) = |φ1〉⊗|φ2〉 for some vectors
|φ1〉 and |φ2〉, are exactly {|i〉}i.

Proposition 2.6. Each classical structure induces a quan-
tum structure. Explicitly we have ηX := δX ◦ ε†X .

Proposition 2.7. [8] We have δ∗ = δ and ε∗ = ε.

The classical structures over X and Y induce a classical
structure over X ⊗Y . The canonical classical structure of I
consists of the isomorphism λI : I ' I⊗I and 1I. We denote
by Cc the category with classical structures (X, δX , εX)
in C as objects and with Cc((X, δX , εX), (Y, δY , εY )) :=
C(X,Y ). By proposition 2.6 the forgetful functor Cc → C
thus factors through Cc → Cq. Note that Cc differs from
the cartesian category of classical objects and coalgebra ho-
momorphisms, considered in [8].
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Definition 2.8. The comonoid structure of each classical
object X induces a classical comonad X ⊗ − : Cq →
Cq. The counit and the comultiplication of the comonoid
induce the counit and comultiplication of the comonad, and
the categorical structure relativized over X in the Kleisli
category CX for this comonad [22]. If a morphism f : A→
B of CX has a property Φ, then we say that the underlying
morphism f : X⊗A→ B of C has the property Φ relative
to X , or that it is an X-Φ morphism.

Proposition 2.9. For every classical structure X , the in-
duced Kleisli category CX is a symmetric monoidal †-category.
Its objects inherit the classical structure from Cc.

Definition 2.10. A †-coalgebra for a classical comonad is
a (Eilenberg-Moore) coalgebra f : A → X ⊗ A of which
the adjoint f† : X ⊗A→ A is self-adjoint in CX .

Similary to CPq(C) we define CPc(C) by only con-
sidering objects in Cc. Objects in CPc(C) now inherit
classical structure from Cc. We have CPc(FdHilb) '
CPq(FdHilb) as categories of quantum structures.

2.3 Graphical notation and normal form

In what follows we will need to combine the classical
and the quantum structures in a way which makes direct al-
gebraic presentations unfeasible. Therefore we will rely on
the well-established graphical representation of tensor cal-
culi [17, 11, 16, 23, 18, 24]. In this notation morphisms in
symmetric monoidal †-categories are represented by boxes,
domain types by input wires, codomain types by output
wires, and † by reversal of boxes [23]. As a convention we
read pictures from bottom to top. We introduce two distinct
but equivalent graphical notations for classical and quantum
structure which we justify below. These are for δ, ε and η:

We refer to the first one as box-form and to the second as
wire-form. The axioms of quantum structure become:

==

Observing that in wire-form we have:

f *

=

f

and adopting Selinger’s graphical convention [23]:

f

f

† f

f
*

*

it follows that we can ‘slide boxes’:

=

f f *

=

f

and obtain a straightforward generalisation of the composi-
tionality lemmas of [1]. Correctness of (postselected) logic

gate teleportation and entanglement swapping are straight-
forward corollaries of this [1]. The axioms for classical
structure depict in ‘superposed’ notation as:

= =

= = =

=

Proposition 2.11. If in graphic representation a morphism
generated from classical structure and the symmetric monoidal
†-structure is connected, then it can be reduced to the form
of a “spider” with n input and m output wires,

.........

....
where we conventionally write

Setting δ0 := ε†, δ1 := 1X and, for n ≥ 2,

δn := (δ ⊗ 1X⊗n−2) ◦ (δ ⊗ 1X⊗n−3) ◦ ... ◦ (δ ⊗ 1X) ◦ δ ,
the “spider” is the graphical representation of δn ◦ δ†m.

While the actual graphical calculus will be the one of
wires and their connectors (dots) i.e. wire-form, the transla-
tion of the wire diagrams to algebraic expressions simplifies
by annotating trapezoids, triangles etc. The triangles, i.e.
morphisms of type I → A, also resemble Dirac-notation:

which makes the pictures more tangible for physicists. But
in order to simplify the transformations of diagrams we omit
these annotations in proofs: yanking a wire is more natural
than substituting configurations of triangles into wires, and
contracting the dots is more natural than transforming con-
figurations of trapezoids into squares.

Our choice for the box-form of classical and quantum
structure does immediately indicate, as in Prop. 2.6, that
classical structure indeed refines quantum structure:

and the corresponding proof becomes:

= =

Following [23], when CPc(C) is represent in terms of
graphical calculus it is very convenient to depict (−)∗ such
that it reverses tensor ordering of objects e.g.:

B

D

A A

C C

B

D
g g

*

resulting in a perfectly symmetric picture.
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3 Interacting classical and quantum data

Below X , Xi and Y will always be classical structures
and A, Ai and B will always be quantum structures. With-
out loss of generality, by relying on symmetry, we can rep-
resent combined classical-quantum data as X ⊗ A, with
X = X1 ⊗ . . . ⊗ Xn and A = A1 ⊗ . . . ⊗ Am. Given
C we will now construct an new category CΞ,q that is suf-
ficiently rich to capture full-blown classical-quantum inter-
action i.e. we can identify every physical concept as par-
ticular morphisms. Selinger’s CPq(C) will be the ‘raw
quantum fragment’ of this. The remainder of the paper will
mainly constitute the study of the other important fragments
of CΞ,q , namely the ‘raw classical fragment’. We start by
constructing this raw classical fragment, and then we will
generalise this constructions to include all operations in-
volving both classical and quantum data. From now on we
denote the compound type A⊗B ⊗ C ⊗ . . . by ABC . . ..

