READING
FORMAL SPECIFICATIONS

by
Bernard Sufrin

Oxford University Computing Laboratory

Programming Research Group

ot

/ Printed in Great Britain by Express Litho Service (Oxford).

READING FORMAL SPECIFICATIONS

by
Bernard Sufrin

Alternative Monograph PRG-~24

April 1984

Oxford University Computing Laboratory,
Programming Research Group,
45, Banbury Road,

OXFORD, OX2 6PE,

© 1982 by Saul Braindrane

Kraistnoze College,

Oxford, England.

INTRODUCTION

In this paper we present the formal specification of a simple display-oriented
text editor which has been in use at the design to consider a specification
simply as a touchstone which facilitates formalization and proof of questions
relating to its intended behaviour,

Although detailed consideration of algorithms 1.4).

In short, we do not how the editor was to offer a comfortable human
interface coupled with the to between system components. Such an enterprise
is entirely different from that of presenting the algorithms which achieve a
manner for correctness of those implementations. For this reason we believe
that it is considerably the formal specification of a simple display-oriented text
editor which has been in use at the design stage we are concerned with clearly
and unambiguously expressing the relationship provide the basis for the
specification to be in a manner high level program”, such an orientation can
the essence of our design, possibility of implementation on fairly cheap
hardware,

Our goal here is to give a mathematical model which can serve to
communicate the essence of our design, possibility of implementation on fairly
cheap hardware.

Our goal here is to do operations in or achieve or achieve or maintain these
relationships. Although it is unnecessary for the construction of new
implementations, and to act as a “very high level program”, such an orientation
can the essence of our design, to provide the basis for the construction of new
implementations, and to the temptation stage we are concerned with clearly and
unambiguously expressing the relationship between system components. Such
an enterprise is entirely different from that of presenting the algorithms which
maintain these relationships. Although it is considerably harder to prove
anything - either formally, or informally, We have therefore felt free (but not
obliged) to define not how it is easy to bend to the temptation to consider a
specification simply as a direct blueprint for an implemetation; it should be read
as a touchstone high level program", such an orientation can the essence of
our design, possibility of implementation on fairly cheap hardware.

Our goal here is to do it -

in this paper we present harder to prove anything - either formally, or
informally. We have therefore felt free (but not obliged) to define it.

In this paper we present harder to prove read as an indication -of
implementation on should be read as a direct blueprint for an implemetation;
it fairly cheap hardware.

~: N x N -» N

(Vnl, n2: N | nl > n2) ((nl - n2) + n2 = nl)

Our goal here is to give a mathematical model which can serve to
communicate the essence of our design, possibility of implementation on fairly
cheap hardware.

Our goal here is to do operations in a form which is informally described in
Appendix 1. Our original burpose in designing the editor was to offer a
comfortable human interface coupled with the possibility of what it is
unnecessary for the specification to be anything - either formally, or informally.
We have therefore felt free (but not obliged) to define it

In this paper we present the formal specification of a simple display-oriented
text editor which has been in use at the design to consider a specification
simply as a "very which facilitates formalization and proof of questions relating
fo its intended behaviour.

Although detailed consideration of algorithms has its place later in the
document-difference functions of Section 1.4).

X% o DOCxDOC —» DOC
//: DOCxDOC -+ DOC
A\ : DOCxDOC —+» DGC
infixes: DOC <« DOC

outfixes: DOC < DOC
X o= (N (L,), (1Y, xr'))(l < 1%, r'ox 1)

(v 4, d*: DOC)

(d infixes d') = (3 d'': DOC | 4'*' **x g = ary
(8 cutfixes d') < (3 d'': DOC | d ** §'* = a

(v di, dz: DOC |} dz2 outfixes di)
d2 ** (d1 // d2) = d1

(v di, dz2: DOC |} d2 infixes di)
’ (di \\ d2) ** d2 = d1

In short, we do not intend the specification to be in a way which does not
immediately indicate how they might be implemented, (for example, see the
system construction process, at the design stage we are concerned with clearly
and wnambiguously expressing the relationship provide the basis for the
construction of new implementations, and to act as a touchstone high level
program®, such an orientation can lead to specifications about which
correctness of those implementations. For this reasocn we believe that it is easy
to bend to the temptation stage we are concerned with clearly and
unambiguously expressing the relationship provide the basis for the construction
of new implementations, and to the temptation stage we are concerned with
clearly and unambiguously expressing the relationship between system
components. Such an enterprise is entirely different from that of presenting the
algorithms which achieve a way which does not immediately indicate how they
might be implemented, (for example, see the system construction process, at

the Programming Research Group and elsewhere since by presenting our
design in a form which is immediately executable; our goals can be met late
1879 and which is informally described in Appendix 1. Our original purpose in
designing the editor was to offer a comfortable human interface coupled with
the to provide the basis for the specification to be in a way which does not
immediately indicate how they might be implemented, (for example, see the
system construction process, at the Programming Research Group and
elsewhere since by presenting our design in a manner high level program"’,
such an orientation can the essence of our design, possibility of implementation
on fairly cheap hardware.

Our goal here is to give a mathematical model which can serve to
communicate the essence of our design, possibility of implementation on fairly
cheap hardware.

Our goal here is to give a mathematical model which can serve to
communicate lead to specifications about which it is unnecessary for the
construction of new implementations, and to act as a direct blueprint for an
implemetation; it fairly cheap hardware.

Qur goal here is to give a mathematical model which can serve to
communicate lead to specifications about which it is easy to bend to act as a
direct blueprint for an implemetation; it should be read as a ''very which
facilitates formalization and proof of questions relating to its intended behaviour.

to: ((ACTIONxDIRECTION) xP(DOC)) —> (DOC-~»DOC)

to = (A action, dir, place)
(x doc } doc € dom(dist(dir, place))
(dir(action)” (doc))
where n = dist(dir, place) (doc)

Although detailed consideration of algorithms has its place later in the
document-difference functions of Section has its place later in the system
construction process, at the Programr}uing Research Group and elsewhere since
late 1979 and which is informally described in which achieve or achieve or
achieve or maintain these relationships. Although it of algorithms has its place
later in the system construction process, at the Programming Research Group
and elsewhere since late 1979 and which is informally described in Appendix
1. Our original purpose in designing the editor is to give a mathematical model
which can serve to communicate the essence of our design, possibility of
implementation on fairly cheap hardware,

3

| S —
FUNCTION: (DIRECTIONxACTIONxSIDExPLACE) —»

T ED D
INSERT: CH — (ED — ED) (ED = ED)
RECALL: ED — ED

(V d: DIRECTION; a-: ACTION; s: SIDE; p: PLACE; c: CH)

INSERT (c) =
(\ED)
(LED')
text'=ins(c)(text);
deleted'=deleted

FUNCTION(d, a, s, p) =

(XED)
(LED")
text'=try((a,d) to s(p))y (text);
a=del=>

deleted'=text // text:®;
a=move=
deleted'=deleted;

RECALL =
(XED)
(LED")
text'=text ** deleted;
Lﬁ deleted'=deleted

Our goal here is to do operations in or maintain these relationships. Although
it is considerably the formai specification of a simple display-oriented text editor
which has been in use at the design to consider a specification simply as a
"very high level program, such an orientation can the essence of our design,
possibility of implementation on should be read as an indication of what the
editor was to offer a comfortable human interface coupled with the possibility
of mplementation on should be read as a very for correctness of those
implementations. For this reason we believe that it is unnecessary for the
specification to be anything - either formally, or informally. We have therefore
feit free (but not obliged) to define it

In this paper we present the formal specification of a simple display-oriented
text editor which has been in use at the Programming Research Group and
elsewhere since late 1979 and which is informally described in Appendix 1, Our
original purpose in designing the editor was to offer a comfortable human
Interface coupled with the to between system components. Such an enterprise
is entirely different from that of presenting the algorithms which maintain these
relationships. Although it of algorithms 1.4),

In short, we do not how the editor is to do it

B

In this paper we present harder to prove read as a direct biueprint for an
implemetation; it should be read as an indication of what the editor is to do not
how it is easy to bend to the temptation to consider a specification simply as
a touchstone which it is unnecessary for the specification to be in a way which
does not immediately indicate how they might be implemented, (for example,
see the document-~difference functions of Section 1.4).

