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Abstract. We propose novel controller synthesis techniques for proba-
bilistic systems modelled using stochastic two-player games: one player
acts as a controller, the second represents its environment, and probabil-
ity is used to capture uncertainty arising due to, for example, unreliable
sensors or faulty system components. Our aim is to generate robust con-
trollers that are resilient to unexpected system changes at runtime, and
flexible enough to be adapted if additional constraints need to be im-
posed. We develop a permissive controller synthesis framework, which
generates multi-strategies for the controller, offering a choice of control
actions to take at each time step. We formalise the notion of permis-
siveness using penalties, which are incurred each time a possible con-
trol action is blocked by a multi-strategy. Permissive controller synthesis
aims to generate a multi-strategy that minimises these penalties, whilst
guaranteeing the satisfaction of a specified system property. We estab-
lish several key results about the optimality of multi-strategies and the
complexity of synthesising them. Then, we develop methods to perform
permissive controller synthesis using mixed integer linear programming
and illustrate their effectiveness on a selection of case studies.

1 Introduction

Probabilistic model checking is used to automatically verify systems with stochas-
tic behaviour. Systems are modelled as, for example, Markov chains, Markov
decision processes, or stochastic games, and analysed algorithmically to verify
quantitative properties specified in temporal logic. Applications include checking
the safe operation of fault-prone systems (“the brakes fail to deploy with prob-
ability at most 10−6”) and establishing guarantees on the performance of, for
example, randomised communication protocols (“the expected time to establish
connectivity between two devices never exceeds 1.5 seconds”).

A closely related problem is that of controller synthesis. This entails con-
structing a model of some entity that can be controlled (e.g., a robot, a vehicle or
a machine) and its environment, formally specifying the desired behaviour of the
system, and then generating, through an analysis of the model, a controller that
will guarantee the required behaviour. In many applications of controller syn-
thesis, a model of the system is inherently probabilistic. For example, a robot’s



sensors and actuators may be unreliable, resulting in uncertainty when detecting
and responding to its current state; or messages sent wirelessly to a vehicle may
fail to be delivered with some probability.

In such cases, the same techniques that underly probabilistic model checking
can be used for controller synthesis. For, example, we can model the system
as a Markov decision process (MDP), specify a property φ in a probabilistic
temporal logic such as PCTL and LTL, and then apply probabilistic model
checking. This yields an optimal strategy (policy) for the MDP, which instructs
the controller as to which action should be taken in each state of the model in
order to guarantee that φ will be satisfied. This approach has been successfully
applied in a variety of application domains, to synthesise, for example: control
strategies for robots [21], power management strategies for hardware [16], and
efficient PIN guessing attacks against hardware security modules [27].

Another important dimension of the controller synthesis problem is the pres-
ence of uncontrollable or adversarial aspects of the environment. We can take
account of this by phrasing the system model as a game between two players,
one representing the controller and the other the environment. Examples of this
approach include controller synthesis for surveillance cameras [23], autonomous
vehicles [11] or real-time systems [1]. In our setting, we use (turn-based) stochas-
tic two-player games, which can be seen as a generalisation of MDPs where de-
cisions are made by two distinct players. Probabilistic model checking of such a
game yields a strategy for the controller player which guarantees satisfaction of
a property φ, regardless of the actions of the environment player.

In this paper, we tackle the problem of synthesising robust and flexible con-
trollers, which are resilient to unexpected changes in the system at runtime. For
example, one or more of the actions that the controller can choose at runtime
might unexpectedly become unavailable, or additional constraints may be im-
posed on the system that make some actions preferable to others. One motivation
for our work is its applicability to model-driven runtime control of adaptive sys-
tems [5], which uses probabilistic model checking in an online fashion to adapt or
reconfigure a system at runtime in order to guarantee the satisfaction of certain
formally specified performance or reliability requirements.

We develop novel, permissive controller synthesis techniques for systems
modelled as stochastic two-player games. Rather than generating strategies,
which specify a single action to take at each time-step, we synthesise multi-
strategies, which specify multiple possible actions. As in classical controller syn-
thesis, generation of a multi-strategy is driven by a formally specified quantita-
tive property: we focus on probabilistic reachability and expected total reward
properties. The property must be guaranteed to hold, whichever of the specified
actions are taken and regardless of the behaviour of the environment. Simulta-
neously, we aim to synthesise multi-strategies that are as permissive as possible,
which we quantify by assigning penalties to actions. These are incurred when a
multi-strategy blocks (does not make available) a given action. Actions can be
assigned different penalty values to indicate the relative importance of allowing
them. Permissive controller synthesis amounts to finding a multi-strategy whose
total incurred penalty is minimal, or below some given threshold.
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We formalise the permissive controller synthesis problem and then establish
several key theoretical results. In particular, we show that randomised multi-
strategies are strictly more powerful than deterministic ones, and we prove that
the permissive controller synthesis problem is NP-hard for either class. We also
establish upper bounds, showing that the problem is in NP and PSPACE for the
deterministic and randomised cases, respectively.

Next, we propose practical methods for synthesising multi-strategies using
mixed integer linear programming (MILP) [25]. We give an exact encoding for
deterministic multi-strategies and an approximation scheme (with adaptable pre-
cision) for the randomised case. For the latter, we prove several additional results
that allow us to reduce the search space of multi-strategies. The MILP solution
process works incrementally, yielding increasingly permissive multi-strategies,
and can thus be terminated early if required. This is well suited to scenarios
where time is limited, such as online analysis for runtime control, as discussed
above, or “anytime verification” [26]. Finally, we implement our techniques and
evaluate their effectiveness on a range of case studies.

This paper is an extended version, with proofs, of [13].

Related work. Permissive strategies in non-stochastic games were first studied
in [2] for parity objectives, but permissivity was defined solely by comparing
enabled actions. Bouyer et al. [3] showed that optimally permissive memoryless
strategies exist for reachability objectives and expected penalties, contrasting
with our (stochastic) setting, where they may not. The work in [3] also studies
penalties given as mean-payoff and discounted reward functions, and [4] extends
the results to the setting of parity games. None of [2,3,4] consider stochastic
games or even randomised strategies, and they provide purely theoretical results.

As in our work, Kumar and Garg [20] consider control of stochastic systems
by dynamically disabling events; however, rather than stochastic games, their
models are essentially Markov chains, which the possibility of selectively dis-
abling branches turns into MDPs. Finally, although tackling a rather different
problem (counterexample generation), [28] is related in that it also uses MILP
to solve probabilistic verification problems.

2 Preliminaries

We denote by Dist(X) the set of discrete probability distributions over a set X.
A Dirac distribution is one that assigns probability 1 to some s ∈ X. The support

of a distribution d ∈ Dist(X) is defined as supp(d)
def
= {x ∈ X | d(x) > 0}.

Stochastic games. In this paper, we use turn-based stochastic two-player games,
which we often refer to simply as stochastic games. A stochastic game takes the

form G = 〈S♦, S�, s, A, δ〉, where S
def
= S♦ ∪ S� is a finite set of states, each as-

sociated with player ♦ or �, s ∈ S is an initial state, A is a finite set of actions,
and δ : S×A→ Dist(S) is a (partial) probabilistic transition function. An MDP
is a stochastic game with S� = ∅. Each state s of a stochastic game G has a

set of enabled actions, given by A(s)
def
= {a ∈ A | δ(s, a) is defined}. The unique

player ◦ such that s ∈ S◦ picks the action a ∈ A(s) to be taken in state s. Then,
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the next state is determined randomly according to the distribution δ(s, a), i.e.,
a transition to state s′ occurs with probability δ(s, a)(s′). A path is a (finite or
infinite) sequence ω = s0a0s1a1 . . . of such transitions through G. We denote by
IPaths (FPaths) the set of all infinite (finite) paths starting in s. We omit the
subscript s when s is the initial state s.

A strategy σ : FPath → Dist(A) for player ◦ ∈ {♦,�} of G is a resolution of
the choices of actions in each state from S◦, based on the execution so far. In
standard fashion [19], a pair of strategies σ and π for ♦ and � induces, for any
state s, a probability measure Prσ,πG,s over IPaths. A strategy σ is deterministic
if σ(ω) is a Dirac distribution for all ω, and randomised if not. In this work,
we focus purely on memoryless strategies, where σ(ω) depends only on the last
state of ω, treating the strategy as a function σ : S◦ → Dist(A). The case of
history-dependent strategies is an interesting topic for future research. We write
Σ◦G for the set of all (memoryless) player ◦ strategies in G.

Properties and rewards. In order to synthesise controllers, we need a formal
description of their required properties. In this paper, we use two common classes
of properties: probabilistic reachability and expected total reward, which we will
express in an extended version of the temporal logic PCTL [18].