3.1 Categorical semantics of raw classical data

Definition 3.1. The diagonal structure on X is

ΞX := δX ◦ δ†X : XX → XX ,

which depicts as:

and f : XX → Y Y is diagonal if f = f ◦ ΞX = ΞY ◦ f .

Lemma 3.2. ΞX is idempotent and completely positive.

If ρ : H → H is a density matrix, then (ρ ⊗ 1H) ◦ ηH
is diagonal exactly if there are no off-diagonal elements,
and similarly, diagonal completely positive maps will send
diagonal density matrices to diagonal density matrices.

Let DΞ(C) be the category with classical structures as
objects and with DΞ(C)(X,Y ) the set of all diagonal mor-
phisms in C(XX,Y Y ). Note that the identities in DΞ(C)
are ΞX , not 1X . Let G be identity-on-objects and

G : DΞ(C)(X,Y ) → Cc(X,Y ) :: g 7→ δ†Y ◦ g ◦ δX .

Lemma 3.3. G is an isomorphism with inverse

F : Cc(X,Y ) → DΞ(C)(X,Y ) :: f 7→ δY ◦ f ◦ δ†X .

In wire-form Ff and Gg are

g

X

Y

f

X

YY

X

Let CPΞ(C) be the all-objects-including subcategory of DΞ(C)
with morphisms restricted to completely positive ones and
let CΞ be CPΞ(C)’s image under G i.e.

CΞ
F

//
_�

��

CPΞ(C)

G
xx

_�

��

'

Cc
F // DΞ(C)

G

ff '

Proposition 3.4. Morphisms in CPΞ(C)(X,Y ) are exactly
the Cc(XX,Y Y )-morphisms of the form ΞY ◦ g ◦ ΞX for
which g : XX → Y Y is completely positive.

Theorem 3.5. CΞ is a symmetric monoidal †-category and
each classical structure in Cc induces a classical structure
on the corresponding object in CΞ.

We call the morphisms of CΞ classical maps.

Proposition 3.6. For f : X → Y setting

Unf(f) = (1X ⊗ δ†Y ) ◦ (1X ⊗ f ⊗ 1Y ) ◦ (δX ⊗ 1Y ) .

we have that Unf(f) : X ⊗X → Y ⊗ Y is positive if and
only if Ff : X ⊗X → Y ⊗ Y is completely positive.

Given an n×m-matrix (fij), we have Unf(fij) : |ij〉 7→
fij |ij〉 i.e. we obtain a (n×m)× (n×m)-matrix in which
all entries of (fij) now appear on the diagonal. Requiring
this matrix to be positive implies that all fij are positive.
As a result we have FdHilbΞ ' MatR+ i.e. matrices with
entries in the trivially involutive semiring R+.

Definition 3.7. A classical map is a stochastic map if it
preserves ε i.e. εB ◦ f = εA. A stochastic map is a classical
state if it is of type p : I → A. A classical state p is a pure
classical state if it preserves δ i.e. δA ◦p = (p⊗p)◦λI, and
we call ε†A : I → A the maximally mixed classical state.

The notions of stochastic map and classical state, purity
and maximal mixedness coincide in this example with the
usual notions. One should think of FdHilbΞ itself as the
positive convex cone i.e. non-normalized probabilistic states
and corresponding probabilistic processes. Hence in this
key model classical maps are inherently qualitative.

3.2 Categorical semantics of all data

We call f : AXXA → BY Y B diagonal if f = f ◦
Ξ(A,X) = Ξ(B,Y ) ◦ f where Ξ(A,X) := (1A ⊗ ΞX ⊗
1A). Let DΞ,q(C) be the category with pairs (A,X) as
objects, with DΞ,q(C)((A,X), (B, Y )) being all diagonal
morphisms in C(AXXA,BY Y B), and identities Ξ(A,X).
Let Cc,q be the category with pairs (A,X) as objects and
with Cc,q((A,X), (B, Y )) := C(AXA,BY B). Let δ(A,X) :=
1A ⊗ δX ⊗ 1A. Let G be identity-on-objects and

G : DΞ,q(C) → Cc,q ::

{
(A,X) 7→ (A,X)
g 7→ δ†(B,Y ) ◦ g ◦ δ(A,X)
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Lemma 3.8. G is isomorphism with inverse

F : Cc,q → DΞ,q(C) ::

{
(A,X) 7→ (A,X)
f 7→ δ(B,Y ) ◦ f ◦ δ†(A,X)

In wire-form Ff and Gg are

A

B

A

B

g

X

Y

A

B

A

B

f

X

YY

X

Let CPΞ,q(C) be the all-objects-including subcategory of
DΞ,q(C) with morphisms restricted to completely positive
ones and let CΞ,q be CPΞ,q(C)’s image under G i.e.