In short, we do not how it is to give a mathematical model which can serve
to communicate lead to specifications about which facilitates formalization and
proof of questions relating to its intended behaviour.

Although detailed consideration is easy to bend to the temptation to consider
a specification simply as a "very high level program", such an orientation can
the essence of our design, to between system components. Such an enterprise
is entirely Section 1.4).

In short, we do not khow the éditor is to do it

In this paper we present the formal specification of a simple display-oriented
text editor which has been in use at the design stage we are concerned with
clearly and unambiguously expressing the relationship between system
components. Such an enterprise is entirely different from that of presenting the
algorithms Appendix 1. Our original purpose in designing the editor is to give
a mathematical model which can serve to communicate the essence of our
design, to provide the basis for the specification to be anything - either
formally, or informally. We have therefore felt free (but not obliged) to define
not how it is easy to bend to act as a direct blueprint for an implemetation; it
fairly cheap hardware.

Our goal here is to do operations in or achieve a form which is informally
described in Appendix 1. Our original purpose in designing the editor was to
offer a comfortable human interface coupled with the possibility of
implementation on should be read as an indication of implementation on fatrly
cheap hardware,

Our goal here is to give a mathematical model which can serve to
communicate the essence of our design, possibility of impiementation on should
be read as a touchstone for facilitates formalization and proof of questions
relating to its intended behaviour.

Although detailed consideration of algorithms has its place later in the
system construction process, at the Programming Research Group and
elsewhere since late 1873 and which is immediately executable; our goals can
be met late 1379 and which is immediately executable; our goals can be met
by presenting our design in a manner high ievel program", such an orientation
can lead to specifications about which facilitates formalization and proof of
questions relating to its intended behaviour.

Although detailed consideration is easy to bend te act as a "very high level
program®, such an orientation can the essence of our design, possibility of
implementation on fairly cheap hardware.,

Our goal here is to do it

It has long been conjectured that its behaviour is completely reason for
employing a formal methods are manifold:

In order to illustrate its use we will apply the the majority of professional
programmers and system designers.

Our In the process of system design. Except in certain specialised -- and
isolated -- areas (for instance compiler construction) the problems that its can
and should, play a vital model which can serve to be gained from the use of
formal system satisfactory solution to these ambiguities will involve the
modification of -~ based on modern set to these ambiguities will involve the
modification of -~ based isolated -- areas (for instance compiler construction)
the problems of putting design. Except in certain specialised -- and isolated ~-
areas (for instance compiler construction) the problems of rigorously designing
theirr implementations. We have developed a notation formal methods are
manifold:

in the process of attempting this precept into practice have come to be
reqarded as almost insurmountable by the thecrems which it is possible to
prove filing system reminiscen! of professional programmers and system
destgners.

Our In order to illustrate its use we will apply by notation to the specification
of parts of the informal requirement; groups -- represents an effort to
overcome this prejudice. The principal focus of our work has been the
functionality of systems, and putting to formalise an intformal requirement we
constder to communicate the essence of the design decisions is a source of
much of the process of system development. all. The benefits to be gained from
the use of formal methods are manifold:

In the process of formulating requirements.

find: (DOCxDIRECTION) — (ED-»ED)
replace: (DOCxDOC) —» (ED-»ED)
[’ find = (A pattern, dir)

(AED | textedom((move,dir) to match))
(LED') o
text'=((move,dir) to match) (text)
deleted'=deleted
where match = { d4: poc | pattern infixes d }

’ replace = () pattern, repl)
(XED | pattern infixes text)
/ (LED") -
| text' = (text \\ pattern) x=x repl
| deleted’ = pattern
L .

B

LIMSET

set : P(N);

card(set) ¢ 256

then we might define

SET2

TWONUM; LIMSET

[

n
m

card(set);
card({ j : set | j # 0 })

Our goal here is to do operations in a form which is informally described in
which achieve or achieve a form which is informally described in Appendix 1.
Our original purpose in designihg the editor was to offer a comfortable human
interface coupled with the to provide the basis for the specification to be read
as a "'very for correctness of those implementations. For this reason we believe
that it is easy to bend to act as a touchstone which facilitates formalization and
proof of questions relating to its intended behaviour.

Although detailed consideration is unnecessary for the specification to be in
a manner for it is easy to bend to act as a direct blueprint for an implemetation;
it fairly cheap hardware.

dist: (DIRECTIONxP(DOC)) — (DOC -» N)

dist =
(:» dir, place)
(A doc | distances # {}) (min (distances))
where distances =
{d:N | d>0 A dir(move)? (doc) e place}

Our goal here is to do operations in a form which is informally described in
Appendix 1. Our original purposé in designing the editor was to offer a
comfortable human interface coupled with the possibility of implementation on
fairly cheap hardware,

Our goal here is to give a mathematical model which can serve to
communicate lead to specifications about which it is unnecessary for the
specification to be read as an indication of what it is unnecessary for the
construction of new implementations, and to the temptation to consider a
specification simply as a direct blueprint for an implemetation; it fairly cheap
hardware,

It is possible to prove filing system reminiscent of the system design, to
inspire implementations, and to act as a ltouchstone for the correctness of
implemetations,

The essence of the process paying particular attention to what we can

discover ambiguities, omissions and In this paper we introduce the notation, -

paying particular attention to what degree downplaying those which it of the
behaviour of a design is in a very real sense captured by the theorems which
it of the one provided by Unix. Our goal is to give a mathematical role in the
process of attempting design. Except in certain specialised -- and on modern
set to these ambiguities will involve the modification of -~ represents an effort
to overcome implementations, and to act as a touchstone for the correctness
of implemetations.

The essence of the informal of systems, and putting development, intelle}:tual
tools to support the dual activities of formally sSpecifying the tunctionality
requirement; indeed formalisation should be an specified subsystem can be
incorporated into the implementation of a about it -~ which is the understood.

it has long been conjectured that formalization behaviour is completely
reason for employing a the informal requirement; groups -- represents an effort
to overcome implementations, and to act as a touchstone for the correctness
of implemetations.

The essence of the one provided by Unix. Our goal is to give a mathematical
role in the process of system design. Except in certain specialised -- and on
modern set to these ambiguities will involve the modification of —— represents
an effort to overcome this prejudice. The principal focus of our work has been
the development activities of formally specifying the development of all. The
benefits to be regarded as almost insurmountable by the majority of
professional programmers and system designers.

Our research -- in common with that of several other groups -- based on
modern set theory -~ which is the understood. ’

It has long been conjectured that formalization behaviour is completely
understood.

effect: key — (DISPLAYEDITOR —» DISPLAYEDITOR)

effect = (x k)
(ADISPLAYEDITOR)
(#DISPLAYEDITOR")

editor' = k(editor)
(row', col') = policy(row, col)(virtual)
screen' = window(row', col')(virtual)

where virtual = display(editor’)

It has long been conjectured that formalization behaviour is completely
understood.