For probabilistic reachability, we write properties of the form φ = P./p[ F g ],
where ./ ∈{6,>}, p ∈ [0, 1] and g ⊆ S is a set of target states, meaning that the
probability of reaching a state in g satisfies the bound ./ p. Formally, for a specific
pair of strategies σ ∈ Σ♦G , π ∈ Σ�G for G, the probability of reaching g under σ

and π is Prσ,πG,s(F g)
def
= Prσ,πG,s({s0a0s1a1 · · · ∈ IPaths | si ∈ g for some i}). We

say that φ is satisfied under σ and π, denoted G, σ, π |= φ, if Prσ,πG,s(F g) ./ p.

For rewards, we augment stochastic games with reward structures, which are
functions of the form r : S×A→ R>0 mapping state-action pairs to non-negative
reals. In practice, we often use these to represent “costs” (e.g. elapsed time or
energy consumption), despite the terminology “rewards”.

The total reward for reward structure r along an infinite path ω = s0a0s1a1 . . .
is r(ω)

def
=
∑∞
j=0 r(sj , aj). For strategies σ ∈ Σ♦G and π ∈ Σ�G , the expected total

reward is defined as Eσ,πG,s (r)
def
=
∫
ω∈IPaths

r(ω) dPrσ,πG,s . For technical reasons, we
will always assume that the maximum possible reward supσ,π E

σ,π
G,s (r) is finite

(which can be checked with an analysis of the game’s underlying graph). An ex-
pected reward property is written φ = Rr./b[ C ] (where C stands for cumulative),
meaning that the expected total reward for r satisfies ./ b. We say that φ is
satisfied under strategies σ and π, denoted G, σ, π |= φ, if Eσ,πG,s (r) ./ b.

In fact, probabilistic reachability can be easily reduced to expected total
rewards. Thus, in the techniques presented in this paper, we focus purely on
expected total reward.

Controller synthesis. To perform controller synthesis, we model the system
as a stochastic game G = 〈S♦, S�, s, A, δ〉, where player ♦ represents the con-
troller and player � represents the environment. A specification of the required
behaviour of the system is a property φ, either a probabilistic reachability prop-
erty P./p[ F t ] or an expected total reward property Rr./b[ C ].
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Definition 1 (Sound strategy). A strategy σ ∈ Σ♦G for player ♦ in stochastic
game G is sound for a property φ if G, σ, π |= φ for any strategy π ∈ Σ�G .

The classical controller synthesis problem asks whether there is a sound strategy.
We can determine whether this is the case by computing the optimal strategy
for player ♦ in game G [12,15]. This problem is known to be in NP ∩ co-NP, but,
in practice, methods such as value or policy iteration can be used efficiently.

s0 s1 s2

s3

s4 s5

east

south

north

0.7

0.3

block0.75
0.25

pass

south

east
block

0.6
0.4

pass

done

Fig. 1. A stochastic game G for Ex. 1.

Example 1. Fig. 1 shows a stochas-
tic game G, with controller and en-
vironment player states drawn as di-
amonds and squares, respectively. It
models the control of a robot mov-
ing between 4 locations (s0, s2, s3, s5).
When moving east (s0→s2 or s3→s5),
it may be impeded by a second robot,
depending on the position of the latter. If it is blocked, there is a chance that
it does not successfully move to the next location. We use a reward structure
moves, which assigns 1 to the controller actions north, east , south, and define
property φ = Rmoves

65 [ C ], meaning that the expected number of moves to reach
s5 is at most 5. A sound strategy (found by minimising moves) chooses south in
s0 and east in s3, yielding an expected number of moves of 3.5.

3 Permissive Controller Synthesis

We now define a framework for permissive controller synthesis, which gener-
alises classical controller synthesis by producing multi-strategies that offer the
controller flexibility about which actions to take in each state.

3.1 Multi-Strategies

Multi-strategies generalise the notion of strategies, as defined in Section 2.

Definition 2 (Multi-strategy). A (memoryless) multi-strategy for a game
G=〈S♦, S�, s, A, δ〉 is a function θ:S♦→Dist(2A) with θ(s)(∅) = 0 for all s ∈ S♦.

As for strategies, a multi-strategy θ is deterministic if θ always returns a Dirac
distribution, and randomised otherwise. We write Θdet

G and Θrand
G for the sets of

all deterministic and randomised multi-strategies in G, respectively.
A deterministic multi-strategy θ chooses a set of allowed actions in each

state s ∈ S♦, i.e., those in the unique set B ⊆ A for which θ(s)(B) = 1. The
remaining actions A(s) \B are said to be blocked in s. In contrast to classical
controller synthesis, where a strategy σ can be seen as providing instructions
about precisely which action to take in each state, in permissive controller syn-
thesis a multi-strategy provides multiple actions, any of which can be taken. A
randomised multi-strategy generalises this by selecting a set of allowed actions
in state s randomly, according to distribution θ(s).

6



We say that a controller strategy σ complies with multi-strategy θ if it picks
actions that are allowed by θ. Formally (taking into account the possibility of
randomisation), σ complies with θ if, for any state s and non-empty subset
B ⊆ A(s), there is a distribution ds,B ∈ Dist(B) such that, for all a ∈ A(s),
σ(s)(a) =

∑
B3a θ(s)(B)ds,B(a).

Now, we can define the notion of a sound multi-strategy, i.e., one that is
guaranteed to satisfy a property φ when complied with.

Definition 3 (Sound multi-strategy). A multi-strategy θ for game G is sound
for a property φ if any strategy σ that complies with θ is sound for φ.

Example 2. We return to the stochastic game from Ex. 1 (see Fig. 1) and re-use
the property φ = Rmoves

65 [ C ]. The strategy that picks south in s0 and east in s3
results in an expected reward of 3.5 (i.e., 3.5 moves on average to reach s5). The
strategy that picks east in s0 and south in s2 yields expected reward 5. Thus a
(deterministic) multi-strategy θ that picks {south, east} in s0, {south} in s2 and
{east} in s3 is sound for φ since the expected reward is always at most 5.

3.2 Penalties and Permissivity

The motivation for multi-strategies is to offer flexibility in the actions to be
taken, while still satisfying a particular property φ. Generally, we want a multi-
strategy θ to be as permissive as possible, i.e. to impose as few restrictions
as possible on actions to be taken. We formalise the notion of permissivity by
assigning penalties to actions in the model, which we then use to quantify the
extent to which actions are blocked by θ. Penalties provide expressivity in the
way that we quantify permissivity: if it is more preferable that certain actions
are allowed than others, then these can be assigned higher penalty values.

A penalty scheme is a pair (ψ, t), comprising a penalty function ψ : S♦×A→
R>0 and a penalty type t ∈ {sta, dyn}. The function ψ represents the impact of
blocking each action in each controller state of the game. The type t dictates how
penalties for individual actions are combined to quantify the permissiveness of
a specific multi-strategy. For static penalties (t = sta), we simply sum penalties
across all states of the model. For dynamic penalties (t = dyn), we take into
account the likelihood that blocked actions would actually have been available,
by using the expected sum of penalty values.

More precisely, for a penalty scheme (ψ, t) and a multi-strategy θ, we define
the resulting penalty for θ, denoted pent(ψ, θ) as follows. First, we define the
local penalty for θ at state s as pen loc(ψ, θ, s) =

∑
B⊆A(s)

∑
a/∈Bθ(s,B)ψ(s, a).

If θ is deterministic, pen loc(ψ, θ, s) is simply the sum of the penalties of actions
that are blocked by θ in s. If θ is randomised, pen loc(ψ, θ, s) gives the expected
penalty value in s, i.e. the sum of penalties weighted by the probability with
which θ blocks them in s.

Now, for the static case, we sum the local penalties over all states, i.e. we put
pensta(ψ, θ) =

∑
s∈S♦

pen loc(ψ, θ, s). For the dynamic case, we use the (worst-

case) expected sum of local penalties. We define an auxiliary reward structure
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ψ′ given by the local penalties: ψ′(s, a) = pen loc(ψ, θ, s) for all a ∈ A(s). Then:

pendyn(ψ, θ) = sup{Eσ,πG,s (ψ′) |σ ∈ Σ♦G , π ∈ Σ
�
G and σ complies with θ}.

3.3 Permissive Controller Synthesis

We can now formally define the central problem studied in this paper.

Definition 4 (Permissive controller synthesis). Consider a game G, a class
of multi-strategies ? ∈ {det , rand}, a property φ, a penalty scheme (ψ, t) and a
threshold c ∈ Q>0. The permissive controller synthesis problem asks: does there
exist a multi-strategy θ ∈ Θ?G that is sound for φ and satisfies pent(ψ, θ) 6 c?

Alternatively, in a more quantitative fashion, we can aim to synthesise (if it
exists) an optimally permissive sound multi-strategy.

Definition 5 (Optimally permissive). Let G, ?, φ and (ψ, t) be as in Defn. 4.

A sound multi-strategy θ̂ ∈ Θ?G is optimally permissive if its penalty pent(ψ, θ̂)
equals inf{pent(ψ, θ) | θ ∈ Θ?G and θ is sound for φ}.