CΞ,q
F

//
_�

��

CPΞ,q(C)

G
vv

_�

��

'

Cc,q
F // DΞ,q(C)

G

hh '

Proposition 3.9. The morphisms in CΞ,q and in CPΞ,q(C)
are exactly those Cq-morphisms of respective forms

δ†(B,Y ) ◦ g ◦ δ(A,X) and Ξ(B,Y ) ◦ g ◦ Ξ(A,X)

for which g : AXXA → BY Y B is completely positive.
Hence, using Selinger’s graphical representation for com-
pletely positive maps, in wire-form they respectively are:

A AX

YB B

A AX

YB B

X

Y

Theorem 3.10. CΞ,q is a symmetric monoidal †-category
and each pair consisting of a quantum structure A in Cq

and a classical structure X in Cc induces a quantum struc-
ture on the object (A,X) in CΞ.

It also easily follows that for quantum structures A and
classical structures X there are faithful canonical functors

CA : CΞ → CΞ,q :: Y 7→ (A, Y )

QX : CPq(C) → CΞ,q :: B 7→ (B,X) .

Given C we constructed a category CΞ,q in which CPq(C)
can be embedded along a classical structure and in which
the category CΞ, which we also constructed from C, can be
embedded along a quantum structure.

3.3 Classical maps as quantum maps (twice)

Since the category of classical maps CΞ is a subcategory
of Cc it also embeds in CPc(C) and hence in CPq(C):

CΞ
� � //

γ1

33Cc
Hc // CPq(C)

The functor γ2 assigns to a classical map a pure quantum
operation which ‘extends this classical map by superposi-
tion’. However, another manifestation of classical maps
and in particular, stochastic maps, within quantum theory
is mixedness. Our categorical semantics also witnesses this:

CΞ
F //

γ2

22CPΞ(C) � � // CPc(C)

The embedding CPΞ(C) ↪→ CPc(C) does not preserve
identities and hence γ2 is only a semifunctor.

C

C

CP (C)

 CP  (C)
c

c

H  [C ]

H  [C  ]
c

Ξ

∼_

Pure world
Mixed world

c

cΞ Ξ

Hc

We study how these two embeddings relate. We define Sqr
and Diag by commutation of:

CΞ
γ1 //

Sqr

��

CPc(C)

Diag

��

Ξ◦−◦Ξ

vvvvlllllllllllll

CΞ

F

11' CPΞ(C)
G

rr � � // CPc(C)

Note that Ξ ◦ − ◦ Ξ does not preserve composition and that
CPΞ(C) ↪→ CPc(C) does not preserve identities.

Proposition 3.11. The following diagram commutes:
CΞ γ1

//

Sqr

��

CPc(C)

Diag

��
CΞ

// γ2 // CPc(C)

Example 3.12. Explicitly we have Sqr(f) = δ†◦(f⊗f∗)◦δ
so in FdHilb matrix (fij) becomes matrix (|fij |2). Since
we restricted the domain of Sqr to CΞ the modulus is in
fact superfluous, so Sqr squares the entries in the matrix
of a linear map, hence merely does some re-gauging. This
analysis may shed a new light on the l1- vs. l2-distinction.

3.4 Categorical quantum axiomatics

By Prop. 3.9 we can use wire-form within CΞ,q to de-
fine all quantum interaction concepts required for quantum
protocols. By speciality this includes as a particular case:

A AX

YB B

Z

Z

Definition 3.13. We call CΞ,q ' CPΞ,q(C) the quantum
interaction theory generated by C. It includes as concepts:
1. Raw classical operations are morphisms

1A ⊗ f ⊗ 1A : AXA→ AY A
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in CΞ,q where f ∈ CΞ(X,Y ). In diagrammatic notation
for symmetric monoidal †-categories that is:

A

A

A

A
f
X

Y

They constitute the range of the functors {CA}A. The op-
eration δX : X → X ⊗ X stands for copying of classical
data, εX : X → I stands for deleting, ε†X stands for a ran-
dom variable, and δ†X stands for comparing.
2. Raw quantum operations are morphisms

(1B ⊗ η†C ⊗ σBX) ◦ (g ⊗ g∗ ⊗ 1X) ◦ (1A ⊗ σXA)

of type AXA → BXB in CΞ,q with g ∈ Cq(A,BC)
and σAB : AB ' BA. Using wire-form for classical and
quantum structure diagrammatically this becomes:

A

B

A

B

g g
*

X

X

A

B

A

g g
*
X

X B =

They constitute the range of the functors {QX}X . Sym-
bolic representation will become more and more involved
below so we will restrict to the diagrammatic notation.
3. Non-destructive pure measurements are morphisms:

A

A

A

A

M *
Y

XY

M
B

B

B

B

with M a †-coalgebra for (X ⊗−). A destructive one is:

A A
*

Y

XY

m

B

B

B

B

m

where now m† : X → A is an isometry i.e. m ◦m† = 1X .
4. Mixed measurements or PMVMs depict the same as non-
destructive pure measurements with now M† ◦ M = 1A

and M also X-polar-decomposable i.e. in Kleisli category
CX we have M = W ◦X N where W is an isometry in
CX and N is positive in CX i.e. N = L ◦X L for some L
in CX . Each PMVM induces a corresponding POVM:

A A
M *

Y

XY

M
B

B

B

B

5. Outcome probabilities for a measurement on a system in
some mixed state are given by the ‘classical state’:

M *

X

M

6. Normalised pure control operations are:

A

C

A

C
U *

YX

Y
U

B

B

B

B

where U is X-unitary i.e. it is unitary in CX .
7. Mixed control operations are:

A

C

A

C

V *
YX

Y

V
B

B

B

B

where V is now arbitrary.
8. Controlled composition is compostion in CX .