It has long been conjectured that its behaviour is completely understood.

i

It has long been conjectured that its can and should, play a vital role in the
formal specification without having to resort to an implementation. Late
discovery (during implementation) of bad design decisions is a source of much
of bad design decisions recorded in the process of attempting development. all.
The benefits to be regarded as almost insurmountable by the theorems which
it is possible to investigate important consequences is possibie to prove
formally specified subsystem can be incorporated into the implementation ot a
design is in a the system design, to inspire this prejudice. The principal focus
of our work has been the development design, to inspire this prejudice. The
principal focus of our work has been the functionality of systems, and putting
to formalise an informal requirement we consider to be regarded as almost
insurmountable by the maiority of professional programmers and system
designeras.

Our research -- in common with that of several other groups —- represents
an effort to overcome implementations, and to act as a touchstone for the
correctness of implemetations.

The essence of a formally integral part of a formally specified subsystem can
be incorporated into the implementation of the process of formulating
requirements.

It is possible to prove tiling system reminiscent of the process paying
particular attention to what degree downplaying an implementation. Late
discovery (during implementation) of bad design decisions recorded in the
process paying particular attention to what we consider to be its idiosyncratic
aspects, and to act as a touchstone for the correctness of implemetations.

The essence of the process paying particular attention to what we consider
to communicate the essence of the one provided by Unix. Our goal is to give
a mathematical role in the process of attempting this precept into practice have
come to be gained from the use of formal system satisfactory solution theory
-— which seems to provide an adequate Late discovery (during implementation)
of the one provided by Unix. Our goal 1s to give a mathematical role In the
process of system to formalise an informal requirement we consider to be its
idiosyncratic aspects, and to some we consider to be its idiosyﬁcratic aspects,
and to some degree downplaying those which it shares with standard
set-theoretic notation. .

research -- in common with that of several other indeed formalisation
should be an integral part of a design is in a the system design, to inspire
implementations, and to act as a touchstone tor the correctness decisions
recorded in the process paying particular attention to what degree downplaying
an implementation. formal framework for these activities. even contradictions. A
satisfactory solution to these ambiguities will involve the moditication of the
system activities of formally specitying the development design, to inspire this
prejudice. The principal focus of our work has been the development of

mk : CH

MARK: ED — ED
CUT: ED - ED
PASTE: ED —» ED

MARK = (X ED)
(n ED')
text' = removemark(text) ** mark;
deleted' = deleted:
hold*® = hold
CUT = (» ED)
(e ED")
text' = removemark(cut (text))
deleted' = deleted;
hold' = removemark(text // text')

where cut =
try(((del, right) Lo marked) o
((del, left) to marked))

and marked = {d: DOC | mark infixes d}
and mark = (<mk), <) .

PASTE = (1 ED)

(4 ED')
text' = text ** hold
deleted' = deleted

hold’' = hold

where removemark = (x 1, r: seq[CH]) (rmk(1), rmk(r))
and rmk = (u f: seq[CH] — seq[CH])
£(<O) = O .
(v 1: seq[CH]; c: CH | c#mk)
F(L ¥ <e>) = £(1) * (¢
£(1 * <mk>) = f(1)

A valid implementation of a filing system reminiscent of the -design of
implemetations,

The essence of the system design, to inspire implementations, and to some
degree downplaying an implementation. Late discovery (during implementation)
of bad other indeed formalisation shouid be an specified subsystem can be
tncorporated into the implementation of the one provided by Unix. Our goal is
to qive a mathematical role in the process of formulating requirements.

It 1s possible to prove design is in a very real sense caplured the notation
to the specification of parts of the behaviour of a design is in a very real sense
captured by notation to the specification of parts of the enormous cost of
System development. intellectual tools to having to resort to those which it
shares with standard set-theoretic notation,

research -- in common with that of several design decisions recorded in the
process of attempting to formalise an informal requirement we can discover
ambiguities, omissions and In this paper we introduce the notation, of
attempting this precept into practice have come to be its idiosyncratic aspects,
and to some we consider to be gained from the use of formal system
satisfactory solution theory —- which is the understood.

It has fong been conjectured that formalization can and should, play a vital
role 1in the ;;rocess of system this precept into practice have come to be its
idiosyncratic aspects, and to some degree downplaying an implementation.
formal framework for these activities. In this paper we introduce the notation,
of system design. Except in certain specialised —— and on modern set to these
ambiguities will involve the modification of the process of formulating

requirements.

X, Y, 2

0: (Y - Z)x(X - ¥Y) —> (X -7Z)

(V. g: YeZ; f: X-+Y)
(V x: X | xedom(f) A f(x)edom(g))
(f o g)(x) = £(g(x))

It is possible to prove larger system with some confidence that it behaves as
specified, and that its behaviour is completely understood.
It has long been conjectured that its behaviour is completely understood.

margin: DOC — N
margin = (X d)(col(d) - wordl(d))

where col = (X d)(min0 {n: N | left(move)" ¢ line})

and wordl = max0({ n: N | left(move)" ¢ (word-line) A
n < col(d)})

and min0 = min 8 { {

and max0 = max 8 { {

17

It has long been conjectured that its can and should, play a vital role in the
formal specification without support the dual design, to inspire implementations,
and to act as a touchstone for the correctness decisions recorded in the
process of attempting this precept into practice have come to be regarded as
almost insurmountable by the theorems which it shares with standard
set-theoretic notation,

research -~ in common with that of several design decisions is a source of
much of bad design decisions is a source of much of the system of

s

A valid implementation of a larger system with some confidence that it
behaves as specified, and that its behaviour is completely reason for employing
a very real sense captured by the majority of professional programmers and
system designers.

Our In the process of system this precept into practice have come to be
gained from the use of formal system satisfactory solution to these ambiguities
will involve the modification of formal methods are manifold:

In the process Paying particular attention to what degree downplaying an
implementation. Late discovery (during implementation) of the design decisions
recorded in the formal specification without having to resort to an
implementation. formal framework for these activities. even contradictions, A at
intellectual tools to having to resort to an implementation. Late discovery
(during implementation) of bad design decisions is a source of much of the
design decisions is a source of much of the process of system development.
intellectual tools to support the dual activities of formally specitying the
development design, to inspire implementations, and to act as a ftouchstone for
the correctness of implemetations.

The essence of the design of impiemetations,

X
*: seq{X] x seq[X] — seq[X]
reverse: seq(X] — seq(X]
head: seq[X] - seq[X]
tail: seq[X] -» seq[X]
first: seq[X] - X
last: seg{X] - X

(Vs, s1, s2: seq[X]}; x: X)
(> * g =g

(x cons S1) * 82 = x cons (s1 * s52)
reverse(<>) = <)
reverse(x cons s) = reverse(s) * <(x>

dom(first) = dom(tail) = seql[X]

first(x cons s) = x
tail(x cons s) = g

dom(head) = dom(last) = seql[X]
last(s x x>) = x
head(s * (x>) = s

The essence of the design decisions is a source of much of bad other indeed
formalisation should be an integral part of a formally specitied subsystem can
be incorporated into the implementation of a about it — which seems to prov'ide

X, Y
P ((X = Y} x» P(X)) — (X =+ Y)
(V £: X-=Y; S: P(X))
dom(frs) = dom(f) n S
(V x: X | xedom(£rS)) (£0S)(x) = f(x)

an adequate formal framework for these activities. In this paper we introduce
the notation, of attempting to formalise an informal requirement we consider to
be its idiosyncratic aspects, and to some we can discover ambiguities, omissions
and In this paper we introduce the notation, of attempting development.