Example 3. We return to Ex. 2 and consider a static penalty scheme (ψ, sta)
assigning 1 to the actions north, east , south (in any state). The deterministic
multi-strategy θ from Ex. 2 is optimally permissive for φ = Rmoves

65 [ C ], with
penalty 1 (just north in s3 is blocked). If we instead use φ′ = Rmoves

616 [ C ], the multi-
strategy θ′ that extends θ by also allowing north is now sound and optimally
permissive, with penalty 0. Alternatively, the randomised multi-strategy θ′′ that
picks 0.7:{north}+0.3:{north, east} in s3 is sound for φ with penalty just 0.7.

Next, we establish several fundamental results about the permissive controller
synthesis problem. Proofs can be found in the appendix.

Optimality. Recall that two key parameters of the problem are the type of
multi-strategy sought (deterministic or randomised) and the type of penalty
scheme used (static or dynamic). We first note that randomised multi-strategies
are strictly more powerful than deterministic ones, i.e. they can be more permis-
sive (yield a lower penalty) for the same property φ.

Theorem 1. The answer to a permissive controller synthesis problem (for ei-
ther a static or dynamic penalty scheme) can be “no” for deterministic multi-
strategies, but “yes” for randomised ones.

This is why we explicitly distinguish between classes of multi-strategies when
defining permissive controller synthesis. This situation contrasts with classi-
cal controller synthesis, where deterministic strategies are optimal for the same
classes of properties φ. Intuitively, randomisation is more powerful in this case
because of the trade-off between rewards and penalties: similar results exist in,
for example, multi-objective controller synthesis on MDPs [14].

Second, we observe that, for the case of static penalties, the optimal penalty
value for a given property (the infimum of achievable values) may not actually
be achievable by any randomised multi-strategy.
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Theorem 2. For permissive controller synthesis using a static penalty scheme,
an optimally permissive randomised multi-strategy does not always exist.

If, on the other hand, we restrict our attention to deterministic strategies, then
an optimally permissive multi-strategy does always exist (since the set of deter-
ministic, memoryless multi-strategies is finite). For randomised multi-strategies
with dynamic penalties, the question remains open.

Complexity. Next, we present complexity results for the different variants of
the permissive controller synthesis problem. We begin with lower bounds.

Theorem 3. The permissive controller synthesis problem is NP-hard, for either
static or dynamic penalties, and deterministic or randomised multi-strategies.

We prove NP-hardness by reduction from the Knapsack problem, where weights
of items are represented by penalties, and their values are expressed in terms
of rewards to be achieved. The most delicate part is the proof for randomised
strategies, where we need to ensure that the multi-strategy cannot benefit from
picking certain actions (corresponding to items being put to the Knapsack) with
probability other than 0 or 1. See Appx. A.3 for details. For upper bounds, we
have the following.

Theorem 4. The permissive controller synthesis problem for deterministic (resp.
randomised) strategies is in NP (resp. PSPACE) for dynamic/ static penalties.

For deterministic multi-strategies it is straightforward to show NP membership
in both the dynamic and static penalty case, since we can guess a multi-strategy
satisfying the required conditions and check its correctness in polynomial time.
For randomised multi-strategies, with some technical effort we can encode exis-
tence of the required multi-strategy as a formula of the existential fragment of
the theory of real arithmetic, solvable with polynomial space [7]. See Appx. A.4.

A natural question is whether the PSPACE upper bound for randomised
multi-strategies can be improved. We show that this is likely to be difficult, by
giving a reduction from the square-root-sum problem. We use a variant of the
problem that asks, for positive rationals x1,. . . ,xn and y, whether

∑n
i=1

√
xi 6 y.

This problem is known to be in PSPACE, but establishing a better complexity
bound is a long-standing open problem in computational geometry [17].

Theorem 5. There is a reduction from the square-root-sum problem to the per-
missive controller synthesis problem with randomised multi-strategies, for both
static and dynamic penalties.

4 MILP-Based Synthesis of Multi-Strategies

We now consider practical methods for synthesising multi-strategies that are
sound for a property φ and optimally permissive for some penalty scheme. Our
methods use mixed integer linear programming (MILP), which optimises an
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objective function subject to linear constraints that mix both real and integer
variables. A variety of efficient, off-the-shelf MILP solvers exists.

An important feature of the MILP solvers we use is that they work incre-
mentally, producing a sequence of increasingly good solutions. Here, that means
generating a series of sound multi-strategies that are increasingly permissive. In
practice, when resources are constrained, it may be acceptable to stop early and
accept a multi-strategy that is sound but not necessarily optimally permissive.

4.1 Deterministic Multi-Strategies

We first consider synthesis of deterministic multi-strategies. Here, and in the
rest of this section, we assume that the property φ is of the form Rr>b[ C ]. Upper
bounds on expected rewards (φ = Rr6b[ C ]) can be handled by negating rewards
and converting to a lower bound. For the purposes of encoding into MILP, we
rescale r and b such that supσ,π E

σ,π
G,s (r) < 1 for all s, and rescale every (non-zero)

penalty such that ψ(s, a) > 1 for all s and a ∈ A(s).

Static penalties. Fig. 2 shows an encoding into MILP of the problem of finding
an optimally permissive deterministic multi-strategy for property φ = Rr>b[ C ]
and a static penalty scheme (ψ, sta). The encoding uses 5 types of variables:
ys,a ∈ {0, 1}, xs ∈ R>0, αs ∈ {0, 1}, βs,a,t ∈ {0, 1} and γt ∈ [0, 1], where s, t ∈ S
and a ∈ A. So the worst-case size of the MILP problem is O(|A|·|S|2·κ), where
κ stands for the longest encoding of a number used.

Variables ys,a encode a multi-strategy θ: ys,a=1 iff θ allows action a in s
(constraint (2) enforces at least one action per state). Variables xs represent
the worst-case expected total reward (for r) from state s, under any controller
strategy complying with θ and under any environment strategy. This is captured
by constraints (3)–(4) (which amounts to minimising the reward in an MDP).
Constraint (1) imposes the required bound of b on the reward from s.

The objective function minimises the static penalty (the sum of all local
penalties) minus the expected reward in the initial state. The latter acts as a
tie-breaker between solutions with equal penalties (but, thanks to rescaling, is
always dominated by the penalties and therefore does not affect optimality).

As an additional technicality, we need to ensure that the values of xs are
the least solution of the defining inequalities, to deal with the possibility of zero
reward loops [24]. To achieve this, we use an approach similar to the one taken
in [28]. It is sufficient to ensure that xs = 0 whenever the minimum expected
reward from s achievable under θ is 0, which is the case if and only if, starting
from s, it is possible to avoid ever taking an action with positive reward.

In our encoding, αs = 1 if xs is positive (constraint (5)). The binary variables
βs,a,t = 1 represent, for each such s and each action a allowed in s, a choice of
successor t ∈ supp(δ(s, a)) (constraint (6)). The variables γs then represent a
ranking function: if r(s, a) = 0, then γs > γt(s,a) (constraint (8)). If a positive
reward could be avoided starting from s, there would in particular be an infinite
sequence s0, a1, s1, . . . with s0 = s and, for all i, si+1 = t(si, ai) and r(si, ai) = 0,
and therefore γsi > γsi+1

. Since S is finite, this sequence would have to enter a
loop, leading to a contradiction.
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Minimise: − xs +
∑

s∈S♦

∑
a∈A(s)

(1− ys,a)·ψ(s, a) subject to:

xs > b (1)

1 6
∑

a∈A(s)
ys,a for all s ∈ S♦ (2)

xs 6
∑

t∈S
δ(s, a)(t)·xt + r(s, a) + (1− ys,a) for all s ∈ S♦, a ∈ A(s) (3)

xs 6
∑

t∈S
δ(s, a)(t)·xt for all s ∈ S�, a ∈ A(s) (4)

xs 6 αs for all s ∈ S (5)

ys,a = (1− αs) +
∑

t∈supp(δ(s,a))
βs,a,t for all s ∈ S, a ∈ A(s) (6)

ys,a = 1 for all s ∈ S�, a ∈ A(s) (7)

γt < γs + (1− βs,a,t) + r(s, a) for all (s, a, t) ∈ supp(δ) (8)

Fig. 2. MILP encoding for deterministic multi-strategies with static penalties.

Minimise: zs subject to (1), . . . , (7) and:

`s =
∑

a∈A(s)
ψ(s, a)·(1− ys,a) for all s ∈ S♦ (9)

zs >
∑

t∈S
δ(s, a)(t)·zt + `s − c·(1− ys,a) for all s ∈ S♦, a ∈ A(s) (10)

zs >
∑

t∈S
δ(s, a)(t)·zt for all s ∈ S�, a ∈ A(s) (11)

Fig. 3. MILP encoding for deterministic multi-strategies with dynamic penalties.

