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In both quantum mechanics and corpus linguistics based on vector spaces, the notion of entanglement
provides a means for the various subsystems to communicate with each other. In this paper we
examine a number of implementations of the categorical framework of Coecke et al. [4] for natural
language, from an entanglement perspective. Specifically, our goal is to better understand in what
way the level of entanglement of the relational tensors (or the lack of it) affects the compositional
structures in practical situations. Our findings reveal that a number of proposals for verb construction
lead to almost separable tensors, a fact that considerably simplifies the interactions between the
words. We examine the ramifications of this fact, and we show that the use of Frobenius algebras
mitigates the potential problems to a great extent. Finally, we briefly examine a machine learning
method that creates verb tensors exhibiting a sufficient level of entanglement.

1 Introduction

Category theory in general and compact closed categories in particular provide a high level framework to
identify and study universal properties of mathematical and physical structures. Abramsky and Coecke
[1], for example, use the latter to provide a structural proof for a class of quantum protocols, essentially
recasting the vector space semantics of quantum mechanics in a more abstract way. This and similar
kinds of abstraction have made compact closed categories applicable to other fields with vector space
semantics, for the case of this paper, corpus linguistics. Here, Coecke et al.[4] used them to unify two
seemingly orthogonal semantic models of natural language: a syntax-driven compositional approach as
expressed by Lambek [15] and distributional models of meaning based on vector spaces. The latter
approach is capable of providing a concrete representation of the meaning of a word, by creating a
vector with co-occurrence counts of that word in a corpus of text with all other words in the vocabulary.
Distributional models of this form have been proved useful in many natural language processing tasks
[22, 17, 16], but in general they do not scale up to larger text constituents such as phrases and sentences.
On the other hand, the type-logical approaches to language as introduced in [15] are compositional but
unable to provide a convincing model of word meaning.

The unification of the two semantics paradigms is based on the fact that both a type logic expressed
as a pregroup [15] and finite dimensional vector spaces share a compact closed structure; so in prin-
ciple there exists a way to express a grammatical derivation as a morphism that defines mathematical
manipulations between vector spaces, resulting in a sentence vector. In [4], the solution was based on a
Cartesian product between the pregroup category and the category of finite dimensional vector spaces;
later this was recasted in a functorial passage from the former to the latter [19, 3, 10]. The general idea
behind any of these frameworks is that the grammatical type of each word determines the vector space
where the corresponding vector lives. Words with atomic types, such as nouns, are simple vectors living
in N. On the other hand, words with relational types, such as adjectives or verbs, live in tensor product
spaces of higher order. For instance, an intransitive verb will be an element of an order-2 space such as
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N⊗ S, whereas a transitive verb will live in N⊗ S⊗N. These tensors act on their arguments by tensor
contraction, a generalization of the familiar notion of matrix multiplication to higher order tensors.

Since every relational word is represented by a tensor, naturally entanglement becomes an impor-
tant issue in these models. Informally speaking, elements of tensor spaces which represent meanings
of relational words should be entangled to allow for a so called ‘flow of information’ (a terminology
borrowed from categorical quantum mechanics [1]) among the meanings of words in a phrase or sen-
tence. Otherwise, parts of the meaning of these words become isolated from the rest, leading to unwanted
consequences. An example would be that all sentences that have the same verb end up to get the same
meaning regardless of the rest of the context, and this is obviously not the case in language. Whereas
at least intuitively the above argument makes sense, in some of the language tasks we have been exper-
imenting with, non-entangled tensors have provided very good results. For example, in [8] Grefenstette
and Sadrzadeh provide results for verbs that are built from the outer product of their context vectors.
These results beat the state of the art of that time (obtained by the same authors in a previous paper [7])
by a considerable difference.

The purpose of the current paper is to provide a preliminary study of the entanglement in corpus
linguistics and to offer some explanation why phenomena such as the above have been the case: is
this a by-product of the task or the corpus or the specific concrete model? We work with a number
of concrete instantiations of the framework in sentence similarity tasks and observe their performances
experimentally from an entanglement point of view. Specifically, we investigate a number of models
based on the weighted relations method of [7], where a verb matrix is computed as the structural mixing
of all subject/object pairs with which it appears in the training corpus. We also test a model trained using
linear regression [2]. Our findings for the first case have been surprising. It turns out that, contrary to
intuition and despite the fact that the construction method should yield entangled matrices, the results are
very close to their rank-1 approximations, that is, they are in effect separable. We further investigate the
ramifications of this observation and try to explain the good practical predictions. We then experiment
with the linear regression model of [2] and show that the level of entanglement is much higher in the
verbs of this model. Finally, we look at a number of Frobenius variations of the weighted relation
models, such as the ones presented in [13] and a few new constructions exclusive to this paper. The
conclusions here are also surprising, but in a positive way. It seems that Frobenius models are able to
overcome the unwanted “no-flow” collapses of the separable verbs by generating a partial flow between
the verb and either its subject or its object, depending which dimension they are copying.