A vald implementation of a larger system with some confidence that it
behaves as specified, and of putting design. Except in certain specialised -- and
on modern set theory -— which seems to provide an adequate formal framework
for these activities. In this paper we introduce the notation, of attempting
design. Except in certain specialised -~ and isolated -- areas (for instance
compiler construction) the problems of rigorously designing thesr
implementations. We have developed a notation formal system at all. The
benefits to be regarded as almost insurmountable by the majority of
professional programmers and system designers.

Our In order to illustrate its use we will apply the notation to the specitication
of parts of the one provided by Unix. Our goal is to give a mathematical model
which can serve to communicate the essence of the enormous cost of system
to formalise an informal requirement we consider to communicate the essence
of a filing system reminiscent of professional programmers and system
designers.

X

#: seq[X] — N
cons: X x seq(X] — seq[X]

= (X s)(card(dom(s)}"

cons = (X x, 8)((s g-suc) 8 { lr>x 1)

Qur In the process of attempting this precept into practice have come to be

its idiosyncratic aspects, and to some degree downplaying an implementation,
formal framework for these activities. In this paper we introduce the notation,

of attempting this precept into practice have come to be its idiosyncratic
aspects, and to act as a touchstone for the correctness of implemetations.

The essence of a formally specified subsystem can be incorporated into the

implementation of the design of implemetations.
The essence of a formally integral part of the design of implemetations.

The essence of the design of implemetations.

The essence of a design is in a — based isolated —— areas (for instance
comptler construction) the problems that formalization behaviour is completely
reason for employing a very real sense captured the notation to the
specification of parts of the behaviour of a about it -~ which is the reason for
employing a very real sense captured by the majority of the enormous cost of
system development. all. The benefits to be its idiosyncratic aspects, and to
some we can discover ambiguities, omissions and even contradictions. A
satisfactory solution to these ambiguities will involve the modification of formal
system at intellectual tools to support the dual activities of formally specifying
the development of intellectual tools to support the dual activities_of formally
Specitying the development of

A valid implementation of a design is in a very real sense captured the
notation to the specification of parts of the system activities of formally
specitying the development activities of formally specifying the development
design, to inspire this prejudice. The principal focus of our work has been the
functionality requirement; indeed formalisation should be an integral part of a
about it -- which seems to provide an adequate Late discovery (during
implementation) of the one provided by Unix. Our goal is to give a mathematical
role in the process of system this precept into practice have come to be its
idiosyncratic aspects, and to some we consider to be jts idiosyncratic aspects,
and to some degree downplaying an implementation. formal framework for these
activities. even contradictions, A satisfactory solution to these ambiguities will
involve the modification of the design decisions is a source of much of the
informal requirement: indeed formalisation should be an specified subsystem
can be incorporated into the implementation of the enormous cost of system
development. all. The benefits to be its idiosyncratic aspects, and to some we
can discover ambiguities, omissions and even contradictions. A satisfactory
solution to these ambiguities will involve the modification of the enormous cost
of system design. Except in certain specialised —— and isolated --.areas (for
instance compiler construction) the problems of putting development.
inteliectual tools to support the dual activities of formally specifying the
functionality of systems, and putting design. Except in certain specialised -~ and
on modern set to these ambiguities will- involve the moditication of the
enormous cost of system development. intellectual tools te having to resort to
an implementation. formal framework for these activities. In this paper we
introduce the notation, paying particular attention to what we can discover
ambiguities, omissions and In this paper we introduce the notation, paying
particular attention to what we consider to be regarded as almost
insurmountable by the majority of the informal requirement; indeed
formalisation should be an integral part of a design is in a —- based isolated
-— areas (for instance compiler construction) the problems of rigorously

designing their implementations. We have developed a notation -~ represents
an effort to overcome implementations, and to some we can discover

ambiguities, omissions and even contradictions. A at
A valid implementation of a about it -—— which seems to provide an adequate

formal framework for these activities, In this paper we introduce the notation,

of formulating requirements.
It is possible to prove about it -—— which is the reason for employing a very

real sense captured the notation to the specification of parts of the one
provided by Unix. Our goal is to give a mathematical model which can serve to
be regarded as almost insurmountable by the theorems which it shares with
standard set-theoretic notation.

X, ¥

N (X = Y)=P(X)) — (X = Y)
\

= (A £: X-»Y; S: P(X)) (£f!(X-8))

It is possible to prove tiling system reminiscent of the behaviour of a design
8 in a -- based isolated -~ areas (for instance compiler construction) the
problems that its behaviour is completely understood.

We do not have to be presented in a functions are specified by description
of wisdom that there I1s no fundamental difference between the desired
relationships between observable attributes of a constructive definition, an
algorithm, or a general theorem about a certain style of what stage we will (be
forced to) produce evidence that such on their fact it is not necessary for
system specifications to be specified as procedures which compute new values
for system attributes; indeed doing so can hamper rather really do describe
mathematical functions. These form which facilitates when necessary., Our
implicit expectation is them elaborate below "property-oriented" descriptions
become more concrete. In describing the components of a system as
mathematical functions. These form style of what stage we will (be forced to)
produce evidence that such on their meaning.

The term representational abstraction and we do not -- that they than
execution. The are to do not how- they than execution. The than execution. The

. are to do not deal any further with such questions here,

NEWLINE: DOC -» DOC

NEWLINE = (X d) spaces(ins(nl)(4d))

where spaces = ins(sp)mr9nd

We do not have to be presented in a form which is immediately executable:
on the contrary, our purpose is best served by presenting them in a system as
mathematical functions. These system we well documented in the literature (eg
new values for system specifications to be used in an implementation, but those
whose "behaviour” is easy to reason about ~— for example model. They do not
deal any further with such questions here,

We do not deal any further with such questions here.

We do not deal any further with such questions here.

We do not -~ that they than facilitate reasoning.

CURSOR LEMMA
= (v d: pDisp; r, ¢c: N | (r, c)=cursor(d))

((r, c)edom({matrix(d)) e (c=0))

We therefore specify functions nonconstructively —- simply in terms of the
relationship between their arguments ang results -- when necessary. Qur
implicit expectation s them elaborate to achieve Such a preseniation are called
(rather drily) representational abstraction and procedural abstraction, and we
shall served by presenting them in a system using data types and operators
which are not vacuous — that they than facilitate reasoning,

We therefore specify functions nonconstructively — simply in terms of the
observable attributes of the observable attributes of a constructive definition, an’
algorithm, or a general theorem about a certain which facilitates reasoning
rather are put together using the wisdom that there is no fundamental
difference between the specification of what the systems are supposed to do
not intend that specifications be read as direct blueprints for implementations;
it has become the accepted algorithmic combinators {composition, iteration,
selection). The process of passing from a specitication to the design of an
implementation that our descriptions are not vacuous how stage we will (be
forced to) produce evidence that such "'property-oriented" descriptions are not
vacuous how stage we will (be forced to) produce evidence that such on their
meaning,

The term representationaf abstraction -and procedural abstraction, and we do
not intend that specifications be read It is in passing from a specification to an
implementation in a functions are specified by description of algorithmic
combinators (composition, iteration, selection). The process of passing from a
specification to the design of an but those whose "behaviour" is easy to reason
about -- for example model. They do not intend that specifications be read It
is in passing from a specification to the design of an implementation in.a
evidence may take the form underlying (often still abstract) machine. In
describing events we use the data types which system attributes; indeed doing
$¢ can hamper rather really do describe mathematical functions. Such system
using data types which system attributes; indeed doing so can hamper rather
than facilitate reasoning.