When in Def. 3.13 the category C is taken to be FdHilb
then all concepts coincide with the ones in the usual quan-
tum mechanical formalism. When passing from CΞ,q to
CPΞ,q(C) via the isomorphism the proofs for measurements
become those found in [8, 7]. In particular, the conditions
for being a (X ⊗−)-coalgebra exactly boil down to having
a family {Pi : H → H}i of mutulally orthogonal idempo-
tents on a Hilbert spaceH i.e. Pi ◦Pj = δijPi, and X-self-
adjointness enforces individual self-adjointness within this
family i.e. P†i = Pi, so we obtain the projector spectra of
self-adjoint linear operators H =

∑
i aiPi, the usual rep-

resentatives for quantum measurements. The probabilities
for pure measurements on pure and on mixed states respec-
tively can be rewritten as:

M M =whereand

revealing the Born expressions 〈ψ|Pi|ψ〉 and Tr(ρPi). One
verifies that for each destructive pure measurement a corre-
sponding non-destructive measurement is definable:

A A
*

Y
m

B B

m

A AYB BX
m m*†

Operational significance. These quantum theoretical con-
cepts are not merely defined by formal analogy but all have
a clear operational significance. One condition for being
an Eilenberg-Moore (X ⊗ −)-coalgebra is idempotence in
Cop

X . This condition exactly captures von Neumann’s pro-
jections postulate in a ‘resource sensitive manner’: perform-
ing a measurement twice is the same as performing a mea-
surement once and copying the outcome. The other con-
dition guarantees that they add up to one. Selinger’s con-
struction CPq(C) captures Stinespring’s dilation theorem
[21] which states that completely positive maps can be ob-
tained by performing pure operations on an extended sys-
tem and then ‘tracing out’ the ancilla. Similary, by the theo-
rem proved in [7], mixed measurements arise by performing
pure measurements on an extended system, a result referred
to in C∗-algebra as Naimark’s dilation theorem [21].

Controlled measurements. The basic concepts of mea-
surement (type A → Y ⊗ A) and control operation (type
X ⊗ A → A) can be combined into controlled measure-
ments f : X⊗A→ Y ⊗A, that is, X-measurements. Here

8



X is a variable depending on which we perform a certain
measurement. Controlled measurements play a central role
in quantum key exchange (see below).

Purity. Both CPq(C) and CΞ include a pure component.
There is an obvious notion of general pure operations:

A

B

A

B

f f
*

X

Y

of which pure measurements are an example. If we delete
the measurement outcome we obtain mixedness. However

CΞ,q
F // CPΞ,q(C) � � (A,B) 7→AB // CPq(C)

does not map pure operations within the range ofHq. Hence
CPq(C) plays a structural role in our construction which is
not directly related to intoducing mixedness (cf. Prop. 3.6).

Scalars. When specifying protocols we will be needing
dimensions, square-roots thereof, and inverses of both. Re-
call from [17] that each monoidal category admits a com-
mutative monoid of scalars i.e. morphisms of type I → I.
Scalar multiplication is defined as [1]:

s • f : A ' I⊗A
s⊗f−→ I⊗A ' B .

Since dim(A) := η†A ◦ ηA : I → I is the dimension for
quantum structure, for classical structure we set

dim(X) := εX ◦ ε†X = η†X ◦ ηX : I → I .

Proposition 3.14. If s is a positive scalar in Cq i.e. s =
ψ† ◦ ψ for some ψ : I → A, then Hq(s) in CPq(C) has a
square-root i.e. there is t in CPq(C) such that t ◦ t = s.

Interestingly, these square roots are in general mixed:
ψψ

A scalar s is zero if for all scalars t holds s ◦ t = s, and
is a divisor of zero if there is a scalar t such that st is zero.
Clearly, there is at most one zero scalar in a category, de-
noted o. We call a category with scalars local iff all of its
positive scalars are either divisors of zero, or are invertible.

Proposition 3.15. Each category of quantum structures Cq

has a universal localisation LCq equipped with a quantum
structure preserving functor C→LC, which is initial for all
local categories of quantum structures with such a functor
from Cq. In particular, the objects of LCq are those of Cq,
and a morphism in LCq(A,B) is in the form f

s , where

s ∈ Σ :=
{
s ∈ C(I, I)

∣∣ ∀t ∈ C(I, I) : s ◦ t 6= o
}
,

and these fractions are taken modulo the congruence

f

s
=
g

t
⇐⇒ ∃u, v ∈ Σ : u◦s = v◦t & u•f = v•g .

Hence we are entitled to assume that dimensions and
square-roots thereof have inverses in our categories.