Dynamic penalties. Next, we show how to compute an optimally permissive
sound multi-strategy for a dynamic penalty scheme (ψ, dyn). This case is more
subtle since the optimal penalty can be infinite. Hence, our solution proceeds
in two steps as follows. Initially, we determine if there is some sound multi-
strategy. For this, we just need to check for the existence of a sound strategy,
using standard algorithms for solution of stochastic games [12,15].

If there is no sound multi-strategy, we are done. If there is, we use the MILP
problem in Fig. 3 to determine the penalty for an optimally permissive sound
multi-strategy. This MILP encoding extends the one in Fig. 2 for static penal-
ties, adding variables `s and zs, representing the local and the expected penalty
in state s, and three extra sets of constraints. Equations (9) and (10) define
the expected penalty in controller states, which is the sum of penalties for all
disabled actions and those in the successor states, multiplied by their transition
probability. The behaviour of environment states is captured by Equation (11),
where we only maximise the penalty, without incurring any penalty locally.

The constant c in (10) is chosen to be no lower than any finite penalty
achievable by a deterministic multi-strategy, a possible value being

∑∞
i=0(1 −

p|S|)i·p|S|·i·|S|·penmax, where p is the smallest non-zero probability assigned by δ,
and penmax is the maximal local penalty over all states. If the MILP problem has
a solution, this is the optimal dynamic penalty over all sound multi-strategies.
If not, no deterministic sound multi-strategy has finite penalty and the optimal
penalty is ∞ (recall that we established there is some sound multi-strategy). In
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Fig. 4. Transformed game for approximating randomised multi-strategies (Section 4.2).

practice, we might choose a lower value of c than the one above, resulting in a
multi-strategy that is sound, but possibly not optimally permissive.

4.2 Approximating Randomised Multi-Strategies

As shown in Section 3, randomised multi-strategies can outperform deterministic
ones. The MILP encodings in Fig.s 2 and 3, though, cannot be adapted to the
randomised case, since this would need non-linear constraints.

Instead, in this section, we propose an approximation which finds the optimal
randomised multi-strategy θ in which each probability θ(s,B) is a multiple of
1
M for a given granularity M . Any such multi-strategy can then be simulated by
a deterministic one on a transformed game, allowing synthesis to be carried out
using the MILP-based methods described in the previous section.

The transformed game is illustrated in Fig. 4. For each controller state s,
we add two layers of states: gadgets s′j (for 1 6 j 6 n) representing the subsets
B ⊆ A(s) with θ(s,B) > 0, and selectors si (for 1 6 i 6 m), which distribute
probability among the gadgets. The si are reached from s via a transition using
fixed probabilities p1, . . . , pm which need to be chosen appropriately (see below).
For efficiency, we want to minimise the number of gadgets n and selectors m for
each state s. We now present several results used to achieve this.

First, note that, if |A(s)| = k, a randomised multi-strategy chooses probabil-
ities for all n = 2k−1 non-empty subsets of A(s). Below, we show that it suffices
to consider randomised multi-strategies whose support in each state has just two
subsets, allowing us to reduce the number of gadgets from n = 2k−1 to n = 2,
resulting in a smaller MILP problem to solve for multi-strategy synthesis.

Theorem 6. 1. For a (static or dynamic) penalty scheme (ψ, t) and any sound
multi-strategy θ we can construct another sound multi-strategy θ′ such that
pent(ψ, θ) > pent(ψ, θ

′) and |supp(θ′(s))| 6 2 for any s ∈ S♦.
2. Furthermore, for static penalties, we can construct θ′ such that, for each

state s ∈ S♦, if supp(θ′(s))={B1, B2}, then either B1 ⊆ B2 or B1 ⊆ B2.

Part 2 of Theorem 6 states that, for static penalties, we can further reduce
the possible multi-strategies that we need to consider. This, however, does not
extend to dynamic penalties (see Appx. A.8).

Lastly, we define the probabilities p1, . . . , pm on the transitions to selectors
in Fig. 4. We let m = b1 + log2Mc and pi = li

M , where l1 . . . , lm ∈ N are

defined recursively as follows: l1 = dM2 e and li = dM−(l1+···+li−1)
2 e for 2 6 i 6 m.

Assuming n = 2, as discussed above, this allows us to encode any probability
distribution ( l

M , M−lM ) between two subsets B1 and B2.
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Name
[param.s]

Param.
values

States
Ctrl.
states

Property Penalty
Time
(s)

cloud
[vm]

5 8,841 2,177 P>0.9999[ F deployed ] 0.001 9.08
6 34,953 8,705 P>0.999[ F deployed ] 0.01 72.44

android
[r, s]

1, 48 2,305 997
Rtime
610000[ C ]

0.0009 0.58
2, 48 9,100 3,718 0.0011 10.64
3, 48 23,137 9,025 0.0013 17.34

mdsm
[N ]

3 62,245 9,173 P60.1[ F deviated ] 52 50.97
3 62,245 9,173 P60.01[ F deviated ] 186 15.84

investor
[vinit, vmax]

5,10 10,868 3,344 R
profit
>4.98[ C ] 1 3.32

10, 15 21,593 6,644 R
profit
>8.99[ C ] 1 18.99

team-form
[N ]

3 12,476 2,023
P>0.9999[ F done1 ]

0.8980 0.12
4 96,666 13,793 0.704 2.26

cdmsn [N ] 3 1240 604 P>0.9999[ F prefer1] 2 0.46

Table 1. Experimental results for synthesising optimal deterministic multi-strategies.

The following result states that, by varying the granularity M , we can get
arbitrarily close to the optimal penalty for a randomised multi-strategy and, for
the case of static penalties, defines a suitable choice of M .

Theorem 7. Let θ be a sound multi-strategy. For any ε > 0, there is an M and
a sound multi-strategy θ′ of granularity M satisfying pent(ψ, θ

′)−pent(ψ, θ) 6 ε.
Moreover, for static penalties it suffices to take M = d

∑
s∈S,a∈A(s)

ψ(s,a)
ε e.

5 Experimental Results

We have implemented our techniques within PRISM-games [9], an extension of
the PRISM model checker for performing model checking and strategy synthe-
sis on stochastic games. PRISM-games can thus already be used for (classical)
controller synthesis problems on stochastic games. To this, we add the ability
to synthesise multi-strategies using the MILP-based method described in Sec-
tion 4. Our implementation currently uses CPLEX to solve MILP problems. It
also supports SCIP and lp solve, but in our experiments (run on a PC with a
1.7GHz i7 Core processor and 4GB RAM) these were slower in all cases.

We investigated the applicability and performance of our approach on a va-
riety of case studies, some of which are existing benchmark examples and some
of which were developed for this work. These are described in detail below and
the files used can be found online [29].

Deterministic multi-strategy synthesis. We first discuss the generation of
optimal deterministic multi-strategies, the results of which are summarised in
Table 1. In each row, we first give details of the model: the case study, any
parameters used, the number of states (|S|) and of controller states (|S♦|). Then,
we show the property φ used, the penalty value of the optimal multi-strategy
and the time to generate it. Below, we give further details for each case study,
illustrating the variety of ways that permissive controller synthesis can be used.
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cloud: We adapt a PRISM model from [6] to synthesise deployments of services
across virtual machines (VMs) in a cloud infrastructure. Our property φ specifies
that, with high probability, services are deployed to a preferred subset of VMs,
and we then assign unit (dynamic) penalties to all actions corresponding to
deployment on this subset. The resulting multi-strategy has very low expected
penalty (see Table 1) indicating that the goal φ can be achieved whilst the
controller experiences reduced flexibility only on executions with low probability.

android: We apply permissive controller synthesis to a model created for run-
time control of an Android application that provides real-time stock monitoring
(see [29] for details). We extend the application to use multiple data sources and
synthesise a multi-strategy which specifies an efficient runtime selection of data
sources (φ bounds the total expected response time). We use static penalties,
assigning higher values to actions that select the two most efficient data sources
at each time point and synthesise a multi-strategy that always provides a choice
of at least two sources (in case one becomes unavailable), while preserving φ.

mdsm: Microgrid demand-side management (MDSM) is a randomised scheme for
managing local energy usage. A stochastic game analysis [8] previously showed
it is beneficial for users to selfishly deviate from the protocol, by ignoring a
random back-off mechanism designed to reduce load at busy times. We synthesise
a multi-strategy for a (potentially selfish) user, with the goal (φ) of bounding
the probability of deviation (at either 0.1 or 0.01). The resulting multi-strategy
could be used to modify the protocol, restricting the behaviour of this user to
reduce selfish behaviour. To make the multi-strategy as permissive as possible,
restrictions are only introduced where necessary to ensure φ. We also guide where
restrictions are made by assigning (static) penalties at certain times of the day.

investor: This example [22] synthesises strategies for a futures market investor,
who chooses when to reserve shares, operating in a (malicious) market which can
periodically ban him from investing. We generate a multi-strategy that achieves
90% of the maximum expected profit (obtainable by a single strategy) and assign
(static) unit penalties to all actions, showing that, after an immediate share
purchase, the investor can choose his actions freely and still meet the 90% target.

team-form: This example [10] synthesises strategies for forming teams of agents
in order to complete a set of collaborative tasks. Our goal (φ) is to guarantee that
a particular task is completed with high probability (0.9999). We use (dynamic)
unit penalties on all actions of the first agent and synthesise a multi-strategy
representing several possibilities for this agent while still achieving the goal.

cdmsn: Lastly, we apply permissive controller synthesis to a model of a protocol
for collective decision making in sensor networks (CDMSN) [8]. We synthesise
strategies for nodes in the network such that consensus is achieved with high
probability (0.9999). We use (static) penalties inversely proportional to the en-
ergy associated with each action a node can perform to ensure that the multi-
strategy favours more efficient solutions.