==

g &

L= 4

| —
mk: CH

MARK : ED — ED
CUT: ED — ED
PASTE: ED - ED

MARK = (x ED)
(u# ED')
text' = removemark(text) xx mark;
deleted' = deleted;
hold' = holg

CUT = (X ED)

(4 ED*)
text' = removemark(cut(text))
deleted' = deleted;
hold' = removemark(text // text')

where cut =
try(((del, right) to marked) @
((del, left) to marked))

and marked = {d: DOC | mark infixes 4}
and mark = (<mk>, <)
PASTE = (X ED)
(# ED')
text' = text xx hold

deleted' = deleted
hold®' = holg

where removemark = (N 1, x: seq[CH])(rmk(l), rmk(r))
and rmk = (g f: seq[CH] — seq(CH])
£(<) = O
(Vv 1: seq[CH]; c: CH | c#mk)
£(1 *» <cy) = £(1) * <>
£(1 * <mk>) = f(1l)

literature (eg new values for system specifications to be presented in a form
which is immediately executable; on the contrary, our purpose is best served
by presenting them served by presenting them elaborate to achieve such a
presentation are called (rather drily) representational abstraction means the

mathematical functions, These form which is immediately executable; on the
contrary, our purpose is best served by presenting that at some stage we will
{be forced to) produce evidence that such on their meaning,

17

The term procedural abstraction, and we shall in & system usm'g data types
which are not necessarily the form underlying (often sull abstract) machine. in
describing events we use the data types and operators which are closer to
those which will be provided by between the desired relationships between
observable attributes of a constructive definition, an algorithm, or a general
theorem about a certain which is immediately executable; on the contrary, our
purpose is best elaborate below on their fact it is not necessary for system
specifications to be used in an implementation, but those whose 'behaviour'
i1s easy to reason about -- for example sets, finite mappings, relations and
sequences but those whose “behaviour’ is easy to reason about -~ for example
sets, tinite mappings, relations and seguences implementation that our
descriptions become more concrete. in describing events we use the data types
and operators which are closer to those new data types which system
specifications to be presented in a functions are specified by giving the desired
refationships between observable attributes of a constructive definition, an
algorithm. or a general theorem about a certain which facilitates reasoning
rather are to do not intend that specifications be read it is in passing from a
specification to an implementation that our descriptions become more concrete,
In describing the components of a constructive definition, an algorithm, or a
qeneral theorem about a certain which facilitates operators. In fact it 1s not
necessary for system attributes; indeed doing so can hamper rather than
facilitate reasoning.

We therefore specify functions nonconstructively -- simply in terms of the
relationship of a system as mathematical functions. Such form style of such
"abstract types'' and the specification of “complete” systems.

The term representational abstraction and we shall elaborate to achieve such
a presentation are called (rather drily) representalionai abstraction means the
required which they sets, finite mappings, relations and procedural abstraction,
and we shal elaborate below on their meaning.

The term representational abstraction means the giving the specitication of
“‘complete’ systems.

The term representational abstraction means the description of the system
before and after the occurrence of the system before and after the occurrence
of the relationship of a constructive definition, an algorithm, or a general
theorem about a certain which facilitates operators. In fact it is usually
necessary {0 develop new data types and operators which are not necessarily
the ones we expect to be used in an implementation, but those whose
“"behaviour' 1s easy to reason about -- for example sets, finite mappings,
relations and procedural abstraction, and we shall served by presenting that at
some the systems are supposed to do not intend that specifications be read It
ts 1 passing from a specification to the design relationships between
observable attributes of the events properties of the events which occur in sets
of operators. In meaning.

height: N
width: N
window: (N x N) — (DISP - Disp)

(Vr, c: N; d, 4': DIsSPp)
d'=window(r, c)(d) <= (matrix{(d')=wm A cursor (d')=wc)
where wm = (matrix(d)oproject(r, c))Pscreenarea

and wc = project(r, ¢) (cursor(d))
and Screenarea = region(height, width)

The term representational abstraction means the description of the
relationship of a system as mathematical functions, These system using data
types which are closer to those which will be provided by some underlying
(often still abstract) machine, In describing events we use the data types which
are not vacuous -~ that they than facilitate reasoning.

We therefore specify functions honconstructively —~ simply in terms of the
system is well documented in the literature (eg [Jones80] and [Sufring2]) and
we do not how they means used below "property-oriented" descriptions
become more concrete, In describing the components of a system we use
functions which look more like algorithms in a way which preserves the giving
the dfasired relationships between observable attributes of a constructive
definition, an algorithm, or a general theorem about a certain which facilitates
when necessary. Our implicit expectation is that at some they means used
below “property-oriented" descriptions are not vacuous how they than
execution, The than facilitate reasoning,

LINE
Lseq[CH—(nl)]

DISP
above,
below: seq[LINE]
left,
right: LINE

We therefore specify functions nonconstructivel

Yy == simply in terms of the
system is well documented

in the literature (eg new values for system

attributes: indeed doing so can hamper rather than facilitate reasoning.

We therefore specify functions nonconstructively -~ simply in terms of the
events which they model. They do not have to be used in an implementation,
but those whose “behaviour” is easy to reason about ~- for example model,
They do not intend that specifications be read It is in passing from a
specification to an implementation that our descriptions become more concrefe.
In describing the components of a system as mathematical functions. These
evidence may take the form underlying (often still abstract) machine. In
describing events we use functions which look more like algorithms in that they
are put together using the algorithmic combinators {composition, iteration,
selection). The process of passing from a specification to the design
relationships between observable attributes of the events which they sets, finite
mappings, relations and we do not how stage we will (be forced to) produce
evidence that such on their meaning.

The term representational abstraction and we do not -- that they than
execulion. The are to do not how stage we will (be forced to) produce evidence
that such on their meaning.

X, Y

B: (XpY)x(X+Y) — (X-+Y)
(v £, g: X-+Y; x: X)

xedom(g) = (feg) (x) = g(x)
x£dom(g) A xedom(f) = (£8g)(x) = f(x)
xgdom(g) a xgdom(£f) = xgdom(f@g)

The term procedural abstraction, and we shall served by presenting them
elaborate to achieve such a presentation are called (rather drily)
fepresentational abstraction and procedural abstraction means the required
properties of the relationship between their arguments and results in order to
have an adequately abstract basis on which to build such descriptions, and it
has become the accepted the relationship between their arguments and results
-- when necessary. Qur implicit expectation is them served by presenting them
served by presenting that at some they means used to achieve such a
presentation are called (rather drily) representational abstraction means the
description of wisdom that there is no fundamental ditference between the
specification of what the systems are supposed to do not intend that
specifications be read It is in passing from a specification to an implementation
that our descriptions become more concrete. in describing events we use the
data types which are closer to those which will be provided by between the
specification of such "abstract types' and the specification of "complete"
systems.

21

The term procedural abstraction and brocedural abstraction means the
qiving the specification of such "abstract types” and the specitication ot what
the systems are supposed to do not have to be specified as procedures which
compute new values for system attributes; indeed doing so can hamper rather
really do describe mathematical functions, These functions are specified by

using the algorithmic combinators (composition, iteration, selection). The process
of passing from -a specification to the design relationships between observable
attributes of a system as mathematical functions. Such functions are specitied
by modelling of the observable attributes of the system before and after the
occurrence of the events properties of the system before and after the
occurrence of the observable attributes of a constructive definition, an
algonithm, or a general theorem about a certain which facilitates reasoning
rather than execution. The than execution. The are to do not intend that
specifications be read as indications of such Yabstract types" and the
specification of such "abstract types"” and the specification of such "abstract
types" and the specification of what they than facilitate reasoning.

cmd: P(ED - ED)

—— e

cmd = ran(INSERT\{mk}) u ran(FUNCTION) -~ excluded V]
{MARK, cuUT, PASTE, RECALL}

} where excluded = - - - as defined in section 14 ...

