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Abstract

Submodular functions occur in many combinatorial optimisation problems and a num-
ber of polynomial-time algorithms have been devised to minimise such functions. The
time complexity of the fastest known general algorithm for submodular function min-
imisation (SFM) is O(n6 + n5L), where n is the number of variables and L is the time
required to evaluate the function.

However, many important special cases of SFM can be solved much more efficiently,
and with much simpler algorithms. For example, the (s, t)-Min-Cut problem is a special
case of SFM which can be solved in cubic time. Moreover, any submodular function
which can be expressed as a sum of binary submodular functions can be minimised by
computing a minimal cut in a suitable graph. It has been known for some time that
all ternary submodular functions are expressible in this way, by introducing additional
variables. We have recently identified, for each k ≥ 4, a subclass of k-ary submodular
functions which are also expressible in this way.

It was previously an open question whether all submodular functions could be ex-
pressed as a sum of binary submodular functions over a larger set of variables: in this
paper we show that they cannot. Moreover, we characterise precisely which 4-ary submod-
ular functions can be expressed in this way. This result can also be seen as characterising
which pseudo-Boolean functions of degree 4 can be expressed as projections of quadratic
submodular functions.

Our results provide a more efficient algorithm for certain discrete optimisation prob-
lems which can be formulated as valued constraint satisfaction problems (VCSP). We
define a new maximal class of VCSP instances with submodular constraints which are
expressible using binary submodular functions with a bounded number of additional vari-
ables. It follows that optimal solutions to such instances can be computed in O((n+k)3)
time, where n is the number of variables and k is the number of higher-order (non-binary)
constraints, by a straightforward reduction to the (s, t)-Min-Cut problem.
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†Stanislav Živný gratefully acknowledges the support of EPSRC grant EP/F01161X/1.



1 Introduction

The Constraint Satisfaction Problem (CSP) is a general framework which can be
used to model many different problems [12, 25, 30]. However, the CSP model considers
only the feasibility of satisfying a collection of simultaneous requirements (so-called hard
constraints).

Various extensions have been proposed to this model to allow it to deal with different
kinds of optimisation criteria, or preferences, between different feasible solutions (so-
called soft constraints). Two very general extended frameworks that have been proposed
are the SCSP (semi-ring CSP) framework and the VCSP (valued CSP) framework [2].
The SCSP framework is slightly more general1, but the VCSP framework is simpler,
and yet sufficiently powerful to model a wide range of optimisation problems [2, 30,
31]. In particular, it generalises the classical CSP model, and includes many standard
optimisation problems such as Min-Cut, Max-Sat, Max-Ones Sat and Max-CSP [9,
12], and also Min-Cost Homomorphism [19].

Informally, in the Valued Constraint Satisfaction Problem (VCSP) frame-
work, an instance consists of a set of variables, a set of possible values, and a set of (soft)
constraints. Each constraint has an associated cost function which assigns a cost (or a
degree of violation) to every possible tuple of values for the variables in the scope of the
constraint. The goal is to find an assignment of values to all of the variables which has
the minimum total cost. We remark that infinite costs can be used to indicate infeasible
assignments (hard constraints), and hence the VCSP framework includes the standard
CSP framework as a special case and is equivalent to the Constraint Optimisation
Problem (COP) framework [30], which is widely used in practice.

One significant line of research on the VCSP is to identify restrictions which ensure
that instances are solvable in polynomial time. There are two main types of restrictions
that have been studied in the literature.

First, we can limit the structure of the instances, in the following sense. With any
instance P of VCSP, we can associate a hypergraph HP whose vertices are the variables
of P, and whose hyperedges correspond to the scopes of the constraints of P. The
hypergraph HP is called the structure of P. A number of results concerning restrictions
to the structure of problem instances that are sufficient to ensure tractability have been
obtained for the CSP framework, and can be easily generalised to the VCSP. For
example, if HP is “tree-like”, in various ways, then it can be shown that P is solvable in
polynomial time [14, 16, 17]. In fact, in the case of bounded-arity CSPs, the question
of identifying all structural restrictions which guarantee tractability has been resolved
completely, see [18] for details.

Second, we can restrict the forms of the valued constraints which are allowed in the
problem, that is, the set of possible cost functions. This gives rise to so-called language
restrictions.

Several language restrictions which ensure tractability have been identified in the
1The main difference is that costs in VCSPs represent violation levels and have to be totally ordered,

whereas costs in SCSPs represent preferences and might be ordered only partially.
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literature, (see, e.g., [9]). One important and well-studied restriction on cost functions
is submodularity [7]. The class of constraints with submodular cost functions is the only
non-trivial tractable case in the dichotomy classification of the Boolean VCSP [9], and
the only tractable case in the dichotomy classification of the Max-CSP problem for both
3-element sets [22] and arbitrary finite sets allowing constant constraints [13].

The notion of submodularity originally comes from combinatorial optimisation where
submodular functions are defined on subsets of a given base set [20, 26, 34, 33, 15]. Note
that the minimisation of submodular functions on sets is equivalent to the minimisation
of submodular functions on distributive lattices. Krokhin and Larose have also studied
the minimisation of submodular functions on non-distributive lattices [24].

The time complexity of the fastest known algorithm for the problem of Submodular
Function Minimisation (SFM), which consists in minimising a function ψ defined on
subsets of V , is O(n6 + n5L), where n = |V | and L is the time to evaluate ψ(S) for any
S ⊆ V [27]. However, there are several known special cases of SFM that can be solved
more efficiently than the general case (see [3] for a survey).

Cohen et al. showed that VCSPs with submodular constraints over an arbitrary
finite domain can be reduced to the SFM problem over a special family of sets known as
a ring family [9]. This problem is equivalent to the general SFM problem [32], thus giving
an algorithm of order O(n6 + n5L), where L is the look-up time (needed to evaluate an
assignment to all variables), for any VCSP with submodular constraints. This tractability
result has since been generalised to a wider class of valued constraints over arbitrary
finite domains known as tournament-pair constraints [6]. An alternative approach to
solving VCSP instances with bounded-arity submodular constraints, based on linear
programming, can be found in [10].