3.5 Protocol description and derivation

Classical teleportation. This protocol teleports classical
bits by means of classical correlations, which we produce
by copying a random variable (cf. Sec.4):

XAlice Bob

X

Create classical
correlation

Comparing

Comparing

We prove correctness by relying on Prop. 2.11:
X

X

=

X

X

This protocol can be called classical teleportation since it
exhibits exactly the same geometry as quantum teleporta-
tion [9], but in fact it is a one-time pad in disguise.
Mixed state teleportation. For sA := dim(A) we repre-
sent 1

sA
and 1√

sA
respectively by a big and a small diamond

(i.e. small ◦ small = big). In [25] Werner establishes the
one-to-one correspondence between quantum teleportation
schemes, dense coding schemes, and certain orthonormal
bases of maximally entangled vectors. We abstract his re-
sult in terms of X-unitaries and corresponding X-states:

A

A X

A

X

A

A
A

and such that

AA

AA

X

X

A=

AA

AA

=

X

X

and
a b

A

respective abstractions of dim(X) ≥ (dim(A))2 and Tr(Ux◦
U†y ) = δxy , and for which X-unitarity depicts as:

A X

A X

=

A

A

X

X A X

A X

and =

A

A

X

X

AA
dc

In FdHilb the Pauli matrices together with the identity
are an example of such unitaries and the Bell-basis of such
states. Let a Werner control operation, a Werner measure-
ment and a destructive Werner measurement be:

A AA A

A AA A

A A

X

A AA A

XA A

A AX

A

A

A

A

One can consult [8] to see that Werner measurements indeed
satisfy definition 3.13. Mixed state teleportation is:
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A

X

Shared Bell state

BobA

Correcting
W-control

Destructive
W-measurement

Alice

Mixed state
A

A

A

A

for which we use eq.(a) above to prove correctness:

=

A A

=

A A

=

A AAA

A
AX

X
X

A
A

AA

X

The resulting loop represents the number of possible sce-
narios that might have taken place.
Mixed state generation and TelePOVM [15, 4]. If Alice
and Bob share a Bell state then by performing a POVM she
can create a mixed state in Bob’s hand:

AXA

=
AX

Alice
A

Bob

POVM

Bob

* MM

M *M†

Bell state
Alice

This state depends on the outcome of the POVM which in
the above picture has been transmitted to Bob. With an ap-
propriate choice of POVM, namely a W -measurement on
an extended system, from correctness of the mixed state
teleportation protocol (above) we know the appropriate cor-
rection to obtain the encoded mixed state:

A

X

Shared Bell state

BobA
Correcting
W-control

Alice

A

POVM

A A

A

From BB84 to Ekert 91. We represented the above proto-
cols in CΞ,q . While this representation is ‘more econom-
ical’ in terms of ‘wires’ than representation in CPΞ,q(C),
the latter allows for more spatio-temporal flexibility i.e. we
can depict Bob besides Alice rather than on top of Alice. For
clarity in the next picture we will somewhat abusively also
not depict the ‘shaded copy’. The quantum key distribution
schemes BB84 to Ekert 91 are topologically equivalent and
hence yield the same result despite their manifestly different
physical realisation and different use of resources:

=

XX X

Bell state

Measuring in
a random basis

BobAlice

Comparing

Public

A

XX

Creating classical
correlation

Coding in
a random basis

BobAlice

Comparing

Public

A

X

Measuring in
a random basis

m

m

m m

†

where the measurements m are controlled and destructive.
Communicating coherently. In [14] Harrow defined a ‘be-
tween quantum and classical’ mode of communication:

Alice Bob

B B

B

where B is a quantum structure ηB = δB ◦ ε†B with some
underlying classical structure. Hence we exploit the functor
γ1 of Sec. 3.3. If Alice and Bob share a Bell-state and have
the ability to exchange such cobits:

A

Bell state

Bob
Unitary
Transformation

Unitary
transformation

Alice

A
A

B

Coherent communication

B

A

they can exchange a qubit and at the same time create two
Bell-states (since B ' A⊗A by eq.(a,b)):

A

A

B B

=

A

A

B B

A

A

=

BB A

A

A

i.e. 2 cobits + Bell state ≥ qubit + 2 Bell states [14]. For:
B

Bell state

Bob

Unitary
transformation
W-control
operation

Alice

B

B

Coherent copy

A

A

we have by eq.(b):
B

B

B
A

=

B

B BB

B

B
s

A
= =

B

B

B
s

A

so qubit + Bell state ≥ 2 cobits and hence we obtain
resource equality qubit + Bell state Bell= 2 cobits. While
we merely generalised a known fact to arbitrary dimension
it should have become clear to the reader that Prop. 2.11
yields a very general statement on communication.

4 More classical species and orders

While in LL additives arise from multiplicatives by means
of the cofree comonoid monad on a ∗-autonomous cate-
gory, in our setting classical types arise from quantum types
by means of a classical structure which induces a classical
comonad on a category of quantum structures. Now con-
sider the following result due to Fox.

Theorem 4.1. [10] If C is symmetric monoidal then the
category C× of its commutative comonoids and comonoid
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homomorphisms, with the forgetful functor C× → C, is fi-
nal among all cartesian categories with a monoidal functor
to C, mapping the cartesian product to the monoidal tensor.

Categories of quantum structures are ∗-autonomous cat-
egory in which (−)∗ preserves the tensor and to which an
additional involution (−)∗ is adjoined [1]. Therefore in our
case it is natural to require that morphisms also preserve
(−)∗, i.e. physically, absence of phase data.

Proposition 4.2. A comonoid homomorphism f : X → Y
is also a classical map if and only if f∗ = f .