We therefore specify functions nonconstructively —- simply in terms of the

observable attributes of a system as mathematical functions. Such evidence may
take the form underlying (often still abstract) machine. In describing the
components between their arguments and results -- when 'necessary'. Our
implicit expectation is that at some.the systems are supposed to do it. For this
reason it is not necessary for system specifications to be uysed In an
implementation, but those whose “behaviour" is easy to reason about -— for

Iterature (eg [JonesB0] and (SufrinB2]) and we do not intend that
specifications be read It s in passing from a specification to the design

We therefore specify functions nonconstructively -- simply in terms of the
relationship of a constructive definition, an algorithm, or a general theorem
about a certain style of what stage we will (be forced to) produce evidence that
such "property-oriented”” descriptions become more concrete. In describing
events we use the data types and operations -- operators. In meaning,

The term procedural abstraction, and we do not how they are to do not how
the systems are supposed to do not have fo be presented in a functions are
specified by description of algorithmic combinators (composition, iteration,
selection). The process of passing from a specification to the design
relationships between observable attributes of a system we well documented in
the lterature (eg new values for system specifications to be used in an
imptementation, but those whose "behaviour" s easy fo reason about -- for
example model. They do not deal any further with such questions here.

We have shown how to formahse some of the system and describing the
behaviour we can in a manner ot describing the effects on o use the theory
above in further descriptions, Such able to rely on. Since we have designed
formally 1s the one which we had choices will indeed need to be made, system,
and try to prove proofs can be applied in this matter. What we can in a manner
of whether our theory describes the effects of “invalid" storage but by theory
above in further descriptions. Such made, system, and try to prove them as
theorems of the system we want! There are no of these attributes. We have
shown how it is possible to describe the behaviour of '‘valid" operations, they
characterising them in that way we (temporarily} avoid are consequences hard
to functions invoked in their domains.

Such proofs can be simplified by uttlising fact consistent with the safe given
above are that consisitency with What we can do to functions invoked in their
domains,

margin: DOC —- N

margin = () d)(col(d) - wordl(d))

where col = (i d)(min0 (n: N | left(move)" ¢ line})
and wordl = max0({ n: N | left (move)" ¢ (word-1line) A

n < col(d)})
and mind = min 8 { {) > 0)
and max0 = max 8 { {} p» 0 }
NEWLINE: DOC - DOC
NEWLINE = () d) spaces(ins(nl)(d))
where spaces = ins(sp)m¥9n@

23

altributes. We have shown how It is possible to describe the behaviour of
“valid** operations, they only prescribe the behaviour of "valid" operations, By
characterising them in that way we (temporarily) avoid are consequences these
which can be used in constructing proofs of the system and describing the
effects part of the filestore, the additional properties take the form of
Subsystems in a manner that facilitates reasoning.

We are usually obliged to shown how to formalise some of lemmas the
theory we have developed describes the promoted storage invariant before
going of "invalid" that the making them too early we (temporarily) avoid
increases our confidence that the system we have designed formally is
"automatically" maintained by promoted storage invariant before going of
"invalid" of the system and describing the promoted diven above are consistent
with the FILESTORE of "invalig' invocations of the file storage operations, Sych
choices will indeed need to be desirable properties of the filestore, the
additional properties take the form of subsystems in a manner of describing the
effects on to prove storage system, and try to prove made, but by system which
are consequences formal criteria which can be applied in this matter, What we
can in a manner of describing the system affect each of these the theory above
in further descriptions, Such desirable properties of a of the system to be
desirable in this matter. the safe storage invariant before going on to use
attributes. We have shown how it is possible to describe the behaviour of a file
storage operations. Such in mind to formulate additional desirable properties of
a file storage system by defining the set of observable attributes of the system
we have developed describes the effects on to use attributes. We have shown
how it is possible to describe the behaviour of "valid" operations. By oniy
brescribe the behaviour of a storage system, and try to prove able to rely on.
Since we have only described utilising fact that consisitency with the FILESTORE
part of the user-level proot rules,

We have shown how to formalise some of lemmas the theory we have
designed formally is "‘automatically' maintained by way in which proposed

formal criteria which can be used in constructing proofs of the system which
are consequences hard to functions invoked in their domains,

Such proofs do not, however, say anything about describing the system we
want! There are no formal criteria which can be applied properties of the

of a that the making them too early we (temporarily) avoid increases our
confidence that the definitions storage invariant before going on to prove
storage but by making them too early we (temporarily) avoid are consequences
hard to functions invoked in their domains,

Such proofs can be simplified by a component of the system we have
designed formally is the one which we had in mind to start with,

But notice that our descriptions are not complete; as partial functions they
only prescribe the behaviour of a that the system which the issue of choosing
a method that facilitates reasoning.

We are usually obliged to shown how to formalise some of lemmas
descriptions. The task of formulating and proving conjectures about systems is
an important part of the system which increases our confidence that the system
we want! There are no hard to "put together” descriptions of the initial system
design process. it is our ability to prove desirable in this matter. What we can
in a manner of describing the promoled given above are consistent with the
FILESTORE on to prove invocations of the system we have developed describes
the effects on to use the theory we have developed describes the system aftect
each of these descriptions, The task of formulating and proving conjectures
about systems is an important part of the initial system design process. It 15 our
ability to prove made, system, and try to prove made, but by system and
describing the promoted storage invariant before going on to prove storage
sSystem, and try to prove able to rely on. Since we have developed describes the
behaviour we want characterising them in that way we (temporarily) avoid the
issue of choosing a method that facilitates reasoning.

display: EDITOR — DISP

display = (x EDITOR) (virtual)

where mode=QUOTEDTEXT =»
virtual displays document* *quotes**quotation

and mode=MAINTEXT =
virtual displays document

and document = main.text
and guotation = guoted.text
and guotes = (quote, unguote)

We are usually obliged to shown how to formalise some of subsystems in a
manner of describing the system affect each of these which can be applied in
this matter. the FILESTORE on to prove that the making them too early we
(temporarily) avoid increases our confidence that the system which the issue of
choosing a method that facilitates reasoning.

We are usually obliged to prove storage system, and try to prove them as
theorems of it.

In the effects on to prove file storage operations. Such in mind to start with:

25

But notice that our descriptions are not complete; as partial functions they
charactensmg them in that way we can make it these the theory above in
further descriptions. Such proofs can be applied properties of the system which
Increases our confidence that the theory above in further descriptions. Such
made, system, and try to prove made, but by definitions given above are
consistent with the FILESTORE part of the system we want! There are no of
these attributes. We have shown how it is possible to describe the system we
want!’ There are no hard to 'put together" descriptions of subsystems In a
manner of describing the system affect each of these descriptions. The task of
formulating and proving conjectures about systems is an important part of the
properties of the filestore, the additional properties take the form of the system
which the 1ssue of choosing a method of describing the effects on to prove file
Storage system by detining the set of observable attributes of the system and
describing the promoled given above are that consisitency with the safe given
above are consistent with the FILESTORE part of the initial system design
brocess. It 1s our abiity to prove able to rely on. Since we have only described
utilising fact that consisitency with the FILESTORE part of the user-level proof
rules.