For certain forms of submodular constraints a simpler and more efficient algorithm
is possible. In particular, we shall define a notion of expressibility below, and show that
any VCSP with submodular constraints which are expressible using binary submodular
constraints (over a bounded number of additional variables) can be reduced to the (s, t)-
Min-Cut problem. Such problems can be solved in O((n + k)3) time, where n is the
number of variables and k is the number of higher-order (non-binary) constraints, by
finding a minimum cut in a suitable graph.

Hence the main research problem we will look at in this paper is the following.

Problem: Which submodular constraints are expressible using binary submodular con-
straints?

It is known that all ternary submodular constraints are expressible using binary sub-
modular constraints, with a single additional variable. Hence the class of all VCSP
instances with submodular constraints of arity 3 or lower can be reduced to (s, t)-Min-
Cut (see [1, 35] for details).

In addition, Živný and Jeavons [35] identified certain special subclasses of submodular
constraints of all arities which are expressible using binary submodular constraints. The
class of VCSP instances with submodular constraints from these subclasses can therefore
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also be solved efficiently by reducing to (s, t)-Min-Cut. Similar results were obtained
independently by Zalesky [36].

These previous results naturally raised the question of whether all submodular con-
straints can be expressed using binary submodular constraints: in this paper we show
that they cannot.

In particular, we carefully investigate 4-ary submodular constraints, and obtain a
complete characterisation for this case.

Result: Characterisation of which 4-ary submodular constraints are expressible using
binary submodular constraints.

The concept of submodularity not only plays an important role in theory, but is also
very important in practice. For example, many of the problems that arise in computer
vision can be expressed in terms of energy minimisation [23], which is easily expressible
in the VCSP framework. Kolmogorov and Zabih identified classes of instances of arity
at most three for which the energy minimisation problem can be solved efficiently by
reducing to (s, t)-Min-Cut [23], and which are applicable to a wide variety of vision
problems, including image restoration, stereo vision and motion tracking, image synthesis,
image segmentation, multi-camera scene reconstruction and medical imaging. The so-
called regularity condition, which specifies the efficiently solvable classes in [23], turned
out to be just a rediscovery of the well-known submodularity condition studied before
in different areas of computer science. We believe that our result on new classes of
submodular constraints which are expressible using binary submodular constraints will
also find application in computer vision.

The paper is organised as follows. In Section 2, we define the VCSP framework
and the notion of expressibility, and describe certain key algebraic properties of valued
constraints. Also, we define submodular cost functions and observe that finite-valued
cost functions over a Boolean domain can be represented by polynomials, so the Boolean
VCSP is equivalent to pseudo-Boolean function minimisation. In Section 3 we translate
into this framework some recent results from [28] concerning the generators of the cone
of 4-ary submodular functions. In Section 4, we present our main result characterising
the expressibility of such functions and use it to identify a new tractable subclass of the
VCSP. Finally, in Section 5, we summarise our work.

2 Preliminaries

In this section we introduce the basic definitions and the main tools used throughout the
paper.

2.1 VCSP

We first define the very general framework for discrete optimisation problems known as
the valued constraint satisfaction problem (VCSP). In the original definition
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of this problem, given in [31], costs were allowed to lie in any positive totally ordered
monoid called a valuation structure. For our purposes, it is sufficient to consider costs
which lie in the set Q+ consisting of all non-negative rational numbers together with
infinity2. (Actually, as any cost function can be scaled up, without loss of generality, we
can simply assume that all costs are non-negative integers or infinite).

Given a fixed set D, a function from Dk to Q+ will be called a cost function. If
the range of φ lies entirely within Q+, the set of non-negative rationals, then φ is called
a finite-valued cost function. If the range of φ is {0,∞}, then φ is called a crisp cost
function.

Note that with any relation R over D we can associate a crisp cost function φR on
D which maps tuples in R to 0 and tuples not in R to ∞. On the other hand, with any
m-ary cost function φ we can associate a relation Rφ defined as 〈x1, . . . , xm〉 ∈ Rφ ⇔
φ(x1, . . . , xm) < ∞. Therefore, crisp cost functions correspond precisely to relations, so
we shall use these terms interchangeably.

Definition 2.1. An instance P of VCSP is a triple 〈V,D, C〉, where V is a finite set
of variables, which are to be assigned values from the set D, and C is a set of valued
constraints. Each c ∈ C is a pair c = 〈σ, φ〉, where σ is a tuple of variables of length
|σ|, called the scope of c, and φ : D|σ| → Q+ is a cost function. An assignment for
the instance P is a mapping s from V to D. The cost of an assignment s is defined as
follows:

CostP(s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

Any set Γ of cost functions is called a valued constraint language. The class VCSP(Γ)
is defined to be the class of all VCSP instances where the cost functions of all valued
constraints lie in Γ.

In any VCSP instance, the variables listed in the scope of each valued constraint are
explicitly constrained, in the sense that each possible combination of values for those vari-
ables is associated with a given cost. Moreover, if we choose any subset of the variables,
then their values are constrained implicitly in the same way, due to the combined effect
of the valued constraints. This motivates the concept of expressibility for cost functions,
which is defined as follows:

Definition 2.2. For any VCSP instance I = 〈V,D, C〉, and any list of variables of I,
l = 〈v1, . . . , vm〉, the projection of I onto l, denoted πl(I), is the m-ary cost function
defined as follows:

πl(I)(x1, . . . , xm) = min
{s:V→D|〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostI(s).

We say that a cost function φ is expressible over a valued constraint language Γ if
there exists an instance I ∈ VCSP(Γ) and a list l of variables of I such that πl(I) = φ.

2 See [11] for a discussion of why limiting ourselves to the Q+ valuation structure is not a severe
restriction.
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We call the pair 〈I, l〉 a gadget for expressing φ over Γ. Variables from V \ l are called
extra or hidden variables.

