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Abstract—Technology is present in every area of our lives
and, for many, life without it has become unthinkable. As
a consequence of this dependence and the extent to which
technology devices (computers, tablets and smartphones) are
being used for work and social activities, a clear coupling between
devices and their owners can now be observed. By coupling,
we specifically refer to the fact that information present on a
person’s device, be it user-generated or created by the native
OS, can produce great insight into their life. In this paper, we
look to exploit this coupling to investigate whether connections
between technology devices recorded in system log-files, can be
used to make inferences about the social relationships between
device owners. A key motivation here is to better understand
and elucidate the privacy risks associated with the digital
footprints that we as humans (often inadvertently) create. Our
work draws upon Social Network Analysis and basic Computer
Forensics to develop and achieve the inference goals. From our
preliminary experimentation, we demonstrate that human social
relationships can indeed be inferred even within our limited
initial scope. To further investigate the level of privacy exposure
from technology-level links, we outline a more comprehensive
plan of experimentation that will be conducted in future work.

Keywords-Privacy, technology coupling, social network analy-
sis, forensics, device and systems logs, network visualisation

I. INTRODUCTION

We live in a world built on technology. At work, we can
see it in everything from the traditional computer workstations
we use, through to the new smartcards adopted to streamline
identification and authentication. In the social arena, technol-
ogy has become essential as well, especially due to the ease of
communication that it facilitates with family and friends across
the globe. Recent surveys further evidence the proliferation
of technology devices, as they estimate that in some cultures
around 11 hours per day are spent using digital media of
some sort [1]. There are two factors that have undoubtedly
contributed to this growth. The first factor is the Internet and
the worldwide connectivity it enables, and the second factor
is the mobility of ‘smart’ devices such as phones and tablets,
which allow online and offline use practically anywhere.

As these technology devices are increasingly being used
to support and enrich people’s lives, a very close coupling
between devices and their owners has been emerging. Cou-
pling here, refers specifically to the fact that information
present on a person’s device, be it user-generated or created by
the native Operating System (OS), can produce great insight
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into their life. Examples of information generally collectable
from technology metadata includes WiFi networks previously
connected to, places visited, and languages device owners
use [2–4]. In some ways, one might regard these devices
as analogous to passive monitors or loggers that capture and
store a rich set of metadata about their owners. This metadata
can span: the owner’s system preferences; applications and
services that are accessed; when and how long devices are in
use; current and historic device-location data; and information
about other devices that were communicated with.

The aim and novelty of this paper therefore is to consider
owner-device coupling in more detail, with special focus on
investigating whether the metadata generated by devices can be
used to make inferences about the social relationships between
their owners. By social relationships, we refer to offline
associations between individuals, and the features of those
associations including strength, and any temporal and spacial
constraints. This work expands on research into individual’s
digital footprints (e.g., [2,5,6]) to look at connections across
devices and what they can reveal about social relationships.
A key objective for us is to better understand the range of
privacy risks accompanying the increasing use of technology.

To achieve our goals, we first sought insight from the
Computer Forensics domain (and articles such as Ref. [7, 8])
to determine exactly what metadata might be general available
on devices and how easy it would be to gather. Our assessment
led us to the consideration of system log-files (e.g., [9,10]) as
these provided an ideal balance between content richness and
availability of data at this stage of our research. Having iden-
tified logs as an informative source of data, we then analysed
their parameters to determine exactly what log entries might
be most useful to our task of inferring social relationships
between device owners. Once this data was identified, we
reflected on the use of Social Network Analysis (SNA) [11] to
elucidate relationships between a set of devices that had this
data available. SNA can be described as a set of approaches
that allow the study of links between elements (e.g., people,
devices, or things). The idea, therefore, was that if we could
gather meaningful log data from a number of devices, then
we might be able to use SNA techniques to quickly spot
technology-level connections and links, which may allow
further inferences to be made about the relationships between
the owners of those devices.

The remainder of this paper is structured as follows: Sec-
tion II reviews the literature related to our research with



To be published in the proceedings of the 12th International Conference on Privacy‚ Security and Trust (PST-2014) 



special focus on the inferences pertaining to identity and social
relationships. In Section III, we present a brief history of
SNA, discuss what useful information might be discoverable
from technology-device logs, and then outline our proposed
approach to using such logs to make inferences. Section IV
introduces the preliminary experiment that was conducted
including the main hypotheses tested, while Section V presents
our analysis and the current results. We then conclude the
paper in Section VI, and outline the more comprehensive
experiment that will be the basis of our immediate future work.