Analysis. Unsurprisingly, permissive controller synthesis is slightly more costly
to execute than (classical) controller synthesis. But we successfully synthesised
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Name†
Par-
am.s

States
Ctrl.
states

Property
Pen.
(det.)

Pen. (randomised)
M=100 M=200 M=300

android
1,1 49 10 P>0.9999[ F done] 1.01 0.91 0.905 0.903
1,10 481 112 P>0.999[ F done] 19.13 18.14∗ 17.73∗ 17.58∗

cloud 5 8,841 2,177 P>0.9999[ F deployed ] 1 0.91 0.905 0.906∗

investor 5,10 10,868 3,344 R
profit
>4.98[ C ] 1 1∗ 1∗ 0.996∗

team-form 3 12,476 2,023 P>0.9999[ F done1 ] 264 263.96∗ 263.95∗ 263.94∗

† See Table 1 for parameter names.
∗ Sound but possibly non-optimal multi-strategy obtained after 5 minute MILP time-out.

Table 2. Experimental results for approximating optimal randomised multi-strategies.

deterministic multi-strategies for a wide range of models and properties, with
model sizes ranging up to approximately 100,000 states. The performance and
scalability of our method is affected (as usual) by the state space size. But,
in particular, it is affected by the number of actions in controller states, since
these result in integer MILP variables, which are the most expensive part of the
solution. Performance is also sensitive to the penalty scheme used: for example,
states with all penalties equal to zero can be dealt with more efficiently.

Randomised multi-strategy synthesis. Finally, Table 2 presents results for
approximating optimal randomised multi-strategies on several models from Ta-
ble 1. We show the (static) penalty values for the generated multi-strategies for
3 different levels of precision (i.e. granularities M ; see Section 4.2) and compare
them to those of the deterministic multi-strategies for the same models.

The MILP encodings for randomised multi-strategies are larger than deter-
ministic ones and thus slower to solve, so we impose a time-out of 5 minutes. We
are able to generate a sound multi-strategy for all the examples; in some cases
it is optimally permissive, in others it is not (denoted by a ∗ in Table 2). As
would be expected, we generally observe smaller penalties with increasing values
of M . In the instance where this is not true (cloud, M=300), we attribute this to
the size of the MILP problem, which grows with M . For all examples, we built
randomised multi-strategies with smaller penalties than the deterministic ones.

6 Conclusions

We have presented a framework for permissive controller synthesis on stochastic
two-player games, based on generation of multi-strategies that guarantee a spec-
ified objective and are optimally permissive with respect to a penalty function.
We proved several key properties, developed MILP-based synthesis methods and
evaluated them on a set of case studies. Topics for future work include synthesis
for more expressive temporal logics and using history-dependent multi-strategies.

Acknowledgements. The authors are part supported by ERC Advanced Grant
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A Appendix

A.1 Proof of Theorem 1 (Randomisation is Required)

Theorem 1. The answer to a permissive controller synthesis problem (for ei-
ther a static or dynamic penalty scheme) can be “no” for deterministic multi-
strategies, but “yes” for randomised ones.

Proof. Consider an MDP with states s, t1 and t2, and actions a1 and a2, where
δ(s, ai)(ti) = 1 for i ∈ {1, 2}, and t1, t2 have self-loops only. Let r be a reward
structure assigning 1 to (s, a1) and 0 to all other state-action pairs, and ψ be
a penalty function assigning 1 to (s, a2) and 0 elsewhere. We then ask whether
there is a multi-strategy satisfying φ = Rr>0.5[ C ] and with penalty at most 0.5.

Considering either static or dynamic penalties, the randomised multi-strategy
θ that chooses distribution {0.5:a1, 0.5:a2} in s is sound and yields penalty 0.5.
However, there is no such deterministic multi-strategy.

A.2 Proof of Theorem 2 (Optimal Strategies)

Theorem 2. For permissive controller synthesis using a static penalty scheme,
an optimally permissive randomised multi-strategy does not always exist.

Proof. Consider a game with states s and t, and actions a and b, where we
define δ(s, a)(s) = 1 and δ(s, b)(t) = 1, and t has just a self-loop. The reward
structure r assigns 1 to (s, b) and 0 to all other state-action pairs. The penalty
function ψ assigns 1 to (s, a) and 0 elsewhere.

Now observe that any multi-strategy which blocks the action a with proba-
bility ε > 0 and does not block any other actions incurs penalty ε and is sound
for Rr>1[ C ] since any strategy which complies with the multi-strategy satisfies
that the action b is taken eventually. Thus the infimum of achievable penalties
is 0. However, the multi-strategy that incurs penalty 0, i.e. does not block any
actions, is not sound for Rr>1[ C ].

A.3 Proof of Theorem 3 (NP-hardness)

Theorem 3. The permissive controller synthesis problem is NP-hard, for either
static or dynamic penalties, and deterministic or randomised multi-strategies.

Proof. We start with the case of randomised multi-strategies and static penal-
ties which is the most delicate. Then we analyse the case of randomised multi-
strategies and dynamic penalties, and finally show that this case can easily be
modified for the remaining two combinations.

Randomised multi-strategies and static penalties. We give a reduction
from the Knapsack problem. Let n be the number of items, each of which can
either be or not be put in a knapsack, let vi and wi be the value and the weight
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of item i, respectively, and let V and W be the bounds on the value and weight
of the items to be picked. We assume that vi 6 1 for every 1 6 i 6 n, and that
all numbers vi and wi are given as fractions with denominator q.

Let us construct the following MDP, where m is chosen such that n2−m 6 1
q

and 2−m ·W 6 1
q .

s0

t1 t′1

>

⊥

tn t′n

>

⊥

1/n

1/n

a1

b1, w1

d1
v1

1− v1

c1, 2
3m · w1

an

bn, wn

dn
vn

1− vn

cn, 2
3m · wn

We define a reward structure r such that every path reaching > is assigned
cumulative reward 1. The penalties are as given by the underlined expressions.

We show that there is a multi-strategy θ sound for the property Rr>V/n[ C ]

such that pensta(ψ, θ) 6W + 2−m ·W if and only if the answer to the Knapsack
problem is “yes”.

In the direction⇐, let I ⊆ {1, . . . , n} be the set of items put in the knapsack.
It suffices to define the multi-strategy θ by

– θ(t′i)({ci, di}) = 1− 2−4m, θ(t′i)({di}) = 2−4m, θ(ti)({ai}) = 1 for i ∈ I,
– θ(t′i)({ci, di}) = 1, θ(t1)({ai, bi}) = 1 for i 6∈ I.

In the direction⇒, let us have a multi-strategy θ satisfying the assumptions.
Let P (s → s′) denote the lower bound on the probability of reaching s′ from
s under a strategy which complies with the multi-strategy θ. Denote by I ⊆
{1, . . . , n} the indices i such that P (ti → >) > 2−m.

Let βi = θ(ti)({ai}) and αi = θ(t′1)({di}). Observe that:

yi = βi ·
∞∑
j=0

((1− αi) · βi)j · αi · vi =
αiβivi

1− (1− αi)βi
=

αiβivi
1− βi + αiβi

because the optimal strategy σ will pick bi and ci whenever they are available.
Note that for i ∈ I, αi > 2−m(1− βi), since otherwise we have:

αiβivi
1− βi + αiβi

<
αiβi

1− βi + αiβi
<

2−m(1− βi)βi
1− βi + 2−m(1− βi)βi

<
2−mβi

1 + 2−mβi
6 2−m

Hence, αi > 2−m(1− βi), and so:

pen loc(ψ, θ, ti)+pen loc(ψ, θ, t
′
i) = βiwi+αi2

3mwi > βiwi+2−m(1−βi)23mwi > wi
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We have:∑
i∈I

wi 6
∑
i∈I

(
pen loc(ψ, θ, ti) + pen loc(ψ, θ, t

′
i)
)
6W + 2−m ·W

and because
∑
i∈I wi and W are fractions with denominator q, by the choice of

m, we can infer that
∑
i∈I wi 6W . Similarly:

∑
i∈I

1

n
vi >

∑
i∈I

1

n
P (ti → >) >

( 1

n

n∑
i=1

P (ti → >)
)
− 1

n
2−mn >

1

n
V − 2−m

and again, because
∑
i∈I vi and V are fractions with denominator q, by the

choice of m we can infer that
∑
i∈I vi > V . Hence in the instance of the knapsack

problem it suffices to pick exactly items from I to satisfy the restrictions.