Note that in the special case of relations (crisp cost functions) this notion of ex-
pressibility corresponds to the standard notion of expressibility using conjunction and
existential quantification (primitive positive formulas) [4].

We denote by 〈Γ〉 the expressive power of Γ, which is the set of all cost functions
expressible over Γ up to additive and multiplicative constants.

2.2 Algebraic properties of cost functions

In this section we define certain algebraic properties of cost functions and show that these
properties characterise the expressive power of any valued constraint language.

The i-th component of a tuple t will be denoted by t[i]. Note that any operation
on a set D can be extended to tuples over the set D in a standard way, as follows.
For any function f : Dk → D, and any collection of tuples t1, . . . , tk ∈ Dm, define
f(t1, . . . , tk) ∈ Dm to be the tuple 〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.

It was shown in [5] that the expressive power of a finite-valued constraint language
is fully captured by the following algebraic properties (see Figure 1 for an illustration of
Definition 2.3).

Definition 2.3 ([5]). A k-ary weighted function F on a set D is a set of the form
{〈r1, f1〉, . . . , 〈rn, fn〉} where each ri is a non-negative rational number such that

∑n
i=1 ri =

k and each fi is a distinct function from Dk to D.
For any m-ary cost function φ, we say that a k-ary weighted function F is a k-ary

fractional polymorphism of φ if, for all t1, . . . , tk ∈ Dm,

k∑
i=1

φ(ti) ≥
n∑
i=1

riφ(fi(t1, . . . , tk)).

A k-ary fractional polymorphism where each ri is a natural number is called a k-ary
multimorphism3.

For any valued constraint language Γ, we will say that F is a fractional polymorphism
of Γ if F is a fractional polymorphism of every cost function in Γ. Similarly, for any valued
constraint language Γ, we will say that F is a multimorphism of Γ if F is a multimorphisms
of every cost function in Γ. The set of all fractional polymorphisms of Γ will be denoted
fPol(Γ). The set of all multimorphisms of Γ will be denoted Mul(Γ).

Theorem 2.4 ([5]). If Γ is a finite-valued constraint language which is closed under
scaling4, then

φ ∈ 〈Γ〉 ⇔ fPol(Γ) ⊆ fPol({φ}).
3In this case F can be written as 〈f1, . . . , fk〉 (where the fis are not necessarily distinct) and therefore

F can be seen as a mapping from Dk to Dk.
4That is, φ ∈ Γ and c ∈ Q+ implies cφ ∈ Γ.
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t1
t2
...
tk

t′1 = f1(t1, . . . , tk)
t′2 = f2(t1, . . . , tk)

...
t′n = fn(t1, . . . , tk)

t1[1] t1[2] . . . t1[k]
t2[1] t2[2] . . . t2[k]

...
tk[1] tk[2] . . . tk[k]

t′1[1] t′1[2] . . . t′1[k]
t′2[1] t′2[2] . . . t′2[k]

...
t′n[1] t′n[2] . . . t′n[k]

φ−→

φ(t1)
φ(t2)

...
φ(tk)


k∑
i=1

φ(ti)

≥

φ−→

φ(t′1)
φ(t′2)

...
φ(t′n)


n∑
i=1

riφ(t′i)

Figure 1: Definition of a fractional polymorphism F = {〈r1, f1〉, . . . , 〈rn, fn〉}.

Hence, for all finite-valued constraint languages closed under scaling, a cost function φ
is expressible over Γ if and only if it has all the fractional polymorphisms of Γ (including
all multimorphisms).

2.3 Submodular functions

A function ψ : 2V → Q defined on subsets of a set V is called a submodular function [26]
if, for all subsets S and T of V , ψ(S ∩ T ) + ψ(S ∪ T ) ≤ ψ(S) + ψ(T ). The problem of
Submodular Function Minimisation (SFM) consists in finding a subset S of V for
which the value of ψ(S) is minimal.

For any lattice-ordered set D, a cost function φ : Dk → Q+ is called submodular
if for every u, v ∈ Dk, φ(min(u, v)) + φ(max(u, v)) ≤ φ(u) + φ(v) where both min and
max are applied coordinate-wise on tuples u and v. In other words, φ is submodular
if 〈Min,Max〉 ∈ Mul({φ}). Note that expressibility preserves submodularity: if every
φ ∈ Γ is submodular, and φ′ ∈ 〈Γ〉, then φ′ is also submodular. (This is a consequence of
Theorem 2.4: expressibility preserves fractional polymorphisms.)

Next we show that when considering which cost functions are expressible over binary
submodular cost functions, we can restrict our attention to Boolean finite-valued cost
functions without any loss of generality. This important simplification seems not to be
widely known in the computer vision community, so we include it here for completeness.

First, it is easy to see that any VCSP instance with n variables over a non-Boolean
domain {0, . . . , d− 1} of size d can be encoded as a VCSP instance with O(nd) variables
over the Boolean domain {0, 1}. One such encoding is the following: en(i) = 0d−i−11i. We
replace each variable with d new Boolean variables and impose a (submodular) relation
on these new variables which ensures that they only take values in the range of the
encoding function en. Note that en(max(a, b)) = max(en(a), en(b)) and en(min(a, b)) =
min(en(a), en(b)), so this encoding preserves submodularity.

Next, using results from [9] and [33], it can be shown that any submodular cost
function φ can be expressed as the sum of a finite-valued submodular cost function φfin,
and a submodular relation φcrisp, that is, φ = φfin + φcrisp.
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Moreover, it is known that all submodular relations are binary decomposable [21], and
hence expressible using only binary submodular relations. Therefore, when considering
which cost functions are expressible over binary submodular cost functions, we can restrict
our attention to Boolean finite-valued cost functions without any loss of generality.