So in particular, classical maps do not carry any phase
data. On the other hand, classical maps are in general not
comonoid homomorphisms. For classical states this means
that they cannot be copied nor deleted. Indeed, in the same
manner as a linear operation which copies a base creates
entanglement for all other states, i.e. from |0〉 7→ |00〉 and
|1〉 7→ |11〉 follows 1√

2
(|0〉 + |1〉) 7→ 1√

2
(|00〉 + |11〉), an

operation which copies pure classical data will create entan-
glement for probabilistic states, and for example maps the
maximally mixed state (1/2, 1/2) on 00 with weight 1/2
and 11 with weight 1/2, so we obtain non-deterministic but
perfectly correlated data. Hence, as already had been es-
tablished in Thm. 3.5 classical probability theory naturally
embeds within categories of quantum structures.

Proposition 4.3. A scalar in a monoidal category is a comonoid
homomorphism of the comonoid structure (λI, 1I) on I if
and only if it is the identity.

This indicates that there is a fundamental discrepancy be-
tween the notion of comonoid homomorphism and having
non-trivial scalars. As an example, comonoid homomor-
phisms in FdHilb are functions — independent from the
fact whether or not we require f = f∗.

Definition 4.4. We call f : X → Y a partial map if f∗ = f
and it preserves δ i.e. δY ◦ f = (f ⊗ f) ◦ δX . A partial map
f is total if it also preserves ε i.e. εY ◦ f = εX , and a total
map f is a permutation iff also f† is a total map.

One verifies that partial maps are classical maps. Our
partial and total maps coincide in Carboni & Walters’ bicat-
egory of relations with theirs (Cor. 2.6 [5]) where f = f∗
always holds. Bicategories of relations were intended as an
abstraction of Rel as a particular kind of locally posetal bi-
category. We now show that Cc induces such a category.

Definition 4.5. We call f : X → Y a relation iff f =
δ†Y ◦ (f⊗f∗)◦δX and set f ⊆ g ⇔ f = δ†Y ◦ (f⊗g)◦δX .

Theorem 4.6. If the number of relations in each hom-set
of Cc is finite and if each object in Cc admits at most one
classical structure for which both δ and ε are relations, then
relations in Cc constitute a bicategory of relations Cr in

Carboni & Walters’ sense. In particular, relations are lax
comonoid homomorphism w.r.t. local partial order ⊆ i.e.

δY ◦ f ⊆ (f ⊗ f) ◦ δX and εY ◦ f ⊆ εX

and δ (ε) is left-adjoint to δ† (ε†) in bicategorical sense.
Hence Cr also has local meets and tops (cf. [5] Thm. 1.6).

One easily verifies that each partial map is a relation
and that each relation is a classical map. In FdHilb we
obtain relations in the usual sense. Note in particular that
the number of relations in each hom-set of FdHilb is finite.
But neither the finiteness assumption nor the uniqueness as-
sumption are needed for proving order-enrichment, local fi-
nite products, local top or lax-preservation of the comonoid
structure. Finiteness only comes in when defining compo-
sition in Cr which is not inherited from Cc — cf. FdHilb
and Rel. Uniqueness is only required as part of Carboni &
Walters’ definition of bicategory of relations. While com-
position in Cr is not inherited from Cc, composition in Cr

and Cc do coincide for partial maps.

Definition 4.7. We call f : X → Y doubly stochastic if
both f and f† are stochastic. Given classical structure X , a
morphism F : X ⊗ A → B in Cq, and a classical state p :
I → X with ε◦p = 1I, we call c(F , p) = F◦(p⊗1A)◦λA :
A → B with λA : A ' I ⊗ A a convex combination of F .
A morphism f : X1 → X2 is majorized by a morphism g :
Y1 → Y2 if there exist doubly stochastic maps h1 : X1 →
Y1 and h2 : X2 → Y2 such that we have g = h2 ◦ f ◦ h†1.

One verifies that if h : X → Y is doubly stochastic then
dim(X) = dim(Y ), that permutations are doubly stochas-
tic and that G(U ⊗ U∗) with U : X → Y is doubly stochas-
tic. Let Cs be the subcategory of Cc of stochastic and of
stochastic maps.

Theorem 4.8. 1. (doubly) stochastic maps are ‘convex closed’
i.e. if F : X ⊗ A → B is X-(doubly) stochastic then all
convex combinations c(F , p) are (doubly) stochastic too.
2. Majorization is a preordering on

⋃
XY Cs(X,Y ).

The distinct classical species ordered by inclusion and
their respective δ- and ε-preservation properties are:

Classical map
�

��
Z

Z
Z

ZZ
Relation (δ-lax, ε-lax)

Stochastic map (ε)
��

���

HH
HHH

Partial map (δ, ε-lax)

H
HH

Total map (δ, ε) Doubly stochastic map (ε, ε†)

HHH
HH

���
��

Permutation (δ, ε, δ†, ε†)

While not a standard concept it also makes sense to in-
troduce weighted maps as those f : X → Y for which there
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exists g : X → Y such that δY ◦ f = (g ⊗ g∗) ◦ δX . One
verifies that each partial map is a weighted maps and that
each weighted map is a classical map. Weighted map are in
fact exactly those classical maps which preserve purity, and
behave particularly well within graphical calculus:

f
=

g g* f
=

g

g*

†
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A Proofs

Proof of Prop. 2.6. The result follows from Frobenius
identity together with the unit laws and commutativity of
the (co)monoid structure. A diagrammatic derivation of this
result is in Sec. 2.3.