2 Quantizing the grammar

The purpose of the categorical framework is to map a grammatical derivation to some appropriate ma-
nipulation between vector spaces. In this section we will shortly review how this goal is achieved. Our
basic type logic is a pregroup grammar [15], built on the basis of a pregroup algebra. This is a partially
ordered monoid with unit 1, whose each element p has a left adjoint pl and a right adjoint pr. This means
that they satisfy the following inequalities:

pl · p≤ 1 p · pr ≤ 1 and 1≤ p · pl 1≤ pr · p (1)

A pregroup grammar is the pregroup freely generated over a set of atomic types, which for this paper
will be {n,s}. Here, type n refers to nouns and noun phrases, and type s to sentences. The atomic
types and their adjoints can be combined to create types for relational words. The type of an adjective,
for example, is n · nl , representing something that inputs a noun (from the right) and outputs another
noun. Similarly, the type of a transitive verb nr · s ·nl reflects the fact that verbs of this kind expect two
inputs, one noun at each side. A grammatical reduction then follows from the properties of pregroups
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and specifically the inequalities in (1) above. The derivation for the sentence ‘Happy kids play games’
has the following form:

(n ·nl) ·n · (nr · s ·nl) ·n = n · (nl ·n) ·nr · s · (nl ·n)≤ n ·1 ·nr · s ·1 = n ·nr · s≤ 1 · s = s

Categorically, a pregroup grammar conforms to the definition of a non-symmetric compact closed
category (to which we will refer as PregF ). Specifically, the inequalities in (1) correspond to the ε and
η morphisms of a compact closed category, given as follows:

ε
l : Al⊗A→ I ε

r : A⊗Ar→ I (2)

η
l : I→ A⊗Al

η
r : I→ Ar⊗A (3)

Hence the above grammatical reduction becomes the following morphism:

(εr
n⊗1s)◦ (1n⊗ ε

l
n⊗1nr·s⊗ ε

l
n) (4)

Let us now refer to the category of finite-dimensional vector spaces and linear maps over R as
FVectW , where W is our basic distributional vector space with an orthonormal basis {wi}i. This cat-
egory is again compact closed (although a symmetric one, since W ∼= W ∗), with the ε and η maps given
as follows:

ε
l = ε

r : W ⊗W → R :: ∑
i j

ci j(−→wi⊗−→w j) 7→∑
i j

ci j〈−→wi |−→w j〉 (5)

η
l = η

r : R→W ⊗W :: 1 7→∑
i

−→wi⊗−→wi (6)

The transition from a pregroup reduction to a morphism between vector spaces is achieved through a
strongly monoidal functor F : PregF → FVectW which preserves the compact structure between the two
categories, that is we have F (Al) = F (A)l and F (Ar) = F (A)r. Further, since FVectW is symmetric
and W has a fixed basis, we have that F (A)r = F (A)l ∼= F (A). As motivated in previous work [13], we
assume that F assigns the basic vector space W to both of the atomic types, that is we have:

F (n) = F (s) = W (7)

The partial orders between the atomic types are mapped to linear maps from W to W by functoriality.
The adjoints of atomic types are also mapped to W , whereas the complex types are mapped to tensor
products of vector spaces:

F (n ·nl) = F (nr · s) = W ⊗W F (nr · s ·nl) = W ⊗W ⊗W (8)

We are now in position to define the meaning of a sentence w1w2 . . .wn with type reduction α as
follows:

F (α)(−→w1⊗−→w2⊗ . . .⊗−→wn) (9)

For example, the meaning of the sentence ‘happy kids play games’, which has the grammatical
reduction (4), is computed as follows:

F
[
(εr

n⊗1s)◦ (1n⊗ ε
l
n⊗1nr·s⊗ ε

l
n)
](

happy⊗
−−→
kids⊗ play⊗−−−→games

)
=

(εW ⊗1W )◦ (1W ⊗ εW ⊗1W⊗W ⊗ εW )
(

happy⊗
−−→
kids⊗ play⊗−−−→games

)
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The above categorical computations simplify to the following form:

(happy×
−−→
kids)T× play×−−−→games (10)

where symbol × denotes tensor contraction and the above is a vector living in our basic vector space W .