Therefore, in this paper we focus on finite-valued problems over Boolean domains.
We denote by Γsub,k the set of all finite-valued submodular cost functions of arity at most
k on the Boolean domain D = {0, 1}, and we set Γsub =

⋃
k Γsub,k. We will show below

that VCSP(Γsub,2) can be solved in cubic time, and hence we will be concerned with
what other cost functions are expressible over Γsub,2, and so can also be solved efficiently.

2.4 Polynomials and pseudo-Boolean functions

A cost function of arity k can be represented as a table of values of size Dk. Alternatively,
a (finite-valued) cost function φ : Dk → Q+ on a Boolean domain D = {0, 1} can
be uniquely represented as a polynomial in k (Boolean) variables with coefficients from
Q (such functions are sometimes called pseudo-Boolean functions [3]). Hence, in what
follows, we will often represent a finite-valued cost function on a Boolean domain by a
polynomial.

If Γ is a set of cost functions on a Boolean domain, with arity at most k, then any
instance of VCSP(Γ) with n variables can be uniquely represented as a polynomial p in
n Boolean variables, of degree at most k. Conversely, any such polynomial represents
an n-ary cost function which can be expressed over a set of cost functions on a Boolean
domain, with arity at most k. Note that in any Boolean domain x2 = x, so p has at most
2n terms which correspond to subsets of variables.

For polynomials over Boolean variables there is a standard way to define derivatives
of each order (see [3]). For example, the second order derivative of a polynomial p,
with respect to the first two indices, denoted δ1,2(~x), is defined as p(1, 1, ~x)− p(1, 0, ~x)−
p(0, 1, ~x) + p(0, 0, ~x). Analogously for all other pairs of indices.

Proposition 2.5 ([3]). A polynomial p(x1, . . . , xn) over Boolean variables x1, . . . , xn
represents a submodular cost function if and only if its second order derivatives δi,j(~x)
are non-positive for all 1 ≤ i < j ≤ n and all ~x ∈ Dn−2.

Corollary 2.6. A quadratic polynomial a0 +
∑n

i=1 aixi+
∑

1≤i<j≤n aijxixj over Boolean
variables x1, . . . , xk, represents a submodular cost function if and only if aij ≤ 0 for every
1 ≤ i < j ≤ n.

Note that a cost function is called supermodular if all its second order derivatives are
non-negative. Clearly, f is submodular if and only if −f is supermodular. Cost functions
which are both submodular and supermodular (in other words, all second order derivatives
are equal to zero) are called modular, and polynomials corresponding to modular cost
functions are linear (see [3] for details).
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2.5 VCSPs with submodular constraints

Using known results for the SFM problem, Cohen et al. established the tractability of
VCSP for submodular constraints over arbitrary finite domains.

Theorem 2.7 ([9]). VCSP(Γsub) is solvable in O(n6 +n5L) time, where n is the number
of variables and L is the look-up time (needed to evaluate an assignment to all variables).

Now we show that the constraint language Γcut, consisting of certain simple binary
and unary cost functions over a Boolean domain, captures precisely the (s, t)-Min-Cut
problem, and hence has cubic time complexity. We will then show that Γcut can express
any binary submodular cost function over a Boolean domain, that is, Γsub,2 ⊆ 〈Γcut〉.
Hence we show that any instance of VCSP(Γsub,2) can be solved in cubic time.

For any w ∈ Q+, we define the binary cost function χw as follows:

χw(x, y) =

{
w if (x, y) = (0, 1),
0 otherwise.

For any d ∈ D and c ∈ Q+, we define the unary cost function µcd as follows:

µcd(x) =

{
c if x 6= d,
0 if x = d.

It is straightforward to check that all χw and µcd are submodular.
We define the constraint language Γcut to be the set of all cost functions χw and µcd

over a Boolean domain, for w, c ∈ Q+ and d ∈ {0, 1}.

Theorem 2.8 ([35]). The problems (s, t)-Min-Cut and VCSP(Γcut) are linear-time
equivalent.

Corollary 2.9 ([35]). VCSP(Γcut) is solvable in O(n3) time where n is the number of
variables.

Using a standard reduction (see, for example, [3]), it was shown in [35] that all binary
submodular cost functions over a Boolean domain can be expressed over Γcut.

Theorem 2.10 ([35]). Γsub,2 ⊆ 〈Γcut〉.

As only a fixed number of extra variables is needed, we obtain the following:

Corollary 2.11 ([35]). VCSP(Γsub,2) is solvable in O(n3) time where n is the number
of variables.

Furthermore, all ternary submodular constraints are known to be expressible over
Γsub,2 with one extra variable per ternary constraint [1].

The next result identifies several further classes of submodular constraints which are
expressible using binary submodular constraints, and therefore solvable efficiently via
reduction to the (s, t)-Min-Cut problem on weighted directed graphs.
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Define Γneg,k to be the set of all cost functions over a Boolean domain, of arity at
most k, whose corresponding polynomials have negative coefficients for all terms of degree
greater than or equal to 2. It is easy to check that these cost functions, sometimes
called negative-positive, are submodular. Set Γneg =

⋃
k Γneg,k. The minimisation of cost

functions chosen from Γneg using min-cuts was first studied in [29].
Define Γ{0,1},k to be the set of all {0, 1}-valued submodular cost functions over a

Boolean domain, of arity at most k, and set Γ{0,1} = ∪kΓ{0,1},k. The minimisation of
submodular cost functions from Γ{0,1} was studied in [12], where they were called 2-
monotone functions. The equivalence of 2-monotone and submodular cost functions, and
a generalisation of 2-monotone cost functions to non-Boolean domains, was shown in [8].

Define Γnew,k to be the set of all k-ary submodular cost functions over a Boolean
domain whose corresponding polynomials satisfy, for every 1 ≤ i < j ≤ k,

aij +
k−2∑
s=1

∑
{i,j,i1,...,is}∈C+

s+2

ai,j,i1,...,is ≤ 0.

In other words, for any 1 ≤ i < j ≤ k, the sum of aij and all positive coefficients of cubic
and higher degree terms which include xi and xj is non-positive. Set Γnew =

⋃
k Γnew,k.