Randomised multi-strategies with dynamic penalties. The proof is analo-
gous to the proof above, we only need to modify the MDP and the computations.
For an instance of the Knapsack problem given as before, we construct the fol-
lowing MDP:

s0

t1

>

⊥

tn

>

⊥

1/n

1/n

a1

v1

1− v1

b1, w1

an

vn

1− vn

bn, wn

We claim that there is a multi-strategy θ sound for the property Rr>V/n[ C ] such

that pendyn(ψ, θ) 6 1
nW if and only if the answer to the Knapsack problem is

“yes”.

In the direction ⇐, for I ⊆ {1, . . . , n} the set of items in the knapsack we
define θ by θ(ti)({ai}) = 1 for i ∈ I and by allowing all actions in every other
state.

In the direction⇒, let us have a multi-strategy θ satisfying the assumptions.
Let P (s → s′) denote the lower bound on the probability of reaching s′ from s
under a strategy which complies with the multi-strategy θ. Denote I ⊆ {1, . . . , n}
the indices i such that θ(ti)({ai}) > 0. Observe that P (ti → >) = vi if i ∈ I
and P (ti → >) = 0 otherwise. Hence:

∑
i∈I

1

n
vi =

∑
i∈I

1

n
P (ti → >) =

1

n

n∑
i=1

P (ti → >) >
1

n
V
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And for the penalty, denoting xi := θ(ti)({ai}), we get:

1

n
W > pendyn(ψ, θ) =

1

n

n∑
i=0

∞∑
j=0

(1−xi)jxiwi =
1

n

∑
i∈I

∞∑
j=0

(1−xi)jxiwi =
1

n

∑
i∈I

wi

(12)
because the strategy that maximises the penalty will pick bi whenever it is
available. Hence in the instance of the knapsack problem it suffices to pick exactly
items from I to satisfy the restrictions.

Deterministic multi-strategies and dynamic penalties. The proof is iden-
tical to the proof for randomised multi-strategies and dynamic penalties above:
observe that the multi-strategy constructed there from an instance of Knapsack
is in fact deterministic.

Deterministic multi-strategies and static penalties. The proof is obtained
by a small modification of the proof for randomised multi-strategies and dy-
namic penalties above. Instead of requiring pendyn(ψ, θ) 6 1

nW we require
pensta(ψ, θ) 6W , and Equation 12 changes to:

W > pensta(ψ, θ) =

n∑
i=0

xiwi =
∑
i∈I

wi .

A.4 Proof of Theorem 4 (Upper Bounds)

Theorem 4. The permissive controller synthesis problem for deterministic (resp.
randomised) strategies is in NP (resp. PSPACE) for dynamic/static penalties.

Proof. We consider the two cases separately.

Deterministic multi-strategies. We start by showing NP membership for
deterministic multi-strategies. If the answer to the problem is “yes”, then there
is a witnessing deterministic multi-strategy, which is of polynomial size. We can
guess such a strategy nondeterministically and then in polynomial time verify
that the guess is correct. The fact that the multi-strategy is sound and that it
achieves the required dynamic penalty can be verified using standard algorithms
for computing expected total reward in MDPs, static penalties can be checked
by summing up the local penalties.

Randomised multi-strategies. Now we show that the permissive controller
synthesis problem is in PSPACE if we restrict to randomised multi-strategies
and static penalties. For dynamic penalties the proof is similar.

The proof proceeds by constructing a polynomial-size closed formula Ψ of
the existential fragment of (R,+, ·,6) such that Ψ is true if and only if there is
a multi-strategy ensuring the required penalty and reward. Because determining
the validity of a closed formula of the existential fragment of (R,+, ·,6) is in
PSPACE [7], we obtain the desired result.

For the rest of this section, fix an instance of the permissive controller problem
as in Defn. 4, with static penalties. We say that a multi-strategy is winning if it
satisfies the conditions on θ in Defn. 4.
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For numbers p = (ps)s∈S where 0 6 ps 6 1 for every s ∈ S, let us consider
a game Gp which is obtained from G by applying the transformation from Sec-
tion 4.2 for approximating randomised multi-strategies (see also Fig. 4) where
we fix n = 2 and substitute the numbers p1 and p2 in the gadget created for
s with numbers ps and 1 − ps. We claim that there is a randomised winning
multi-strategy in G if and only if there exists a vector p such that there is a
deterministic winning multi-strategy in Gp. The proof proceeds by establishing
a direct correspondence between randomised multi-strategies in G and games Gp

and deterministic multi-strategies in them.
Further, let Ψ [Gp] denote the conjunction of the constraints 1-8 from Fig. 2

for the game Gp, together with the constraints:∑
s∈S♦

(
ps ·

(
α(s, 1, 1) + α(s, 1, 2)

)
+ (1− ps) ·

(
α(s, 2, 1) + α(s, 2, 2)

))
6 c

ysi,bj ·
∑

a∈A(s′j)

(1− ys′j ,a)·ψ(s′j , a) = α(s, i, j) for all s ∈ S, i, j ∈ {1, 2}

0 6 ps 6 1 for all s ∈ S

We get that Ψ [Gp] is satisfiable if and only if there is a deterministic winning
multi-strategy.

Note that the formulae Ψ [Gp] for different p differ only at positions where
the numbers of p are substituted. Hence, we can create a formula Ψ ′ which is
obtained from Ψ [Gp] where each ps is treated as a variable. From the above we
get that the formula Ψ ′ is satisfiable if and only if there is a randomised winning
multi-strategy, and hence we finish the proof by putting Ψ ≡ ∃xΨ ′ where x are
all variables of Ψ ′.

A.5 Proof of Theorem 5 (Square-root-sum Reduction)

Theorem 5. There is a reduction from the square-root-sum problem to the
permissive controller synthesis problem with randomised multi-strategies, for
both static and dynamic penalties.

Proof. Let x1,. . . ,xn and y be numbers giving the instance of the square-root-
sum problem, i.e. we aim to determine whether

∑n
i=1

√
xi 6 y. We construct

the game from Fig. 5.
The penalties are as given by the underlined numbers, and the rewards 1/xi

are awarded under the actions bi.

Static penalties. We first give the proof for static penalties. We claim that there
is a multi-strategy θ sound for the property Rr>1[ C ] such that pensta(ψ, θ) 6 y

if and only if
∑n
i=1

√
xi 6 y.

In the direction⇐ let us define a multi-strategy θ by θ(t′i)({c′i}) = θ(t̄i)({c̄i}) =√
xi and θ(t′i)({a′i, c′i}) = θ(t̄i)({āi, c̄i}) = 1 − √xi, and allowing all actions in

all remaining states. We then have: pensta(ψ, θ) =
∑n
i=1 2 · √xi and the reward
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s0

t1

t′1

t̄1

⊥

tn

t′n

t̄n

⊥

1/n

1− x1

x1

c′1

a′1, 1

c̄1

ā1, 1

b1, 1/x1

1/n
1− xn

xn

c′1

a′n, 1

c̄n

ān, 1

bn, 1/xn

Fig. 5. The game for the proof of Theorem 5.

achieved is:
1

n

n∑
i=1

min{xi ·
1

xi
,
√
xi ·
√
xi

1

xi
} = 1.

In the direction⇒, let θ be an arbitrary multi-strategy sound for the property
Rr>1[ C ] satisfying pensta(ψ, θ) 6 2 · y . Let z′i = θ(t′i)({c′i}) and z̄i = θ(t̄i)({c̄i}).
The reward achieved is:

1

n

n∑
i=1

min{xi ·
1

xi
, z′i · z̄i

1

xi
} =

1

n

n∑
i=1

min{1, z′i · z̄i
1

xi
}

which is greater or equal to 1 if and only if z′i · z̄i > ai for every i. We show
that z′i + z̄i > 2 · √xi: If both z′i and z̄i are greater than

√
xi, we are done.

The case z′i, z̄i 6
√
xi cannot take place. As for the remaining case, w.l.o.g.,

suppose that z′i =
√
xi + p and z̄i =

√
xi − q for some non-negative p and q.

Then (
√
xi + p) · (√xi − q) = xi + (p− q)√xi − pq, and for this to be at least xi

we necessarily have p > q, and so z′i + z̄i =
√
xi + p+

√
xi − q > 2 · √xi. Hence,

we get that:

n∑
i=1

2 ·
√
xi 6

n∑
i=1

(
z′i + z̄i

)
= pensta(ψ, θ) 6 2 · y.

Dynamic penalties. We now proceed with dynamic penalties, where the anal-
ysis is similar. Let us use the same game as before, but in addition assume that
the penalty assigned to actions c′i and c̄′i is equal to 1. We claim that there is a
multi-strategy θ sound for the property Rr>1[ C ] such that pendyn(ψ, θ) 6 2 · y/n
if and only if

∑n
i=1

√
xi 6 y.
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In the direction ⇐ let us define a multi-strategy θ as before, and obtain
pendyn(ψ, θ) = 1

n

∑n
i=1 2 · √yi.