3 Pictorial calculus

A

f A

B

Compact closed categories are complete with regard to a pictorial calculus [14, 23],
which can be used for visualizing the derivations and simplifying the computations. We
introduce the fragment of calculus that is relevant to the current paper. A morphism
f : A→ B is depicted as a box with incoming and outgoing wires representing the
objects; the identity morphism 1A : A→ A is a straight line.

V V W V W Z

Recall that the objects of FVectW are vector spaces. However, for
our purposes it is also important to access individual vectors within a
vector space. In order to do that, we represent a vector −→v ∈ V as a
morphism −→v : I→ V . The unit object is depicted as a triangle, while
the number of wires emanating from it denotes the order of the corre-
sponding tensor. A

A C f

Bf g

h
A B B D

C

Tensor products of objects and morphisms are depicted by jux-
taposing the corresponding diagrams side by side. Composition, on
the other hand, is represented as a vertical superposition. For exam-
ple, from left to right, here are the pictorial representations of the
tensor of a vector in A with a vector in B, a tensor of morphisms
f ⊗ g : A⊗C → B⊗D, and a composition of morphisms h ◦ f for
f : A→ B and h : B→C.

The ε-maps are represented as cups (∪) and the η-maps as caps (∩). Equations such as (ε l
A⊗1Ar)◦

(1Al ⊗ηr
A) = 1A now get an intuitive visual justification:

Al A Al A Ar = A
A Ar

happy kids play games

W W W W W W W

We are now in position to provide a diagram for the meaning of the
sentence ‘happy kids play games’ (right).

We conclude this section with one more addition to our calculus.
As in most quantum protocols, some times the flow of information in
linguistics requires elements of classical processing; specifically, we
will want the ability to copy and delete information, which can be pro-
vided by introducing Frobenius algebras. In FVect, any vector space V with a fixed basis {−→vi } has a
Frobenius algebra over it given by Eqs. 11 below.

∆ V µ V V

V V V

∆ ::−→vi 7→ −→vi ⊗−→vi ι ::−→vi 7→ 1 (11)

µ ::−→vi ⊗−→v j 7→ δi j
−→vi :=

{ −→vi i = j
−→
0 i 6= j

ζ :: 1 7→∑
i

−→vi
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4 Entanglement in quantum mechanics and linguistics

Given two non-interacting quantum systems A and B, where A is in state |ψ〉A and B in state |ψ〉B, we
denote the state of the composite system A⊗B by |ψ〉A⊗|ψ〉B. States of this form that can be expressed
as the tensor product of two state vectors are called product states, and they constitute a special case of
separable states. In general, however, the state of a composite system is not necessarily a product state
or even a separable one. Fixing bases {|i〉A} and {| j〉B} for the vector spaces of the two states, a general
composite state (separable or not) is denoted as follows:

|ψ〉AB = ∑
i j

ci j|i〉A⊗| j〉B (12)

V W

In the case of a pure quantum state, |ψ〉AB is separable only if it can be expressed as the
tensor product of two vectors; otherwise it is entangled. In a similar way, the tensor of
a relational word is separable if it is equal to the tensor product of two vectors. In our
graphical calculus, these objects are depicted by the juxtaposition of two or more triangles.

V W

In general, a tensor is not separable if it is a linear combination of many separable
tensors. The number of separable tensors needed to express the original tensor is equal to
the tensor rank. Graphically, a tensor of this form is shown as a single triangle with two or
more legs.

5 Consequences of separability

In categorical quantum mechanics terms, entangled states are necessary to allow the flow of information
between the different subsystems. In this section we show that the same is true for linguistics. Consider
the diagram of our example derivation, where all relational words are now represented by separable
tensors (in other words, no entanglement is present):

happy kids play games

W W W W W W W

In this version, the ε-maps are completely detached from the components of the relational tensors that
carry the results (left-hand wire of the adjective and middle wire of the verb); as a consequence, flow
of information is obstructed, all compositional interactions have been eliminated, and the meaning of
the sentence is reduced to the middle component of the verb (shaded vector) multiplied by a scalar, as
follows (superscripts denote the left-hand, middle, and right-hand components of separable tensors):

〈
−−−→
happy(r)|

−−→
kids〉〈

−−−→
happy(l)|

−−→
play(l)〉〈

−−→
play(r)|−−−→games〉

−−→
play(m)

Depending on how one measures the distance between two sentences, this is a very unwelcome
effect, to say the least. When using cosine distance, the meaning of all sentences with ‘play’ as the
verb will be exactly the same and equal to the middle component of the ‘play’ tensor. For example, the
sentence “trembling shadows play hide-and-seek” will have the same meaning as our example sentence.
Similarly, the comparison of two arbitrary transitive sentences will be reduced to comparing just the
middle components of their verb tensors, completely ignoring any surrounding context. The use of
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Structure Simplification Cos-measured result

adjective-noun ad j×−−→noun = (
−→
ad j(l)⊗

−→
ad j(r))×−−→noun = 〈

−→
ad j(r)|−−→noun〉 ·

−→
ad j(l)