Theorem 2.12 ([35]). Γsub,3, Γneg, Γ{0,1}, Γnew ⊆ 〈Γsub,2〉;

Consequently, VCSP instances over any of the above-mentioned languages can be
solved by reducing to (s, t)-Min-Cut.

Corollary 2.13 ([35]). VCSP(Γsub,3) is solvable in O((n + k)3) time where n is the
number of variables and k is the number of ternary constraints.

Corollary 2.14 ([35]). For any fixed k, VCSP(Γneg,k), VCSP(Γ{0,1},k) and VCSP(Γnew,k)
are solvable in O((n+ k)3) time where n is the number of variables

3 Generators of 4-ary submodular cost functions

One way to answer questions about the expressibility of a set of cost functions Γ is to
find a finite set of generators for Γ, in other words, a set of cost functions {ξ1, . . . , ξm}
such that every φ ∈ Γ can be written as

∑m
i=1 αiξi for αi ≥ 0, i = 1, 2, . . . ,m.

In the following, we translate into the VCSP framework a recent result from [28]
which identifies a finite set of generators for Γsub,4. (Note that [28] actually studies
supermodular functions, but as f is supermodular if and only if −f is submodular, the
results translate easily.)

In order to simplify the presentation, from this point onwards we allow cost functions
to take (finite) negative values. Obviously, we could add a constant to them and get
functions that take non-negative values only, but this would result in a more cumbersome
presentation.

Recall that L is a lattice if L is a partially ordered set in which every pair of elements
(a, b) has a unique supremum (the elements’ least upper bound, called the join, denoted
a ∨ b) and an infimum (greatest lower bound, called the meet, denoted a ∧ b).
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Definition 3.1 ([28]). Let L be a lattice. An upper fan F in L is a subset of pairwise
incomparable elements (a1, . . . , am), for which each pair of distinct elements (ai, aj) has
the same least upper bound. We call the index m the length of the fan. A lower fan G
in L is a subset of incomparable elements (a1, . . . , am), for which each pair of distinct
elements (ai, aj) has the same greatest lower bound.

Definition 3.2. Let L be a lattice. We define the following functions on L:

• For any x ∈ L, the upper function ux takes the value −1 on all points of L greater
than or equal to x and the value 0 elsewhere;

• For any x ∈ L, the lower function lx takes the value −1 on all points of L less than
or equal to x and the value 0 elsewhere;

• For any upper fan F , where b is the common least upper bound of any pair of
elements, the function uF takes the value −1 on all elements x such that for some
i, ai ≤ x, but b 6≤ x; the value −2 on all x such that b ≤ x; and the value 0
elsewhere;

• For any lower fan G, where c is the common greatest lower bound of any pair of
elements, the function lG takes the value −1 on all elements x such that for some i,
x ≤ ai, but x 6≤ c; the value −2 on all x such that x ≤ c; and the value 0 elsewhere.

Proposition 3.3 ([28]). The functions ux, lx, uF and lG are submodular.

Definition 3.4. We say that a ∈ L is quasi-indecomposable if x ∨ y = a implies that
x ∧ y = ⊥ (where ⊥ is the minimum element of L) and x ∧ y = a implies that x ∨ y = >
(where > is the maximum element of L). For a quasi-indecomposable a, we define qina
to be the function that takes the value 1 at a, the value −1 at ⊥ and at >, and the value
0 elsewhere.

Proposition 3.5 ([28]). The function qina is submodular.

Let Zk2 be the lattice of all subsets of {1, 2, . . . , k}. Note that cost functions defined
on Zk2 correspond precisely to k-ary Boolean cost functions.

Definition 3.6. Define the following classes of submodular cost functions on Z4
2 , where

i, j, k, l are distinct elements of {1, 2, 3, 4}:

0. G0 = {f−1, f+1}∪{fi | 1 ≤ i ≤ 4} where f+1 and f−1 are the constant cost functions
which return 1 and -1, respectively, and fi is the cost function which returns 1 if
its i-th argument is 1 and 0 otherwise.

1. G1 = {ux | x = {i, j}};

2. G2 = {ux | x = {i, j, k}};

3. G3 = {ux | x = {1, 2, 3, 4}};

10



4. G4 = {l∅};

5. G5 = {lB | B = {{i}, {j}, {k}}};

6. G6 = {uF | F = {{i, j}, {i, k}, {j, k}}};

7. G7 = {uF | F = {{i, j, k}, {i, j, l}, {j, k, l}}};

8. G8 = {uF | F = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}};

9. G9 = {uF | F = {{i, j, k}, {i, j, l}, {k, l}}};

10. G10 = {qina | a = {i, j}}.

Examples of cost functions from classes G1 to G10 can be found in Figures 6 to 15 in
Appendix B.

Given a set of functions S, we denote by L(S) the non-negative span of S, that is,

L(S) =
⋃
m≥0

{
m∑
i=1

αixi | xi ∈ S ∧ αi ≥ 0}.

Theorem 3.7 (adapted from Theorem 5.2 of [28]). Γsub,4 = L(
⋃10
i=0Gi)

4 The main result

The next theorem characterises precisely which 4-ary submodular cost functions are ex-
pressible using only binary submodular cost functions.

Theorem 4.1 (Main result). Γsub,4 ∩ 〈Γsub,2〉 = L(
⋃9
i=0Gi)

Corollary 4.2. VCSP(L(
⋃9
i=0Gi)), is solvable in O((n+k)3) time where n is the number

of variables and k is the number of non-binary constraints.

In order to prove Theorem 4.1, we have to show that any f ∈
⋃9
i=0Gi is expressible

over Γsub,2, and also that no f ∈ G10 is expressible over Γsub,2.
Figure 2 shows the number of cost functions in each class Gi, and an example of a

cost function5 from each Gi (the other cost functions from each Gi can be obtained easily
by permuting variables.)