II. RELATED WORK

There is an enormous amount of data generated by individu-
als in modern-day society. This can be seen in everything from
email traffic and instant messaging, to online social networks
and dedicated lifeloggers (e.g., Saga [12]). In addition to this
intentionally created data, unknown to many there is also a
significant quantity of data and metadata being created on our
behalf simply by the use of technologies. Recent articles have
discussed this in depth while highlighting the many benefits
(e.g., in personalisation and knowledge discovery) and privacy
concerns (e.g., misuse of metadata and unfair targeting) sur-
rounding this ever-increasing pool of data [13–15].

To give an example, consider the case of a photograph
taken with smartphone. To the layman, this captures an image
of a scene and when it was shot, but to the trained eye, a
photograph file also stores camera make and model, device
type (e.g., iPhone), camera settings, location where the photo
was taken (if geo-tagging was enabled), and even the saved
name and address of the camera owner (this is unlikely to
be the case for smartphones, but is more probable with high-
spec cameras) [16]. This metadata is automatically added by
devices, often without the owner’s knowledge. Assuming the
individual were then to post the photograph online, they would
be sharing potentially sensitive identity data and would be
oblivious to it; we do note, however, that some sites (e.g.,
Facebook) strip metatadata to reduce file size. This highlights
some of the many privacy risks associated with the use of
these devices and the unchecked publishing of information;
further details are available in several articles (e.g., [17,18]).

The topics of (systems) fingerprinting and user profiling are
also of interest to our research. In fingerprinting, the general
aim is to use certain data or properties of a system or device
to allow it to be uniquely identified again in the future. The
application of this technique to the Web, in particular, has
been heavily deliberated as some institutions attempt to use it
to track individuals (e.g., for targeted marketing campaigns),
and privacy advocates aim to the contrary and to preserve
some sense of anonymity online [19]. Given its success on
the Web (typically via browser fingerprinting), there have
been several other areas where fingerprinting has been applied,
including identifying smartphone devices [20] and operating
systems (OSs) [5]. The relevance of these contributions is that
they highlight the fact that through inadvertently created data,
much about devices and user identities can be inferred, thereby
having a direct impact on a user’s privacy.

User profiling is another approach that seeks to draw on the
vast pool of data created by individuals to create purposeful
profiles. In the literature [21–24], profiling can be witnessed
on Web users, network users, and even criminals, all based
on their generated metadata (e.g., browsing behaviour, typing
patterns, and network and computer usage).

Possibly one of the most concerning privacy-related infer-
ences using technology-device metadata is that proposed in
Cunche et al. [2] and expanded on later in Cheng et al. [25]
and Barbera et al. [3]. These research articles exploit the
fact that wireless-enabled devices, such as smartphones, often
use active WiFi probe requests in their search for familiar
networks. That is, once a device’s WiFi is turned on, it may
occasionally broadcast a list of all of the WiFi points that it
has previously been connected to, to check if any of them are
available. If they are available, a connection is then made.

As found in Cunche et al., as a result of these active probes,
many devices are broadcasting data (e.g., MAC addresses,
WiFi names) that could be used to fingerprint them, thus plac-
ing their owner’s privacy at risk [2]. To enable the inference,
Cunche et al. propose similarity between fingerprints as a met-
ric, and thus, that devices with similar fingerprints are likely to
be linked, as are their owners. Their more recent research [25]
has even sought to use the data gathered from WiFi probes
and physical location data associated with the access points
(from sites such as wigle.net) to make more accurate
inferences. Other work has adopted this general technique
and further applied it to infer social relationships between
crowds of people, as well as sociological characteristics such
as language and smartphone vendor adoption [3]. In summary,
these articles serve to illustrate the value of technology-level
data and how it can be used to infer a variety of private
information pertaining to an individual.

III. APPLYING SNA TO DEVICE LOGS

A. Background and use of SNA

Social Network Analysis (SNA) is the study of social links
between elements (e.g., people, devices, or things), a field
which has been approached from many different angles and for
various purposes over the last century. Freeman describes stud-
ies carried out in the 1930s by Moreno, Jennings, Warner and
others which investigated the social networks which form in
settings such as schools, prisons and workplaces, citing these
as the origins of the field [26]. A famous example of SNA is
the 1969 Small World Experiment that has established what
is now commonly known as the “six degrees of separation”
phenomenon [27].

Today, SNA continues to be used in a wide variety of ap-
plications, both online and offline. These span healthcare [28],
identification of enterprise experts [29], social good [30] and
even, law enforcement [31]. Typically, SNA is used to create
comprehensive network graphs that can then be mathemat-
ically or visually assessed to identify influential figures in
the network, significant links between nodes (individuals), and
noteworthy clusters or groups in the network.