Proof of Prop. 2.9. The fact that CX is a category is
given. The tensor product on objects is as in C and on mor-
phisms, f : X ⊗A→ B and g : X ⊗ C → D is:

A

g f

B

C

D

X

For f : X ⊗A→ B, f† is:
A

f

BX

†

It’s straightforward to see that the † endofunctor preserves
the symmetric monoidal structure coherently hence, CX

is a symmetric monoidal †-category. Classical structure in
CX is ε′Y := λY ◦(εX⊗εY ) and δ′Y := λY ◦(εX⊗δY ). With
these, it’s easy to check that the required identities hold and
that the objects in CX inherit their classical structure from
Cc. We show that Frobenius identity holds as an example:

YX Y

YY

X Y Y

Y Y

X

Y Y

Y Y

a

b

= =

where in the box a, we have 1Y ⊗X δ′Y and in the box b, we
have ε

′†
Y ⊗X 1Y .

Proof (sketch) of Prop. 2.11. The result follows by con-
secutively applying the rewriting rules

1. 2.

3. 4.

as worked out in [7, §3]. Another proof can be extracted
from [18, §1.4.16 & §1.4.37].

Proof of Lem. 3.2. ΞX is the normal form (cf. Prop. 2.11)
both of the composite ΞX ◦ ΞX and of completely positive
map (1X⊗ η†X⊗ 1X) ◦ (δX⊗ δX).

Proof of Prop. 3.6. The result follows by Definition 4.11
and Remark 4.12(c) in [23].

Proof of Lem. 3.3 and Lem. 3.8. Well-definedness of F
follows by speciality. Functoriality of F follow by spe-
ciality, and from speciality and diagonality of morphisms
in DΞ,q(C) respectively follow GF = 1Cc,q

and FG =
1DΞ,q(C). Lem. 3.3 is a special case of Lem. 3.8.

Proof of Prop. 3.4 and Prop. 3.9. We only proof Prop. 3.9
since Prop. 3.4 can be seen as a special case of this. First
we proof consider CPΞ,q(C). If g is completely positive
then so is Ξ(B,Y ) ◦g ◦Ξ(A,X) by complete positivity of ΞX ,
and it is diagonal by idempotence of ΞX . Conversely, each
diagonal completely positive g can be rewritten in the form
Ξ(B,Y ) ◦ g ◦ Ξ(A,X). By speciality we have G(Ξ(B,Y ) ◦
g ◦ Ξ(A,X)) = δ†(B,Y ) ◦ g ◦ δ(A,X) so we obtain the desired
result for CΞ,q .

Proof of Thm. 3.5 and Thm. 3.10. 1. We first check
that CΞ,q is a symmetric monoidal †-category. (i) Iden-
tity: The identity of an object (A,X) ∈ |CPΞ,q(C)| is
Ξ(A,X). We get, G(Ξ(A,X)) = 1(A,X) as the identity for
(A,X) ∈ |CΞ,q|. (ii) Composition: Let f, g ∈ CΞ,q and
f ′, g′ ∈ CPΞ,q(C) be such that G(f ′) = f and G(g′) = g
respectively. Then, g ◦ f is depicted as:

B Y

g

f

A X

g

f

B

A

CC Z Z
*

*

which is of the form G(h) with h = g′ ◦ f ′ via idempo-
tence of Ξ(Z,X) and speciality. Since completely positive
morphisms are closed under composition and h is diagonal,
it follows that G(h) = g ◦ f ∈ CΞ,q . (iii) Tensor prod-
uct: The tensor product of objects in CΞ,q is defined as
(A,X) � (B, Y ) := (AB,XY ). For morphisms, let

s : AXABY B ∼−→ ABXY BA

be the following natural isomorphism in C:
Y

BA X

A

Y BA

XB B A

If f, g ∈ CΞ,q then, their tensor product is given by

f � g := s ◦ (f ⊗ g) ◦ s−1

or, graphically
DB BY Y’

gf

CCA AX X’

D

gf * *

which is also in CΞ,q . It is routine exercise to check that
CΞ,q is symmetric monoidal. (iv) Symmetric monoidal †-
structure: Clearly, the †-endofunctor preserves the symmet-
ric monoidal structure coherently hence, CΞ,q is a symmet-
ric monoidal †-category.
2. We show that the objects of CΞ,q inherit their quantum
structure from Cq. Consider f := ηA⊗(δXX ◦ηX)⊗(ηA)∗
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in CPΞ,q(C) then, the corresponding morphism in CΞ,q is
G(f) = ηA⊗ηX⊗(ηA)∗. We also haveG(f†) = η†A⊗η

†
X⊗

(ηA)∗. Now, consider G((f† � Ξ(A,X)) ◦ (Ξ(A,X) � f));
with easy graphical manipulation one sees it is equal to

A X

A X A

A

A X A

XA A
= =

A A

AA X

X

which coincide with the quantum structure on AXA in Cq

up to symmetry isomorphism.
3. We show that CΞ is a symmetric monoidal †- category.
(i,ii) Identity and composition: The argument for CΞ is sim-
ilar to the one for CΞ,q . (iii) Tensor product: The tensor
product on objects and morphisms in CΞ coincide with the
one in C as well as the natural isomorphisms from the sym-
metric monoidal structure. Hence, the category is symmet-
ric monoidal. (iv) symmetric monoidal †-structure: Follows
directly from the definitions.