In the direction⇒, let θ be an arbitrary multi-strategy sound for the property
Rr>1[ C ] satisfying pendyn(ψ, θ) 6 2 · y/n . Let z′i = θ(t′i)({c′i}), z̄i = θ(t̄i)({c̄i}),
u′i = θ(t′i)({a′i}), and ūi = θ(t̄i)({āi}).

As before we can show that z′i + z̄i > 2 · √xi, and so:

1

n

n∑
i=1

2 ·
√
xi 6

1

n

n∑
i=1

(
z′i + z̄i

)
6

1

n

n∑
i=1

(
(z′i + u′i) + (1− u′i) · (z̄i + ūi)

)
= pendyn(ψ, θ) 6 2 · y/n.

A.6 Proof of Theorem 6.1 (Randomisation on 2 Sets)

Theorem 6.1. For a (static or dynamic) penalty scheme (ψ, t) and any sound
multi-strategy θ we can construct another sound multi-strategy θ′ such that
pent(ψ, θ) > pent(ψ, θ

′) and |supp(θ′(s))| 6 2 for any s ∈ S♦.

Proof. Let θ be a multi-strategy allowing n > 2 different sets A1, . . . , An with
non-zero probabilities λ1, . . . , λn in s1 ∈ S♦. Let pi and ri, where i ∈ {1, ..., n}, be
the penalties and rewards from θ after allowing Ai against an optimal opponent
strategy, and pλ, rλ the resulting penalty and reward in s1. The rewards are
given in a standard manner as the least fixpoint of linear equations:

– rλ =
∑n
i=1 λiri,

– ri = ci ·rλ+di (where ci, di represent the behaviour in the rest of the system,
ci being the probability of returning to s1),

and the penalties are pλ =
∑n
i=1 λipi, either with constant pi (in the case of

static penalties) or as the least fixpoint of an analogous system of equations.
Let S0 ⊆ S be those states from which the opponent can ensure a return

to s1 without accumulating any reward, and for each Ai, let Bi ⊆ Ai contain
those actions a with r(s1, a) = 0 and supp(δ(s1, a)) ⊆ S0. While constructing
θ′, we need to take care that for at least one of the Ai in supp(θ′(s1)), Bi is
empty, since otherwise the expected reward drops to 0. One helpful fact is that
Bi is empty whenever ri > rλ (since any a ∈ Bi could have been used by the
opponent to force ri 6 rλ).

For each tuple µ = (µ1, . . . , µm) ∈ Rn, let t(µ) = (rµ, pµ) with rµ = µ1r1 +
· · · + µnrn and pµ = µ1p1 + · · · + µnpn. Then the set T = {t(µ) | 0 6 µi 6
1, µ1 + · · · + µn = 1} is a bounded convex polygon, with vertices given by
images t(ei) of unit vectors (i.e. Dirac distributions) ei = (0, . . . , 0, 1, 0, . . . , 0),
and containing the original point t(λ) = (rλ, pλ).

We distinguish several cases, depending on the shape of T :

1. T has non-empty interior. Let (r1, p1), . . . , (rm, pm) be its corners in coun-
terclockwise order, each with an associated non-empty set Ij = {i | t(ei) =
(rj , pj)} of vectors. Any given edge ((rj , pj)(rj+1, pj+1)) does not contain
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the next corner (rj+2, pj+2) (taking indices modulo m), and since all λi are
positive, it also does not contain t(λ), which is therefore in the interior of T .
The idea now is to pick the point (r, p′) directly below t(λ) = (r, p) on the
boundary of T , represent it as a convex combination of adjacent corners
(r, p′) = α(rj , pj) + (1 − α)(rj+1, pj+1), and let θ′(s1) be αAu + (1 − α)Av
for some u ∈ Ij , v ∈ Ij+1. Some care must be taken if (r, p′) happens to be a
corner (rj , pj), as all Au may have non-empty Bu in this case. However, we
then can (since pj < p) instead choose εAv + (1 − ε)Au for some v ∈ Ij+1

and ε > 0 small enough such that εpj+1 + (1− ε)pj 6 p. Since t(λ) is above
(rj , pj) and inside T , rj+1 must be greater than rj , and therefore Bv = ∅.

2. T is a vertical line segment, i.e. it is the convex hull of two extreme points
(r, p0) and (r, p1) with p0 < p1. In case r = 0, we can simply always allow
some Ai with i ∈ I0, minimising the penalty and still achieving reward 0.
If r > 0, there must be at least one Ai with Bi = ∅. Since all λi are positive,
t(λ) lies inside the line segment, and in particular p > p0. We can therefore
choose θ′(s1) = εAi + (1 − ε)Aj with the above i and some j ∈ I0, for an
ε > 0 small enough that εp1 + (1− ε)p0 6 p.

3. T is a non-vertical line segment, i.e. it is the convex hull of two extreme points
(r0, p0) and (r1, p1) with r0 < r1. Since all λi are positive, t(λ) is not one of
the extreme points, i.e. t(λ) = α(r0, p0) + (1−α)(r1, p1) with 0 < α < 1. We
can therefore choose θ′(s1) = αAi + (1 − α)Aj with i ∈ I0, j ∈ I1. Again,
since r1 > r, Bj is empty.

4. T consists of a single point (r, p). This can be treated like the second case:
either r = 0, and we can allow any Ai, or r > 0, and there is some Ai with
Bi = ∅, which we can allow.

We now want to show that the reward and penalty of the updated multi-
strategy are indeed no worse than before. The rewards r′µ, r

′
1, . . . , r

′
n are given

by the least fixpoint of equations:

– r′µ = µr′u + (1− µ)r′v,
– r′i = c′i ·r′+d′i (where c′i, d

′
i represent the behaviour in the rest of the system,

taking into account a possibly different optimal opponent strategy).

We then have:

r′ − r = (µr′u + (1− µ)r′v)−
∑

i
λiri

= (µr′u + (1− µ)r′v)− (µru + (1− µ)rv) + (µru + (1− µ)rv)−
∑

i
λiri

> (µr′u + (1− µ)r′v)− (µru + (1− µ)rv)

(by the choice of µ, u, v)

= (µ(c′ur
′ + d′u) + (1− µ)(c′vr

′ + d′v))− (µ(cur + du) + (1− µ)(cvr + dv))

> (µ(c′ur
′ + d′u) + (1− µ)(c′vr

′ + d′v))− (µ(c′ur + d′u) + (1− µ)(c′vr + d′v))

(cir + di 6 c′ir + d′i due to optimality of original opponent strategy)

= (µc′u + (1− µ)c′v)(r
′ − r),
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i.e. (1− µc′u − (1− µ)c′v)(r
′ − r) > 0. By finiteness of rewards and the choice of

θ(s1), at least one of the return probabilities c′u, c
′
v is less than 1, and thus so is

µc′u + (1− µ)c′v, therefore r′ > r.
For static penalties, the fact that the new multi-strategy is no worse than

the old one is straightforward from the choice of θ′(s1), while dynamic penalties
are handled analogously to rewards.

A.7 Proof of Theorem 6.2 (Subset Ordering of Sets)

Theorem 6.2. For static penalties, we can construct θ′ such that, for each state
s ∈ S♦, if supp(θ′(s))={B1, B2}, then either B1 ⊆ B2 or B1 ⊆ B2.

Proof. To simplify the presentation of this proof, we first establish a useful
reduction from the problem of finding a sound multi-strategy in a game G =
〈S♦, S�, s, A, δ〉 to the classical controller synthesis problem (of finding a single
strategy) on an induced stochastic game Gi.

Induced game. For game G, the induced game Gi is built by adding interme-
diate states (s,X) indicating that the multi-strategy has chosen to allow the set
of actions X ⊆ A. More precisely, Gi = 〈Si♦, Si�, s, Ai, δi〉 where:

– Si� = S� ∪ {(s,X)|s ∈ S♦ ∧ ∅ ( X ⊆ A(s)} and Si♦ = S♦;

– Ai = A ∪ 2A and δi(s, a) is defined as follows:

• if s ∈ Si♦ and X ⊆ A, then δi(s,X) is the Dirac distribution on (s,X);
• if s = (s′, X) ∈ Si� and a ∈ X, then we define δi(s, a) = δ(s′, a).
• if s ∈ S�, then δi(s, a) = δ(s, a).

For a reward structure r on G, we define a corresponding reward structure ri

on Gi by ri((s′, X), a) = r(s′, a) for a ∈ X ⊆ A(s′) and ri(s′, a) = r(s′, a) for
s′ ∈ S�.