−→
ad j(l)

intrans. sentence
−−→
sub j× verb =

−−→
sub j× (

−−→
verb(l)⊗

−−→
verb(r)) = 〈

−−→
sub j|

−−→
verb(l)〉 ·

−−→
verb(r) −−→

verb(r)

verb-object verb×
−→
ob j = (

−−→
verb(l)⊗

−−→
verb(r))×

−→
ob j = 〈

−−→
verb(r)|

−→
ob j〉 ·

−−→
verb(l) −−→

verb(l)

transitive sentence

−−→
sub j× verb×

−→
ob j =

−−→
sub j× (

−−→
verb(l)⊗

−−→
verb(m)⊗

−−→
verb(r))×

−→
ob j =

〈
−−→
sub j|

−−→
verb(l)〉 · 〈

−−→
verb(r)|

−→
ob j〉 ·

−−→
verb(m)

−−→
verb(m)

Table 1: Consequences of separability in various grammatical structures. Superscripts (l), (m) and (r)
refer to left-hand, middle, and right-hand component of a separable tensor

Euclidean distance instead of cosine would slightly improve things, since now we would be at least able
to also detect differences in the magnitude between the two middle components. Unfortunately, this
metric has been proved not very appropriate for distributional models of meaning, since in the vastness
of a highly dimensional space every point ends up to be almost equidistant from all the others. As a
result, most implementations of distributional models prefer the more relaxed metric of cosine distance
which is length-invariant. Table 1 presents the consequences of separability in a number of grammatical
constructs.

6 Concrete models for verb tensors

Whereas for the vector representations of atomic words of language one can use the much-experimented-
with methods of distributional semantics, the tensor representations of relational words is a by-product
of the categorical framework whose concrete instantiations are still being investigated. A number of
concrete implementations have been proposed so far, e.g. see [7, 13, 9, 12]. These constructions vary
from corpus-based methods to machine learning techniques. One problem that researchers have had to
address is that tensors of order higher than 2 are difficult to create and manipulate. A transitive verb, for
example, is represented by a cuboid living in W⊗3; if the cardinality of our basic vector space is 1000
(and assuming a standard floating-point representation of 8 bytes per real number), the space required
for just a single verb becomes 8 gigabytes. A workaround to this issue is to initially create the verb as a
matrix, and then expand it to a tensor of higher order by applying Frobenius ∆ operators–that is, leaving
one or more dimensions of the resulting tensor empty (filled with zeros).

A simple and intuitive way to create a matrix for a relational word is to structurally mix the arguments
with which this word appears in the training corpus [7]. For a transtive verb, this would be given us:

verb = ∑
i
(
−−−−−→
sub jecti⊗

−−−−→
ob jecti) (13)

where
−−−−−→
sub jecti and

−−−−→
ob jecti are the vectors of the subject/object pair for the ith occurrence of the verb

in the corpus. The above technique seems to naturally result in an entangled matrix, assuming that the
family of subject vectors exhibit a sufficient degree of linear independence, and the same is true for
the family of object vectors. Compare this to a straightforward variation which naturally results in a
separable matrix, as follows:

verb =

(
∑

i

−−−−−→
sub jecti

)
⊗

(
∑

i

−−−−→
ob jecti

)
(14)
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In what follows, we present a number of methods to embed the above verbs from tensors of order 2
to tensors of higher order, as required by the categorical framework.

Relational In [7], the order of a sentence space depends on the arity of the
verb of the sentence; for a transitive sentence the result will be a matrix, for an
intransitive one it will be a vector, and so on. For the transitive case, the authors
expand the original verb matrix to a tensor of order 4 (since now S = N⊗N, the
original N ⊗ S⊗N space becomes N⊗4) by copying both dimensions using Frobenius ∆ operators in
the fashion shown in the diagram (right). Linear-algebraically, the meaning of a transitive sentence is a
matrix living in W ⊗W obtained by the following equation:

sub j verb ob j = (sub j⊗ob j)� verb (15)

where the symbol � denotes element-wise multiplication.