In three cases (G4, G5, G10), instead of listing a member of Gi we have listed an
alternative cost function obtained by adding multiples of cost functions from G0. For
example, the cost function l′∅, is obtained from the function l∅ ∈ G4 by subtracting
constant and linear functions. The function l′∅ is represented in Figure 16 in Appendix B.
Similarly for cost functions l′123 (represented in Figure 17), and qin′12 (represented in
Figure 18). Using these alternative cost functions does not change the non-negative span
of the generators, but simplifies the polynomial representations.

5To simplify notation in Figure 2, we omit curly brackets, which are normally used to denote sets. For
instance, we write 123 instead of {1, 2, 3}.

11



Table 2 also shows the corresponding polynomial representation for each of these
functions, and in most cases a corresponding gadget which can be used to express each of
these functions over Γsub,2. Note that no gadget is needed for cost functions from G0 or
G1 as G0, G1 ⊂ Γsub,2. Furthermore, note that no gadget over Γsub,2 is listed in Figure 2
for the example cost function from G10. We will prove later that such a gadget does not
exist.

G1 6 u12 −x1x2

G2 4 u123 −x1x2x3 miny(y(2− x1 − x2 − x3))
G3 1 u1234 −x1x2x3x4 miny(y(3− x1 − x2 − x3 − x4))
G4 1 l′∅ −x1x2x3x4 + x1x2x3 + x1x2x4 miny(y(1− x1 − x2 − x3 − x4))

+x1x3x4 + x2x3x4 − x1x2

−x1x3 − x1x4 − x2x3 − x2x4 − x3x4

G5 4 l′{1,2,3} x1x2x3x4 − x1x2x3 miny(y(2− x1 − x2 − x3 − 2x4))
−x1x4 − x2x4 − x3x4

G6 4 u{12,13,23} x1x2x3 − x1x2 − x1x3 − x2x3 miny(y(1− x1 − x2 − x3))
G7 4 u{123,124,134} x1x2x3x4 − x1x2x3 − x1x2x4 miny(y(3− 2x1 − x2 − x3 − x4))

−x1x3x4

G8 1 u{123,124,134,234} 2x1x2x3x4 − x1x2x3 − x1x2x4 miny(y(2− x1 − x2 − x3 − x3))
−x1x3x4 − x2x3x4

G9 : 6 u{12,134,234} x1x2x3x4 − x1x2 − x1x3x4 − x2x3x4 miny1,y2(y1 + 2y2 − y1y2

−y1x1 − y1x2 − y2x3 − y2x4)
G10 6 qin′12 −x1x2x3x4 + x1x3x4 + x2x3x4

−x1x3 − x1x4 − x2x3 − x2x4 − x3x4

Figure 2: Examples of generators of Γsub,4, with corresponding polynomials and gadgets.

The gadgets shown in Figure 2 can easily be verified, and hence we have established
the following:

Proposition 4.3. G0, G1, . . . G9 ⊆ 〈Γsub,2〉.

Now we prove that these gadget are optimal in terms of the number of hidden variables.
First we show that some cost functions need an extra variable to be expressed over Γsub,2.

Proposition 4.4. Any gadget for a cost function f ∈
⋃

2≤i≤8Gi needs at least one extra
variable.

Proof. The proof is a simple case analysis. We show the idea of the proof for G2. Let
f ∈ G2, for instance, f = u123. The polynomial corresponding to f(x1, x2, x3, x4) is
−x1x2x3. Assume f can be expressed over Γsub,2 as p(x1, x2, x3, x4) = a0 +

∑4
i=1 aixi +∑

1≤i<j≤4 aijxixj , where aij ≤ 0 (by Corollary 2.5). From the definition of f , clearly
a0 = ai = 0 for 1 ≤ i ≤ 4. Moreover, from the definition of f , aij = 0 for every
1 ≤ i < j ≤ 4. But then p(1, 1, 1, 0) = 0 but f(1, 1, 1, 0) = 1, which shows that p does
not express f . A similar argument works for each other class Gi, with 3 ≤ i ≤ 8.
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Next we show that cost functions from G9 need two extra variables to be expressed
over Γsub,2.

Proposition 4.5. Any gadget for a cost function f ∈ G9 needs at least two extra vari-
ables.

Proof. The proof is a case analysis. We show the idea of the proof for f ∈ G9, where
f = u{12,134,234}. The polynomial corresponding to f(x1, x2, x3, x4) is x1x2x3x4 − x1x2 −
x1x3x4 − x2x3x4.

Assume f can be expressed over Γsub,2 using only one extra variable as

p(x1, x2, x3, x4) = a0 +
4∑
i=1

aixi +
∑

1≤i<j≤4

aijxixj + min
y

(y(c+
4∑
i=1

bixi)),

where aij , bi ≤ 0 by Corollary 2.5. From the definition of f , a0 = 0, and also aij = 0
except for a12.

First assume that a12 = 0, that is, p =
∑4

i=1 aixi + miny(y(c+
∑4

i=1 bixi)). In other
words, p =

∑4
i=1 aixi + min(0, c +

∑4
i=1 bixi). From the definition of f , ai ≥ 0 for

1 ≤ i ≤ 4, and

a1 + a2 + a3 + c+ b1 + b2 + b3 = −1
a1 + a2 + a4 + c+ b1 + b2 + b4 = −1
a1 + a3 + a4 + c+ b1 + b3 + b4 = −1
a2 + a3 + a4 + c+ b2 + b3 + b4 = −1

a1 + a2 + a3 + a4 + c+ b1 + b2 + b3 + b4 = −2

It follows, that ai+ bi = −1 for 1 ≤ i ≤ 4. Hence, p =
∑4

i=1 aixi+ min(0, c+
∑4

i=1(−ai−
1)xi). As f(1, 1, 0, 0) = −1, c = 1. Therefore, p(1, 1, 1, 0) = −2 6= −1 = f(1, 1, 1, 0), and
clearly p does not express f .