Lemma 1. There is a multi-strategy θ in G sound for property Rr>b[ C ] and

satisfying pensta(ψ, θ) 6 c if and only if there is a strategy σ for player ♦ in Gi

that is sound for Rr
i

>b[ C ] and satisfies
∑
s∈S♦

∑
B⊆2A σ(s,B)ψ(s,A(s) \B) 6 c.

Now we prove Theorem 6.2. In what follows, given a state t and action a we
use Eσ,πG,t,a(r) to denote

∑
s∈S δ(t, a)(s) · Eσ,πG,s (r).

Let σ be a strategy in the induced game, and fix s such that σ takes two
different actions B and C with probability pB > 0 and pC > 0 where B * C and
C * B, and their union with probability pBC . Let π be an optimal strategy for
player �, and let b and c be actions chosen by π in (s,B) and (s, C), respectively.
Without loss of generality we assume that π chooses b or c in (s,B∪C): observe
that if there was a better action b′ ∈ B available in (s,B ∪ C), we would get
that b is not an optimal action in (s,B), and similarly for c′ ∈ C. In particular,
if π(s,B ∪C) = b, then Eσ,πG,(s,B)(r) = Eσ,πG,(s,B∪C(r), and if π(s,B ∪C) = c, then

Eσ,πG,(s,C)(r) = Eσ,πG,(s,B∪C)(r).
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Suppose Eσ,πG,(s,B)(r) 6 Eσ,πG,(s,C)(r), we define σ′ by modifying σ and picking

B ∪ C with probability pBC + pB , and B with probability 0. Please note that
this operation cannot increase the local penalty in a state, therefore the overall
static penalty also does not increase. Subsequently, we argue that the π above is

also optimal against σ′. We show that for all t we have Eσ,πG,t (r) = Eσ
′,π

G,t (r). For a
sequence s0 ·a0 ·s1 ·a1 · · · sn of states and actions of G, let Θ(s0 ·a0 ·s1 ·a1 · · · sn)
be the set of all paths in Gi which are of the form:

s0 · w0 · s1 · w1 · · · sn,

where wi = ai if si ∈ S�, and wi = Xi · (si, Xi) · ai for some Xi ⊆ A otherwise.
By an induction on n one can show that the probability of Θ(s0 ·a0 ·s1 ·a1 · · · sn)
is equal under (σ, π) and (σ′, π), for all s0 · a0 · s1 · a1 · · · sn. The base step is
trivial, for the induction step we use the fact that π((s,B)) = π((s,B ∪C)) and
the re-definition of σ′.

From above we immediately get that for all states t and actions a we have

Eσ,πG,t,a(r) = Eσ
′,π

G,t,a(r). Hence for every state t, the action π(t) satisfies Eσ
′,π

G,t,π(t)(r) 6

mina∈A(t)E
σ′,π
G,t,a(r) since:

Eσ
′,π

G,t,π(t)(r) = Eσ,πG,t,π(t)(r) 6 min
a∈A(t)

Eσ,πG,t,a(r) = min
a∈A(t)

Eσ
′,π

G,t,a(r) .

This means that by changing its decision in one state π cannot improve, and so
it is optimal (this follows from the correctness of the policy iteration algorithm
for MDPs which obtains an optimal controller by changing decision in one state
at a time).

For Eσ,πG,(s,B)(r) > Eσ,πG,(s,C)(r), we proceed similarly by choosing B ∪ C with

probability pBC + pC , and C with probability 0.

A.8 Counterexample to Theorem 6.2 for Dynamic Penalties

As mentioned in Section 4.2, Theorem 6.2 does not hold for the case of dynamic
penalties. This is because, in this case, increasing the probability of allowing an
action can lead to an increased penalty if one of the successor states has a high
expected penalty. An example is shown in Fig. 6, for which we want to reach the
goal state s3 with probability at least 0.5.

s0 s1

s2

s3

s4

b

c

d

e

action penalty
b 0
c 1
d 0
e 1

Fig. 6. Counterexample for Theorem 6.2 in case of dynamic penalties.
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This implies θ(s0, {b})·θ(s1, {d})>0.5, and so θ(s0, {b})>0, θ(s1, {d})>0. If
θ satisfies the condition of Theorem 6.2, then θ(s0, {c}) = θ(s1, {e}) = 0,
so an opponent can always use b, forcing an expected penalty of θ(s0, {b}) +
θ(s1, {d}), for a minimal value of

√
2. However, the sound multi-strategy θ with

θ(s0, {b})=θ(s0, {c})=0.5 and θ(s1, {d})=1 achieves a dynamic penalty of just
1.

A.9 Proof of Theorem 7 (Approximations)

Theorem 7. Let θ be a sound multi-strategy. For any ε > 0, there is an M and a
sound multi-strategy θ′ of granularity M satisfying pent(ψ, θ

′)− pent(ψ, θ) 6 ε.
Moreover, for static penalties it suffices to take M = d

∑
s∈S,a∈A(s)

ψ(s,a)
ε e.

Proof. We deal with the cases of static and dynamic penalties separately.

Static penalties. Let s ∈ S and θ(s)(As,0) = q0, θ(s)(As,1) = q1 for As,0 ⊆
As,1 ⊆ A(s). Modify θ by rounding q0 up and q1 down to the nearest multiple of
1
M . The result is again sound (we increase the probability of the smaller set with a
possibly higher reward), and the penalty changes by at most 1

M

∑
a∈A(s) ψ(s, a).

Repeat for all s.

Dynamic penalties. Intuitively, the claim follows since by making small changes
to the multi-strategy, while not (dis)allowing any new actions, we only cause
small changes to the reward and penalty.

Let θ be a multi-strategy and, for s ∈ S, denote Rθ(s) the optimal reward
in s under θ. We have that Rθ(s) is the solution to the least fixpoint of the
equations:

Rθ(s) =
∑

B∈supp(θ(s))
θ(s)(B) min

a∈B
Rθa(s),

Rθa(s) = r(s, a) +
∑

t∈S
δ(s, a)(t) ·Rθ(t).

Fix a state t. By Theorem 6.1, we can assume (or replace θ such that) supp(θ(t)) =
{At,1, At,2} with mina∈At,1

Rθa(t) > mina∈At,2
Rθa(t). We have that Rθx(t) >

Rθ(t) for any multi-strategy θx defined by θx(t)(At,1) = θ(t)(At,1) + x and
θx(t)(At,2) = θ(t)(At,2) − x for some x > 0, and θx(s) = θ(s) for all s 6= t.
Thus, by increasing the probability of allowing At,1 in t the soundness of the
multi-strategy is preserved.

Further, for any strategy σ′ compliant with θx and any π, the penalty when
starting in t is equal to:

Eσ
′,π

G,t (ψ) = pen loc(ψ, θx, t) +
∑
a∈A

λ′(t)(a)
∑
t′∈S

δ(t, a)(t′) · (yσ
′,π
t′,t + zσ

′,π
t′,t ·E

σ′,π
G,t (ψ))

where λ′ = σ′ ∪ π, yσ
′,π
t′,t is the expected penalty incurred when starting from t′

before a visit to t, and zσ
′,π

t′,t is the probability of reaching t from t′ under σ′ and
π.
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There is a strategy σ compliant with θ which differs from σ′ only on t, where∑
a∈A |σ′(s, a)− σ(s, a)| 6 x. We have, for any π:

Eσ,πG,t (ψ) = pen loc(ψ, θ, t) +
∑
a∈A

λ(t, a)
∑
s∈S

δ(t, a)(s) · (yσ,πs,t + zσ,πs,t · E
σ,π
G,t (ψ))

> pen loc(ψ, θx, t)−x+
∑
a∈A

(λ′(t, a)−x)
∑
s∈S

δ(t, a)(s)·(yσ
′,π
s,t +zσ

′,π
s,t ·E

σ,π
G,t (ψ))

where λ = σ ∪ π and the rest is as above.
Thus:

Eσ
′,π

G,t (ψ) =
pen loc(ψ, θx, t) +

∑
a∈A λ

′(t)(a)
∑
t′∈S δ(t, a)(t′) · yσ

′,π
t′,t

1−
∑
a∈A λ

′(t)(a)
∑
t′∈S δ(t, a)(t′) · zσ′,πt′,t

Eσ,πG,t (ψ) >
pen loc(ψ, θx, t)− x+

∑
a∈A(λ′(t)(a)− x)

∑
t′∈S δ(t, a)(t′) · yσ

′,π
t′,t

1−
∑
a∈A(λ′(t)(a)− x)

∑
t′∈S δ(t, a)(t′) · zσ′,πt′,t

and so Eσ
′,π

G,t (ψ) − Eσ,πG,t (ψ) goes to 0 as x goes to 0. Hence, pendyn(ψ, θx) −
pendyn(ψ, θ) goes to 0 as x goes to 0.

The above gives us that for any error bound ε and a fixed state s there is x
such that we can modify the decision of θ in s by x, not violate the soundness
property and increase penalty by at most ε/|S|. We thus need to pick M such
that 1/M 6 x. To finish the proof, we repeat this procedure for every state s.
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