Frobenius The above method has the limitation that sentences of different structures live in spaces of
different tensor orders, so a direct comparison thereof is not possible. As a solution, Kartsaklis et al.
[13] propose the copying of only one dimension of the original matrix, which leads to the following two
possibilities:

The result is now a vector, computed in the following way, respectively for each case:

Copy-subject:
−−−−−−−−−→
sub j verb ob j =

−−→
sub j� (verb×

−→
ob j) (16)

Copy-object:
−−−−−−−−−→
sub j verb ob j =

−→
ob j� (verb

T×
−−→
sub j) (17)

Each one of the vectors obtained from Eqs. 16 and 17 above addresses a partial interaction of the
verb with each argument. It is reasonable then to further combine them in order to get a more complete
representation of the verb meaning (and hence the sentence meaning). We therefore define three more
models, in which this combination is achieved through vector addition (Frobenius additive), element-
wise multiplication (Frobenius multiplicative), and tensor product (Frobenius tensored) of the above.

We conclude this section with two important comments. First, although the use of a matrix for
representing a transitive verb might originally seem as a violation of the functorial relation with a pre-
group grammar, this is not the case in practice; the functorial relation is restored through the use of the
Frobenius operators, which produce a tensor of the correct order, as required by the grammatical type.
Furthermore, this notion of “inflation” has the additional advantage that can also work from a reversed
perspective: a matrix created by Eq. 13 can be seen as an order-3 tensor originally in N⊗S⊗N where
the S dimension has been discarded by a ζ Frobenius map. Using this approach, Sadrzadeh and col-
leagues provide intuitive analyses for wh-movement phenomena and discuss compositional treatments
of constructions containing relative pronouns [20, 21].

Finally, we would like to stress out the fact that, despite of the actual level of entanglement in our
original verb matrix created by Eq. 13, the use of Frobenius operators as described above equips the
inflated verb tensors with an extra level of entanglement in any case. As we will see in Sect. 8 when
discussing the results of the experimental work, this detail will be proven very important in practice.
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7 Experiments

7.1 Creating a semantic space

Our basic vector space is trained from the ukWaC corpus [5], originally using as a basis the 2,000 content
words with the highest frequency (but excluding a list of stop words as well as the 50 most frequent
content words since they exhibit low information content). As context we considered a 5-word window
from either side of the target word, whereas for our weighting scheme we used local mutual information
(i.e. point-wise mutual information multiplied by raw counts). The vector space was normalized and
projected onto a 300-dimensional space using singular value decomposition (SVD). These choices are
based on our best results in a number of previous experiments [12, 11].

7.2 Detecting sentence similarity

In this section we test the various compositional models of Sect. 6 in two similarity tasks involving pairs
of transitive sentences; for each pair, we construct composite vectors for the two sentences, and then we
measure their semantic similarity using cosine distance and Euclidean distance. We then evaluate the
correlation of each model’s performance with human judgements, using Spearman’s ρ . In the first task
[7], the sentences to be compared are constructed using the same subject and object and semantically
correlated verbs, such as ‘spell’ and ‘write’; for example, ‘pupils write letters’ is compared with ‘pupils
spell letters’. The dataset consists of 200 sentence pairs.

We are especially interested in measuring the level of entanglement in our verb matrices as these
are created by Eq. 13. In order to achieve that, we compute the rank-1 approximation of all verbs
in our dataset. Given a verb matrix verb, we first compute its SVD so that verb = UΣVT, and then
we approximate this matrix by using only the highest eigenvalue and the related left and right singular
vectors, so that verbR1 = U1Σ1VT

1 . We compare the composite vectors created by the original matrix
(Eq. 13), their rank-1 approximations, and the results of the separable model of Eq. 14. We also use a
number of baselines: in the ‘verbs-only’ model, we compare only the verbs (without composing them
with the context), while in the additive and multiplicative models we construct the sentence vectors by
simply adding and element-wise multiplying the distributional vectors of their words.

The results (Table 2) revealed a striking similarity in the performances of the entangled and separable
versions. Using cosine distance, all three models (relational, rank-1 approximation, separable model)
have essentially the same behaviour; with Euclidean distance, the relational model performs again the

Model ρ with cos ρ with Eucl.
Verbs only 0.329 0.138
Additive 0.234 0.142
Multiplicative 0.095 0.024
Relational 0.400 0.149
Rank-1 approx. of relational 0.402 0.149
Separable 0.401 0.090
Copy-subject 0.379 0.115
Copy-object 0.381 0.094
Frobenius additive 0.405 0.125
Frobenius multiplicative 0.338 0.034
Frobenius tensored 0.415 0.010
Human agreement 0.60

Table 2: Results for the first dataset (same subjects/objects, semantically related verbs)
.
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same as its rank-1 approximation, while this time the separable model is lower.
The inevitable conclusion that Eq. 13 actually produces a separable matrix was further confirmed by

an additional experiment: we calculated the average cosine similarity of the original matrices with their
rank-1 approximations, a computation that revealed a similarity as high as 0.99. Since this result might
obviously depend on the form of the noun vectors used for creating the verb matrix, this last experiment
was repeated with a number of variations of our basic vector space, getting in every case similarities
between verb matrices and their rank-1 approximations higher than 0.97. The observed behaviour can
only be explained with the presence of a very high level of linear dependence between the subject vectors
and between the object vectors. If every subject vector can be expressed as a linear combination of a small
number of other vectors (and the same is true for the family of object vectors), then this would drastically
reduce the entanglement of the matrix to the level that it is in effect separable.