Now assume that a12 < 0. As f(1, 1, 0, 0) = −1, a12 = −1. From the definition of f ,

a12 + a1 + a2 + a3 + min(0, c+ b1 + b2 + b3) = −1
a12 + a1 + a2 + a4 + min(0, c+ b1 + b2 + b4) = −1

a1 + a3 + a4 + min(0, c+ b1 + b3 + b4) = −1
a2 + a3 + a4 + min(0, c+ b2 + b3 + b4) = −1

a12 + a1 + a2 + a3 + a4 + min(0, c+ b1 + b2 + b3 + b4) = −2

which can be simplified as

a1 + a2 + a3 + min(0, c+ b1 + b2 + b3) = 0
a1 + a2 + a4 + min(0, c+ b1 + b2 + b4) = 0

a1 + a3 + a4 + c+ b1 + b3 + b4 = −1
a2 + a3 + a4 + c+ b2 + b3 + b4 = −1

a1 + a2 + a3 + a4 + c+ b1 + b2 + b3 + b4 = −1

It follows, that a1 + b1 = 0 and a2 + b2 = 0. Now if a1 = a2 = 0, then b1 = b2 = 0
and p = −1 + a3 + a4 + min(0, c + b3x3 + b4x4). As p(0, 0, 1, 1) = p(1, 1, 1, 1), but
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f(0, 0, 1, 1) = −1 6= −2 = f(1, 1, 1, 1), p does not express f . Since we have a1 > 0 or
a2 > 0, we get

a1 + a2 + a3 + c+ b1 + b2 + b3 = 0
a1 + a2 + a4 + c+ b1 + b2 + b4 = 0
a1 + a3 + a4 + c+ b1 + b3 + b4 = −1
a2 + a3 + a4 + c+ b2 + b3 + b4 = −1

a1 + a2 + a3 + a4 + c+ b1 + b2 + b3 + b4 = −1

It follows, that a3 + b3 = −1 and a4 + b4 = −1. Hence, p = −1 +
∑4

i=1 aixi + min(0, c−
a1x1 − a2x2 + (−a3 − 1)x3 + (−a4 − 1)x4). As f(1, 1, 0, 0) = −1, c = 2. However,
p(0, 1, 1, 1) = 0 6= −1 = f(0, 1, 1, 1), and therefore p does not express f .

It is not difficult to check that for any cost functions f, g ∈
⋃

2≤i≤8Gi, the gadgets
for f and g can use the same extra variable. Similarly, for any f, g ∈ G9, the gadgets for
f and g can use the same extra two variables. The key observation is that for any two
cost functions f, g ∈ Gi, the gadgets for f and g from Figure 2 have the same minimal
assignments to the extra variables6.

Therefore, we need only one extra variable for any f ∈ L(Gi), 2 ≤ i ≤ 8 and two for
any f ∈ L(G9). This gives us an upper bound of 7 + 2 = 9 extra variables per 4-ary
constraint from L(

⋃9
i=0Gi). Note that this is sufficient7 for the claim of Corollary 4.2.

Next we show using Theorem 2.4 that no f ∈ G10 is expressible over Γsub,2. In order
to do so we first characterise the multimorphisms of Γcut.

A function F : Dk → Dk is called conservative if, for each possible choice of x1, . . . , xk,
the tuple F(x1, . . . , xk) contains the same multi-set of values x1, . . . , xk (in some order).

For any two tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉 over D, we denote by H(x,y)
the Hamming distance between x and y, which is the number of positions for which the
corresponding values are different.

Theorem 4.6. F ∈ Mul(Γcut)⇔F is conservative and Hamming distance non-increasing.

Proof. Recall that Γcut consists of unary cost functions µcu, for c ∈ Q+ and u ∈ {0, 1},
and binary cost functions χw, for w ∈ Q+.

First we show that for every w ∈ Q+, χw can be equivalently replaced by the following
binary cost function

=w (x, y) =

{
0 if x = y,
w otherwise,

without changing the expressive power of Γcut.
6More formally, for any assignment of x1, x2, x3 and x4, the minimal assignment to the extra variables

in the gadget for f is the same as the minimal assignment to the extra variables in the gadget for g.
7However, a better upper bound of only 3 extra variables per constraint can be obtained by a more

careful analysis of the minimal assignments. Note that this is almost optimal as we have proved a lower
bound of 2 extra variables.
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Let w ∈ Q+ be fixed,

P1 = 〈{x, y}, {0, 1}, {〈〈x, y〉, χw〉, 〈〈y, x〉, χw〉}〉,

and
P2 = 〈{x, y}, {0, 1}, {〈〈x, y〉,=w〉, 〈x, µw1 〉, 〈y, µw0 〉}〉.

Then, 〈P1, {x, y}〉 is a gadget for expressing =w over {χw}, and 〈P2, {x, y}〉 is a gadget
for expressing χ2w + w over {=w, µ

w
0 , µ

w
1 }.

Let F ∈ Mul(Γcut) where F : Dk → Dk. Assume that F is not conservative, that is,
there are u1, . . . , uk, v1, . . . , vk ∈ D such that F(u1, . . . , uk) = 〈v1, . . . , vk〉 and there is i
such that vi occurs more often in 〈v1, . . . , vk〉 than in 〈u1, . . . , uk〉. Then F cannot be a
multimorphism of the unary cost function µ1

vi
. On the other hand, any conservative F is

clearly a multimorphism of µcu for every c ∈ Q+ and u ∈ D.
By Definition 2.3, F is a multimorphism of =w if and only if the following holds:

H(〈u1, . . . , uk〉, 〈v1, . . . , vk〉) ≥ H(F(u1, . . . , uk),F(v1, . . . , vk)).

Now consider the function Fsep : {0, 1}5 → {0, 1}5 defined in Figure 3. (A definition
of Fsep in a different format can be found in Figure 5 in Appendix A).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fsep(x) 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 3: Definition of Fsep.

Although it is rather tedious, the following can be checked:

Proposition 4.7. Fsep is conservative and Hamming distance non-increasing.

Proposition 4.8. Fsep 6∈ Mul({qin′12}).

Proof. See Figure 4.