4. We show that the objects of CΞ inherit their classical
structure from Cc. First, ΞX ◦ (εX ⊗ (εX)∗) ◦ ΞI and
ΞXX ◦ (δX ⊗ (δX)∗) ◦ ΞX are both in CPΞ(C); their re-
spective images under G are εX and δX . We now need
to check that the equation for the classical structure are
holding in CΞ. We show Frobenius identity: Let f =
ΞXX ◦ (ΞX ⊗ (ΞX)∗) ◦ ΞXX ∈ CPΞ(C). Then, it is
a straightforward application of Prop. 2.11 to see that the
corresponding morphism G(f) ∈ CΞ coincides with

= = =

thus yielding the Frobenius identity for X ∈ |CΞ|. Spe-
ciality, symmetry, unit and counit law all holds by a similar
argument and all coincide with the classical (and quantum)
structure over X in Cc as required.

Proof of Prop. 3.14. See [8]§7 Prop. 7.3.

Proof of Prop. 3.15. It is easy to see that Σ is a multi-
plicative system allowing calculus of fractions in the sense
of [12], and we took LC to be the ‘category of fractions’
C[Σ]. The symmetric monoidal †-structure and quantum
structure on the fractions is defined pointwise:

f

s
⊗ g

t
=
f ⊗ g

s ◦ t

(
f

s

)†
=
f†

s†
etc.

The universal property is proven in [12].

Proof of Prop. 4.2. For g : AA → BB completely pos-
itive one verifies that g∗ = σB,B ◦ Ff ◦ σA,A. Hence
if Ff is completely positive then (Ff)∗ = σY,Y ◦ Ff ◦
σX,X = Ff by commutativity of the comultiplication so
f = δ† ◦ Ff ◦ δ = δ† ◦ (Ff)∗ ◦ δ = f∗. If f = f∗ then

Ff = δ ◦f ◦ δ† = (f ⊗f)◦Ξ = (f ⊗f∗)◦Ξ is completely
positive by complete positivity of its components.

Proof of Prop. 4.3. From εI ◦ s = εI follows s = 1I.

Proof of Thm. 4.6. In [5] a bicategory of relations is de-
fined to be a locally posetal bicategory, with symmetric monoidal
structure, in which every object carries comonoid structure
which satisfies Frobenius equation, in which comultiplica-
tion δX and comultiplicative unit εX have right (Galois)
adjoints, and, in which (X, δX , εX) is the only comonoid
structure on X with structure morphisms having right (Ga-
lois) adjoints.

One verifies that ⊆ defines a partial order on relations of
the same type. Moreover, this partial order turns out to be a
meet semilattice for f ∧g = δ†Y ◦ (f ⊗g)◦ δX . For f ∈ CΞ

and g a relation we set f � g ⇔ f = δ†Y ◦ (f ⊗ g) ◦ δX . Set

f ◦r g :=
∧ {

h ∈ Crel

∣∣ f ◦ g � h
}

which always exists due to the finiteness assumption. One
verifies that ◦r and ⊆ yield a posetal enriched category Cr

of relations in a tedious but straightforward calculation.
The requirement δ a δ† can be rewritten as 1X = δ†X ◦

(1X⊗1X)◦δX and ΞX = δ†XX ◦(1XX⊗ΞX)◦δXX which
hold by Prop. 2.11, and the requirement ε a ε† reduces to
s = δ†I ◦ (s ⊗ 1I) ◦ δI where s = ε ◦ ε† which holds since
δI = λI and 1X = δ†X ◦ (1X ⊗ ε†X ◦ εX) ◦ δX which holds
by Prop. 2.11. It remains to be shown that uniqueness of
classical structures forces δ† = δ‡ and ε† = ε‡ whenever
δ a δ‡ and ε a ε‡. Given that{

1X = δ†X ◦ (1X ⊗ (δ‡X ◦ δX)) ◦ δX
δX ◦ δ‡X = δ†XX ◦ (1XX ⊗ (δX ◦ δ‡X)) ◦ δXX

pre-composing and post-composing with δ†X respectively,
and then applying Prop. 2.11, results in{

δ†X = δ†X ◦ (1X ⊗ (δ‡ ◦ δX)) ◦ δX
δ‡X = δ†X ◦ (1X ⊗ (δ‡ ◦ δX)) ◦ δX

which yields the desired result.

Proof of Thm. 4.8. 1. For F to be X-doubly stochastic
means (εX ⊗ εZ) ◦ (1X ⊗ F) ◦ (δX ◦ 1Y ) = εX ⊗ εY
which yields εZ ◦ (1X ⊗ F) = (εX ⊗ εY ) ◦ λ†I . Hence
εZ ◦c(F , p) = (εX ◦p)• εY = εY . Verification of c(F , p)◦
ε†Y = ε†Z proceeds similarly. 2. Transitivity of majorization
follows by the fact that doubly stochastic maps are closed
under composition and reflexivity by the fact that identities
are doubly stochastic.
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