Our observations are also confirmed in the second sentence similarity task. Here, we use a variation
of one of the datasets in [12], consisting of 108 pairs of transitive sentences. The difference with our first
task is that now the sentences of a pair are unrelated in a word level, i.e. subjects, objects, and verbs are
all different. The results for this second experiment are presented in Table 3.

Model ρ with cos ρ with Eucl.
Verbs only 0.449 0.392
Additive 0.581 0.542
Multiplicative 0.287 0.109
Relational 0.334 0.173
Rank-1 approx. of relational 0.333 0.175
Separable 0.332 0.105
Copy-subject 0.427 0.096
Copy-object 0.198 0.144
Frobenius additive 0.428 0.117
Frobenius multiplicative 0.302 0.041
Frobenius tensored 0.332 0.042
Human agreement 0.66

Table 3: Results for the second dataset (different subjects, objects and verbs)
.

As a general observation about the performance of the various models in the two tasks, we note the
high scores achieved by the Frobenius models when one uses the preferred method of measurement,
that of cosine similarity. Especially the Frobenius additive has been proved to perform better than
the Relational model, having the additional advantage that it allows comparison between sentences of
different structures (since every sentence vector lives in W ).

8 Discussion

The experiments of Sect. 7 revealed an unwelcome property of a method our colleagues and we have
used in the past for creating verb tensors in the context of compositional models [7, 13, 12]. The fact that
the verb matrix is in effect separable introduces a number of simplifications in the models presented in
Sect. 6. More specifically, the Relational model of [7] is reduced to the following:

= sub j verb ob j = (
−−→
sub j�

−−→
verb(l))⊗ (

−−→
verb(r)�

−→
ob j)

Furthermore, the Frobenius models of [13] get these forms:
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= =

which means, for example, that the actual equation behind the successful Frobenius additive model is

−−−−−−−−−→
sub j verb ob j = (

−−→
sub j�

−−→
verb(l))+(

−−→
verb(r)�

−→
ob j) (18)

Despite the simplifications presented above, note that none of these models degenerates to the level
of producing “constant” vectors or matrices, as argued for in Sect. 5. Indeed, especially in the first task
(Table 2) the Frobenius models present top performance, and the relational models follow closely. The
reason behind this lies in the use of Frobenius ∆ operators for copying the original dimensions of the
verb matrix, a computation that equipped the fragmented system with flow, although not in the originally
intended sense. The compositional structure is still fragmented into two parts, but at least now the copied
dimensions provide a means to deliver the results of the two individual computations that take place,
one for the left-hand part of the sentence and one for the right-hand part. Let us see what happens when
we use cosine distance in order to compare the matrices of two transitive sentences created with the
Relational model (the separable version of a verb matrix verb is denoted by

−−→
verb(l)⊗

−−→
verb(r)):〈

sub j1 verb1 ob j1
∣∣sub j2 verb2 ob j2

〉
=〈

(
−−→
sub j1�

−−→
verb(l)

1 )⊗ (
−−→
verb(r)

1 �
−→
ob j1)

∣∣∣(−−→sub j2�
−−→
verb(l)

2 )⊗ (
−−→
verb(r)

2 �
−→
ob j2)

〉
=〈−−→

sub j1�
−−→
verb(l)

1

∣∣∣−−→sub j2�
−−→
verb(l)

2

〉〈−−→
verb(r)

1 �
−→
ob j1

∣∣∣−−→verb(r)
2 �
−→
ob j2

〉
As also computed and pointed out in [6], the two sentences are broken up to a left-hand part and

a right-hand part, and two distinct comparisons take place. As long as we compare sentences of the
same structure, as we did here, this method is viable. On the other hand, the Frobenius models and
their simplifications such as the one in (18) do not have this restriction; in principle, all sentences are
represented by vectors living in the same space, so any kind of comparison is possible. In case, however,
we do compare sentences of the same structure, these models have the additional advantage that also
allow comparisons between different sentence parts; this can be seen in the dot product of two sentences
created by Eq. 18, which gets the following form:〈−−→

sub j1�
−−→
verb(l)