It follows that Fsep is not a multimorphism of any f ∈ G10, so, by Theorem 2.4, we
have.

Corollary 4.9. No f ∈ G10 is expressible over Γsub,2.
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Fsep

1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0
0 0 1 1
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 1
0 1 1 1

qin′12−→

−1
−1
−1
−1
−1


∑

= -5

qin′12−→

0
0
0
−2
−2


∑

= -4

Figure 4: Fsep 6∈ Mul({qin′12}).

Proof. First note that from the (in)expressibility point of view there is no difference
between qina and qin′a as constant and unary cost functions are trivial. Let f ∈ G10, for
instance, f = qin12. By Proposition 4.8, Fsep is not a multimorphism of qin′12. However,
by Proposition 4.7 and Theorem 4.6, Fsep ∈ Mul(Γcut). Hence, by Theorem 2.4, qin′12 is
not expressible over Γcut, so qin′12 is not expressible over Γsub,2. Consequently, qin12 is
also not expressible over Γsub,2.

Note that the same proof works for any f ∈ G10: any f ∈ G10 is of the form f = qina,
where a is a 2-element subset of {1, 2, 3, 4}. The table in Figure 4 with correspondingly
permuted columns8 shows that Fsep 6∈ Mul({qin′a}) for any qina ∈ G10.

This completes the proof of Theorem 4.1.
Finally, we show that the question of whether a 4-ary submodular cost function is

expressible using binary submodular cost functions is checkable efficiently.

Definition 4.10. Let p(x1, x2, x3, x4) be the polynomial representation of a 4-ary sub-
modular cost function f . We denote by aI the coefficient of the term

∏
i∈I xi. We say

that f satisfies condition (C) if for each {i, j}, {k, l} ⊂ {1, 2, 3, 4}, with i, j, k, l distinct,
we have a{i,j} + a{k,l} + a{i,j,k} + a{i,j,l} ≤ 0.

Proposition 4.11.

• Every f ∈
⋃9
i=0Gi satisfies condition (C).

• No f ∈ G10 satisfies condition (C).

• If both f and g satisfy condition (C), and α ≥ 0, then both αf and f + g satisfy
(C) as well.

Proof. The first statement is easily verified by a simple case analysis (see polynomials
in Figure 2).The second statement is true because a{1,2} + a{3,4} + a{1,2,3} + a{1,2,4} =

8The first two columns are on the i-th and j-th position in the case of the function f = qin′a where
a = {i, j}.
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0 − 1 + 1 + 1 = 1 6≤ 0 and therefore condition (C) is violated for i = 1 and j = 2. The
third statement is easy: (C) is preserved under addition of polynomials and multiplying
a polynomial by a non-negative number.

Corollary 4.12. For any f ∈ Γsub,4, condition (C), described in Definition 4.10, can be
used to efficiently test whether or not f ∈ 〈Γsub,2〉.

5 Conclusion

In this paper we studied the question of which submodular constraints are expressible
using binary submodular constraints, and hence can be minimised efficiently using an
algorithm to find a minimum cut in a suitable graph.

First we showed that in order to answer this question it is sufficient to consider the
Boolean finite-valued case only. We then focused on 4-ary submodular functions and
showed that 9 out of 10 classes of generators for 4-ary submodular functions are express-
ible using binary submodular functions. Therefore, any 4-ary submodular constraint
which can be expressed as a non-negative combination of generators from those 9 classes
can be minimised efficiently using minimum cuts. Using algebraic properties of valued
constraints, we showed that the remaining class of generators is not expressible.

Finally, we showed how to test efficiently whether a given 4-ary submodular constraint
is expressible using binary submodular constraints by examining its polynomial represen-
tation.
Acknowledgements The authors would like to thank David Cohen and Martin Cooper
for fruitful discussions on submodular constraints.
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A Fsep

x Fsep(x)
00000 00000
00001 00001
00010 00001
00011 00011
00100 00001
00101 00011
00110 00101
00111 00111
01000 00010
01001 00011
01010 00011
01011 00111
01100 00011
01101 01011
01110 00111
01111 01111
10000 00010
10001 00011
10010 00011
10011 10011
10100 00011
10101 00111
10110 00111
10111 10111
11000 00110
11001 00111
11010 00111
11011 10111
11100 00111
11101 01111
11110 01111
11111 11111

Figure 5: Definition of Fsep written differently.

B Generators of 4-ary Boolean submodular cost functions

To simplify notation in the following figures, we omit curly brackets, which are normally
used to denote sets. For instance, we write 123 instead of {1, 2, 3}. We denote by [4] the
set {1, 2, 3, 4}.
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Figure 6: G1: ux, where x ⊆ [4], |x| = 2; here x = {1, 2}.
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Figure 7: G2: ux, where x ⊆ [4], |x| = 3; here x = {1, 2, 3}.
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Figure 8: G3: ux, where x ⊆ [4], |x| = 4; x = [4].
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Figure 9: G4: l∅.
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Figure 10: G5: lB, where B consists of three 1-element subsets of [4]; here B = {1, 2, 3}.
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Figure 11: G6: uF , where F consists of three 2-element subsets of any 3-element subset
of [4]; here F = {12, 13, 23}.
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Figure 12: G7: uF , where F consists of three 3-element subsets of [4]; here F =
{123, 124, 134}.
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Figure 13: G8: uF , where F consists of all four 3-element subsets of [4]; F =
{123, 124, 134, 234}.
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Figure 14: G9: uF , where F consists of two 3-element subsets of [4] and the corresponding
(symmetric difference) subset of [4] of size two; here F = {134, 234, 12}.
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Figure 15: G10: qina, where a is a 2-element subset of [4]; here a = {12}.
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Figure 16: G4: l′∅, equivalent to l∅ from Figure 9.
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Figure 17: G5: l′B, equivalent to lB from Figure 10, B = {1, 2, 3}.
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Figure 18: G10: qin′a, equivalent to qina from Figure 15, a = {12}.
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