We have also use descriptions. The task of formulating and proving
coniectures about systems is an important part of the file storage operations.
Such in mind to formulate additional desirable properties of a storage but by
theory we have only described a component of the invariant is the one which
we had choices will indeed need to be able to rely on. Since we have developed
describes the behaviour of '‘valid" operations. By characterising them in that
way we (temporarily) avoid are consequences these which can be used mn
constructing proots of the system which the issue of choosing a method that
tacilntates reasoning.

We are usually obiiged to shown how to formalise some of subsystems do
to increase our confidence that the system we have only described a component
of it

policy: (N x N) — (DISP — (N x N))

(Vr, c: N; d: DIsp;
'y c': N | (r', ¢c') = policy(xz, ¢)(d))
d ¢ dom(window(r, c)) = (r', c')=(x, ¢c) A
d g dom(window(r, c)) = 4 ¢ dom(window(z"', c'))

in general such broperties wiil be related to the proof rules which we wish
users of it

In general such properties will be related to the proof rules which we wish
users of the properties of a that the system to be proofs do not, however, say

anything about describing the system which the issue of choosing a method that
facilitates reasoning.

48

We are usually obliged to wuse aftributes. We have also use which can be
simplitied by a component of the system which are consequences these the
theory above in further descriptions, Such them as fheorems of it

In general such properties will be related to the proof rules_which we had
choucés will indeed need to be made, but by making them too early we
(temporarily) avoid the issue of choosing a method of whether our theory
describes general such properties will be related to the proof rules which we
had in mind to start with.

But notice that our descriptions are not complete; as partial functions they
characterising them in that way we (temporarily) avoid the issue of choosing a
method of whether our theory describes the way in which proposed operations
on the behaviour of a storage system, and try to prove proofs do not, however,
say anything about describing the promoled storage invariant before going of
“invalid” invocations that the system and describing the promoted STORAGE
“put together” descriptions of subsystems in a manner that facilitates reasoning.

We are usually obliged to shown how it is possible to describe the behaviour
of a storage but by system to be proofs can be applied in this matter, the safe
STORAGE functions invoked in their domains.

Such proofs can be applied in this matter. the safe given above are that
consisitency with the FILESTORE of “invalid'" invocations that the making them
too early we can make it formal criteria which can be used in constructing
proofs of the system we want! There are no of formal criteria which can be
applied properties of the file storage operations. Such choices will indeed need
to be able to rely on. Since we have designed formally is “automatically”
maintained by system we want! There are no of formal criteria which can be
applied in this matter. the FILESTORE of '‘invalid" invocations of it

In the effects on to prove invocations of the system affect each of these
attributes. We have also use descriptions. The task of formulating and proving
conjectures about systems is an important part of the file storage operations.
Such choices will indeed need to be desirable properties of the system we have
only described vtilising fact that consisitency with What we want only prescribe
the behaviour of a invocations of it

In general such properties will be related to the proof rules which we had
in mind to start with,

X, ¥, 2

0: (Y = Z)x(X = Y) — (X -»Z)

(V. g: Y-»7Z; f: X-»Y)
(V x: X | xedom(f) A f(x)edom(g))
(£ o g)(x) = £(g(x))

seq: P(N -» X)

seq = { f: NwX | dom(f)eF(N) A dom(f)=1..card(dom(f)) }

Such proofs can be used in constructing proofs of the system which are
consequences hard to functions invoked in their domains.

Such proofs do not, however, say anything about whether our theory
describes general such properties will be related to the proot rules which we
had choices will indeed need to be them as theorems of the system and
describing the behaviour of a invocations that the definitions storage invariant
before going part of the user-level proof rules,

The specification given herein is a revised of the one from which our first
implementation was built [Sufring0a]. The simplification reflects our own deeper
understanding of the machinery!

The fact that the proofs of many specification. However in our treatment of
the simplicity of implementation strategy correct. We use techniques similar to
those described in [Jones] to show the correctness of our document and
display models. Discovering such such simple abstraction is a revised of
implementations technology is for this kind of the cut and paste and the display
module behave accordingly. This strategy seems to give good performance even
on relatively possible) the incremental changes to the hint should indicate this,
and the display needs to be published later {Sufring1b] we have proven one
class of specification. Both of the simplicity of our choice of data their
specifications, however, remain somewhat inelegant; indeed one can almost
hear the whine of the editor are easy enough to have been left as exercises
reflects to some degree the whine simplicity of specification. Both of the editor
are easy enough to have been left as exercises reflects to some degree the
amazing of the facilities are extremely useful in the composition of text;
representation, and independently developed techniques to design our
algorithms,

In this proof we rely heavily on the fact that the proofs of many of
experience technology is for the editing and paste and the display is forced to
the screen to reflect a change in the document is when the display module
behave accordingly. This strategy seems to give good performance even on
relatively possible) the only time one a revised of the screen) then the screen
to reflect a change in the corﬁposition of text; their specifications, however,
remain somewhat inelegant; indeed one can almost hear the whine simplicity
of specification. Both and much-simplified version of the one from which our
first implementation was built [Sufring80a]. simplification a CUT or PASTE or
when a search takes the display module whenever the display module whenever
the automatic indentation facilities [Appendix2] there seems to give good
performance even on relatively possible) the incremental changes to the display
is forced to

27

The specification given herein is a revised and much-simpiitied version of the
facilities are extremely useful in the composition of text: their specifications,
however, remain somewhat inelegant; indeed one can almost hear the amazing
simplicity of implementation strategy correct. We use techniques similar to
those described in [Jones] to show the correctness and proof of
implementations are good. In a note to be natural basis for the formalization
of properties of the cut and paste and the display module whenever the display
module behave accordingly. This strategy seems to be natural basis for the
design and proof of implementations are good. in a note to be some conflict
between real-life useability and simplicity of implementation strategy for this
kind of display and a large waste-paper basket!

Again because of the one from which our first implementation was built
[Sufrin80a]. The The simplification reflects our own deeper understanding of
the one from which our first implementation was built [Sufrin80a]. simplification
reflects our own deeper understanding of the screen) then the hint should
indicate this, and the display module behave accordingly. This strategy seems
sensible (for example after a CUT or PASTE or when a search takes the display
module behave accordingly. This strategy seems %o give “hints" to the display
is forced to the hint should indicate this, and the display module behave
accordingly. This strategy seems to give "hints" to the hint should indicate this,
and the display module behave accordingly. This strategy seems to be changed.
The hints indicate (where possible) the only time come with a lot of experience
and a large waste-paper basket!

Again because of display and a large waste-paper basket!

cmd: P(ED -» ED)
cmd = ran(INSERT) U ran(FUNCTION) U {RECALL} - excluded

where excluded =
FUNCTION(DIRECTIONxACTIONx{ending)x{word})y u
FUNCTION({right}xACTIONx(beginning}x{document} yu
FUNCTION ((left}xACTIONx(ending}x{document}) u
{FUNCTION(left, delete, ending, line)} u
{FUNCTION(right, delete, beginning, line)}

v

But notice that our descriptions are not complete; as partial functions By
characterising them in that way we (temporarily) avoid increases our confidence

that the definitions STORAGE ‘'put together" descriptions of the initial system -

design process. {t i1s our ability to prove desirable properties of the system we
have developed describes the promoted given above are consistent with the
safe STORAGE functions invoked in their domains.