1

∣∣∣−−→sub j2�
−−→
verb(l)

2

〉
+
〈−−→

sub j1�
−−→
verb(l)

1

∣∣∣−−→verb(r)
2 �
−→
ob j2

〉
+〈−−→

verb(r)
1 �
−→
ob j1

∣∣∣−−→sub j2�
−−→
verb(l)

2

〉
+
〈−−→

verb(r)
1 �
−→
ob j1

∣∣∣−−→verb(r)
2 �
−→
ob j2

〉
9 Using linear regression for entanglement

Corpus-based methods for creating tensors of relational words, such as the models presented so far in this
paper, are intuitive and easy to implement. As our experimental work shows, however, this convenience
comes with a price. In practice, one would expect that more robust machine learning techniques would
produce more reliable tensor representations for composition.

In this section we apply linear regression (following [2]) in order to train verb matrices for a variation
of our second experiment, in which we compare elementary verb phrases of the form verb-object [18] (so
the subjects are dropped). In order to create a matrix for, say, the verb ‘play’, we first collect all instances
of the verb occurring with some object in the training corpus, and then we create non-compositional
holistic vectors for these elementary verb phrases following exactly the same methodology as if they
were words. We now have a dataset with instances of the form 〈

−−→
ob ji,

−−−−−−→
play ob ji〉 (e.g. the vector of ‘flute’
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Model ρ with cos ρ with Eucl.
Verbs only 0.331 0.267
Holistic verb-phrase vectors 0.403 0.214
Additive 0.379 0.385
Multiplicative 0.301 0.229
Linear regression 0.349 0.144
Rank-1 approximation of LR matrices 0.119 0.082
Human agreement 0.55

Table 4: Results for the verb-phrase similarity task

paired with the holistic vector of ‘play flute’, and so on), that can be used to train a linear regression model
in order to produce an appropriate matrix for verb ‘play’. The premise of a model like this is that the
multiplication of the verb matrix with the vector of a new object will produce a result that approximates
the distributional behaviour of all these elementary two-word exemplars used in training. For a given
verb, this is achieved by using gradient descent in order to minimize the total error between the observed
vectors and the vectors predicted by the model, expressed by the following quantity:

1
2m

(
∑

i
verb×

−−−→
ob ject i−

−−−−−−−−→
verb ob jecti

)2

(19)

where m is the number of training instances. The average cosine similarity between the matrices we
got from this method and their rank-1 approximation was only 0.48, showing that in general the level of
entanglement produced by this method is reasonably high. This is also confirmed by the results in Table
4; the rank-1 approximation model presents the worst performance, since, as you might recall from the
discussion in Sect. 5, separability here means that every verb-object composition is reduced to the left
component of the verb matrix, completely ignoring the interaction with the object.

10 Conclusion
The current study takes a closer look to an aspect of tensor-based compositional models of meaning that
so far had escaped the attention of researchers. The discovery that a number of concrete instantiations of
the categorical framework proposed in [4] produce relational tensors that are in effect separable stresses
the necessity of similar tests for any linear model that follows the same philosophy. Another contribu-
tion of this work was that it showed this is not necessarily a bad thing. The involvement of Frobenius
operators in the creation of verb tensors equips the compositional structure with the necessary flow, so
that a comparison between two sentence vectors can be still carried out between individual parts of each
sentence. Therefore, approaches such as the Frobenius additive model proposed in this paper can be still
considered as viable and “easy” alternatives to more robust machine learning techniques, such as the
gradient optimization technique discussed in Sect. 9.

References
[1] Samson Abramsky & Bob Coecke (2004): A Categorical Semantics of Quantum Protocols. In: 19th Annual

IEEE Symposium on Logic in Computer Science, pp. 415–425.

[2] M. Baroni & R. Zamparelli (2010): Nouns are Vectors, Adjectives are Matrices. In: Proceedings of Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP).

[3] B. Coecke, E. Grefenstette & M. Sadrzadeh (2013): Lambek vs. Lambek: Functorial Vector Space Semantics
and String Diagrams for Lambek Calculus. Annals of Pure and Applied Logic. Available at http://arxiv.
org/abs/1302.0393.

http://arxiv.org/abs/1302.0393
http://arxiv.org/abs/1302.0393


12 A Study of Entanglement in a Categorical Framework of Natural Language

[4] B. Coecke, M. Sadrzadeh & S. Clark (2010): Mathematical Foundations for Distributed Compositional
Model of Meaning. Lambek Festschrift. Linguistic Analysis 36, pp. 345–384.