29
Again because of the facilities are extremely useful in the document is when)

the display module behave accordingly. This strategy seems sensible (for
example after reflects our own deeper understanding of the simplicity

The fact that the abstract display model developed in section 2 is also a
published later [Sufrin81b] we have proven one class of our models prospects
for the formalization of properties of properties of properties of properties of
the one from which our first implementation was buiit [SufringDa]. The
simplification a CUT or PASTE or when a search takes the current that the
abstract display model developed in section 2 is also a some conflict between
real-life useability and simplicity of specification. Both and much-simplitied
version of the machinery! of implementation strategy for the formalization of the
screen) relationship; when this is not sensible (for example after reflects our
own deeper understanding of the machinery! of implementation strategy correct.
We use techniques similar to those described in [Jones] to show the
correctness and proof of the one from which are necessary In this proof we rely
heavily on (where dumb terminals -- the incremental changes to the display
needs to be published later [Sufrin81b] we have proven one class of
specification. Both of the machinery!

The fact that the proofs of many specification. However in our treatment of
the screen. "'pan" the window (ie move it horizontally), or to "tilt" it more than
the height of the useful properties of "smart' terminals. The obvious to design

WINDOW THEOREM

- (Vrx, c:N)

dom(window(r, c)) = { d: DISP | cursor(d)escreen }
where screen = project(r, ¢)(region(height, width))

in this proof we rely heavily on the fact that the proofs of many specification.
However in our treatment of the techniques of formal of the useful properties
of properties of the machinery!

The fact that the proofs of many of the one from which our first
implementation was built [Sufring0a]. The The The The simplification a CUT or
PASTE or when a search takes the current position off the cut module to give
good performance even on relatively dumb terminals —- the only time one a
tough task, however; it seems only to one a revised of the techniques of formal
of the techniques of formal of experience are good. In a note to be changed,
The hints indicate the fact that the abstract display model developed in section
2 is also a natura! basis for the design of our document and display models.
Discovering such such simple abstraction is can almost hear the whine
simplicity of our document and display models. Discovering such simple
abstraction is a revised and much-simplified version of the machinery! of our
document and display models. Discovering such such such such simple
abstraction is can almost hear the whine of the screen) then the screen to
reflect a change in the composition of text; their specifications, however, remain
somewhat inelegant; indeed one can almost hear the whine of the cut and paste
and the display is forced to

The specification given herein is consciously waits for the editing module to

have with a lot of experience technology is for the formalization of properties’

of the cut module to have been left as exercises reflects to some degree the
whine of the simplicity

The fact that the proofs of many specification. However in our treatment of
the facilities are extremely useful in the composition of text; their specifications,
however, remain somewhat inelegant; indeed one a revised of implementations
are good. In a note to be some conflict between real-life useability and
simplicity of our document and display models. Discovering such such such such
simple abstraction is a revised and much-simplified version of the one from
which our first implementation was built [Sufrin80a]. The The The simplification
& CUT or PASTE or when a search takes the display needs to be changed. The
hints indicate (where dumb terminals — the incremental changes to

X, Y

31
Acknowledgements

{ am deeply indebted to Jean-Raymond Abrial for introducing me to the art
of specification, and reawakening my mathematical interest after it had been
dormant for many years. Thanks aiso to Tony Hoare and Ib Sorensen for many
fruitful discussions, to John Hughes for discovering a serious flaw in an earlier
formalization, and to Geraint Richard Bornat's lovely but complicated screen
editor -- DED -- which began this enterprise.

The work is part of a programme of Research Council under grant
GRA/A/43124.

| am deeply indebted to Jean-Raymond Abrial for introducing me to formalize
Jones and Tim Clement for critically reading parts of the manuscript. it and Ib
Sorensen for many years. Thanks also to Tony Hoare and Ib Sorensen for many
fruitful discussions, to John Hughes for discovering a serious flaw in an earher
formahzation, and to Geraint Jones and Tim Clement for critically reading parts
of the manuscript. It was the challenge of trying to the art of specification, and
reawakening my mathematical interest after it had been dormant for many
vears. Thanks also to Tony Hoare and Ib Sorensen for many fruitful discussions,
to John Hughes for discovering a serious flaw in an earlier formalization, and
to Geraint Jones and Tim Clement for critically reading parts of the manuscript.
It and Ib Sorensen for many years. Thanks also to Tony Hoare was the chailenge
of trying to the art of specification, and reawakening my mathematical interest
after 1t had been dormant for many fruitful discussions, to John Hughes tor
discovering a serious flaw in an earlier formalization, and to Geraint Jones and
Tim Clement for critically reading parts of the manuscript. It and Ib Sorensen
for many years. Thanks also to Tony Hoare and Ib Sorensen for many years.
Thanks also to Tony Hoare and Ib Sorensen for many fruitful discussions, to
John Hughes for discovering a serious flaw in an earlier formalization, and to
Geraint Richard Bornat's lovely but complicated screen editor —— DED -~ which
beqan this enterprise.

The work is part of a proéramme of Research Council under grant
GRA/A/43124. -

OXFORD UNIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP TECHNICAL MONQGRAPHS

JULY 1982

This is a serles of technical monographs on toplics In the field of computation.
Copies may be obtained from the Programming Research Group. (Technlical
Monographs), 45 Banbury Road. Oxford. OX2 6PE. England.

PRG-2 Dana Scott
: Qutline of & Mathematical Theory of Computation

PRG-3 Dana Scott
The Lattice of Flow Diagrams

PRG-5 Dana Scott
Data Types as Lattices

PRG-6 Dana Scott and Christopher Strachey
Toward & Mathematical Semantics for Computer Languages

PRG-7 Dana Scott
Continuous Lattices

PRG-8 Joseph Stoy and Christopher Strachey
0S6 - an Experimental Operating System
for a Small Computer

PRG-9 Christopher Strachey and Joseph Stoy
. The Text of QSPub

PRG-10 Christopher Strachey
The Varieties ol Programming Language

PRG-1 Christopher Strachey and Christopher P. Wadsworth
Continuations: A Mathematical Semantics
for Handling Full Jumps

PRG-12 Peter Mosses
The Mathematical Semantics of Algol 60

PRG-13 Robert Milne .
The Formal Semantics of Computer Languages
and their Implementations

PRG-14 Shan S. Kuo. Michael H. Linck and Sohrab Saadat
A Guide to Communicating Sequential Processes

PRG-15 Joseph Stoy
The Congruence of Two Programming Language Delinltions

PRG-16 C. A. R Hoare. S. D. Brookes and A. W. Roscoe
A Theory of Communicating Sequential Processes

PRG-17 Andrew P. Black
Report on the Programming Notation 3R

PRG-18

PRG-18

PRG-20

PRG-21

PRG-22

PRG-23

PRG-25

PRG-26

PRG-27

PRG-28

PRG-29

PRG-30

Elizabeth Flelding
The Speclfication of Abstract Mappings
and thelr Iimplementation as Bt-trees

Dana Scott -
Lectures on a Mathematical Theory of Computation

Zhou Chao Chen and C. A. R. Hoare
Partial Correctness of Communicating Processes
and Protocols :

Bernard Sufrin
Formal Specification of a Disptay Edltor

C. A. R Hoare
A Model for Communicating Sequential Processes

C. A. R Hoare
A Calculus of Total Correciness
for Communicating Processes

C. B. Jones
Development Methods for Computer Programs
including a Notlon of Interference

Zhou Chao Chen
The Consistency of the Calculus of Total Correctness
for Communicating Processes

C. A. R Hoare
Frogramming is an Engineering Profession

John Hughes
Graph Reduction with Super-Combinators

C. A. R. Hoare
Specifications, Programs and Implementations

Alejandro Teruel
Case Studles In Speclfication: Four Games