[5] Adriano Ferraresi, Eros Zanchetta, Marco Baroni & Silvia Bernardini (2008): Introducing and evaluating
ukWaC, a very large web-derived corpus of English. In: Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google, pp. 47–54.

[6] E. Grefenstette & M. Sadrzadeh: Concrete Models and Empirical Evaluations for the Categorical Composi-
tional Distributional Model of Meaning. Computational Linguistics. To appear.

[7] E. Grefenstette & M. Sadrzadeh (2011): Experimental Support for a Categorical Compositional Distribu-
tional Model of Meaning. In: Proceedings of Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

[8] E. Grefenstette & M. Sadrzadeh (2011): Experimenting with Transitive Verbs in a DisCoCat. In: Proceedings
of the 2011 EMNLP Workshop on Geometric Models of Natural Language Semantics.

[9] Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh Sadrzadeh & Marco Baroni (2013):
Multi-Step Regression Learning for Compositional Distributional Semantics. In: Proceedings of the 10th
International Conference on Computational Semantics (IWCS 2013). Available at http://arxiv.org/
abs/1301.6939.

[10] D. Kartsaklis, M. Sadrzadeh, S. Pulman & B. Coecke (2014): Reasoning about Meaning in Natural Language
with Compact Closed Categories and Frobenius Algebras. In J. Chubb, A. Eskandarian & V. Harizanov,
editors: Logic and Algebraic Structures in Quantum Computing and Information, Association for Symbolic
Logic Lecture Notes in Logic, Cambridge University Press.

[11] Dimitri Kartsaklis, Nal Kalchbrenner & Mehrnoosh Sadrzadeh (2014): Resolving Lexical Ambiguity in Ten-
sor Regression Models of Meaning. In: Proceedings of the 52th Annual Meeting of the Association for
Computational Linguistics (ACL): Short Papers, Baltimore, USA. To appear.

[12] Dimitri Kartsaklis & Mehrnoosh Sadrzadeh (2013): Prior Disambiguation of Word Tensors for Constructing
Sentence Vectors. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (EMNL), Seattle, USA.

[13] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh & Stephen Pulman (2012): A Unified Sentence Space for Categori-
cal Distributional-Compositional Semantics: Theory and Experiments. In: Proceedings of 24th International
Conference on Computational Linguistics (COLING 2012): Posters, The COLING 2012 Organizing Com-
mittee, Mumbai, India, pp. 549–558.

[14] G Maxwell Kelly (1972): Many-Variable Functorial Calculus (I). In G.M. Kelly, M. Laplaza, G. Lewis &
S. MacLane, editors: Coherence in categories, Springer, pp. 66–105.

[15] J. Lambek (2008): From Word to Sentence. Polimetrica, Milan.
[16] T. Landauer & S. Dumais (1997): A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of

Acquision, Induction, and Representation of Knowledge. Psychological Review.
[17] C.D. Manning, P. Raghavan & H. Schütze (2008): Introduction to Information Retrieval. Cambridge Univer-

sity Press.
[18] Jeff Mitchell & Mirella Lapata (2010): Composition in Distributional Models of Semantics. Cognitive Sci-

ence 34(8), pp. 1388–1439.
[19] A. Preller & M. Sadrzadeh (2010): Bell States and Negative Sentences in the Distributed Model of Mean-

ing. In P. Selinger B. Coecke, P. Panangaden, editor: Electronic Notes in Theoretical Computer Science,
Proceedings of the 6th QPL Workshop on Quantum Physics and Logic, University of Oxford.

[20] Mehrnoosh Sadrzadeh, Stephen Clark & Bob Coecke (2013): The Frobenius Anatomy of Word Meanings I:
Subject and Object Relative Pronouns. Journal of Logic and Computation 23(6), pp. 1293–1317.

[21] Mehrnoosh Sadrzadeh, Stephen Clark & Bob Coecke (2014): The Frobenius Anatomy of Word Meanings II:
Possessive Relative Pronouns. Journal of Logic and Computation. To appear.

[22] H. Schütze (1998): Automatic Word Sense Discrimination. Computational Linguistics 24, pp. 97–123.
[23] Peter Selinger (2011): A Survey of Graphical Languages for Monoidal Categories. In Bob Coecke, editor:

New structures for physics, Springer, pp. 289–355.

http://arxiv.org/abs/1301.6939
http://arxiv.org/abs/1301.6939

	Introduction
	Quantizing the grammar
	Pictorial calculus
	Entanglement in quantum mechanics and linguistics
	Consequences of separability
	Concrete models for verb tensors
	Experiments
	Creating a semantic space
	Detecting sentence similarity

	Discussion
	Using linear regression for entanglement
	Conclusion