B. Discovering information from device logs

As the use of technology grows, so does the digital footprint
that we, as individuals, create. This introduces us, and those
we interact with, to a range of new privacy risks. To better
understand the breadth of these risks, this paper proposes and
investigates an approach where a model of a social network
between individuals, is derived from reports of connections
to other devices found in the system log-files of their devices.
Native logs, a key tool in Computer Forensics, present a novel
and largely untapped source through which we posit that data
for SNA purposes can be attained. Of course, we do appreciate
that these logs are much more difficult to gather than an
individual’s social-media presence or server-side HTTP logs
for instance, but nonetheless, they do constitute an increasingly
prevalent part of our digital footprints.

There are two factors which make these logs of particular
interest. Firstly, they are present on practically all technology
devices, especially those that tend to be in use by and coupled
closely with individuals, such as computers, mobile phones
and tablets [9, 10, 32, 33]. Secondly, they record a vast range
of actions and events that occur on a system as a part of
their role as a diagnostic tool for both hardware and software
activities. As it pertains to our research, the aspect of most
relevance is the record of connections with external devices,
such as other computers, USB devices, Bluetooth devices or
broader networks (e.g., WiFi or Local Area Network (LAN)).

Take as an example these lines from a Ubuntu-style syslog:
Mar 12 09:40:06 FITH NetworkManager[744]: <info> WiFi
now disabled by radio killswitch

Mar 12 09:40:06 FITH kernel: [495.672113] usb 7-2: >USB
disconnect, device number 2

The first point of note is that each line begins with a times-
tamp, followed by the computer name (FITH) and process
which generated the line, an identification number, and a mes-
sage. In this example, two processes – NetworkManager
and the kernel – are reacting to the user deactivating the
radio transmitter and receiver. NetworkManager is noting the
loss of WiFi, and the kernel is noting the loss of the radio
device itself. This exchange is evidence of the computer
communicating with another device, albeit a built-in one.

As mentioned above, connections to external devices are
also logged. Consider the example below taken from a dif-
ferent system, but one that has the same Ubuntu/Debian-style
syslog file as well:
Mar 13 12:33:42 OXON kernel: [121.39] usb 3-12: New USB
device found, idVendor=0781, idProduct=5567

Mar 13 12:33:42 OXON kernel: [121.61] usb 3-12: Product:
Cruzer Blade

Mar 13 12:33:42 OXON kernel: [121.68] usb 3-12:
Manufacturer: SanDisk Corp.

Mar 13 12:33:42 OXON kernel: [121.75] usb 3-12:
SerialNumber: XXXX1111

From this log, it is apparent what device was connected
to the computer system (i.e., a USB drive) and details about
that device itself, including vendor ID and name, product
ID and name, and crucially the device’s serial number (here
anonymised). In terms of our approach, this serial number is
one of the data points that provides particular insight, because

it can be used, in addition to some of the other device details,
to link computers – that is, computers using this same device
would also have the device’s make and ID details in their
system log entries. A similar analysis method can also be
applied when searching for device associations formed over
Bluetooth, WiFi or a LAN; with WiFi, even though network
names (SSIDs) might not be unique, MAC addresses of their
access points (typically BSSIDs) are likely to be.

Since these log files are written to by the device OS,
and by other programs, they may well differ across devices.
From a small experiment that we conducted across Linux
(Ubuntu 13.10), Apple Mac OS (10.9) and Windows (7 and
8) platforms however, we were able to confirm that systems
do capture the aforementioned details on connected devices
(albeit in varying formats) and therefore, we strongly believe
that links can be made. We would note, however, that some
of this assessment, especially for Windows, had to be done
manually because of how the log information is stored in the
registry and system event viewer.

C. The approach

Following on from the discussions above, we summarise
our approach to applying SNA to device logs in three steps:
1) Gather device system data and metadata — In our case, in
the shape of log-files from compliant participants.

2) Isolate and extract the data and metadata of most use for
SNA — Although in some cases one might be able to use the
full dataset, it is more common that the data will need to be
preprocessed to find and extract the most relevant device log
entries. These would typically include records of connections
to external devices, such as USB drives, Bluetooth devices,
WiFi access points, or Gateways.

3) Apply SNA techniques and metrics to the extracted dataset
to identify relationships between devices and thus, potentially
device owners — This task applies the range of SNA methods
with the aim of discovering device relationships. Once connec-
tions have been noted at this technology-device layer, we then
exploit the coupling phenomenon introduced in Section I, to
allow associations to be made to, and between device owners.

In the next section, we present the preliminary experiment
that was conducted to test this approach, but also to determine
the ease (or difficulty) with which the steps above could be
achieved. At this point, it was important to identify, document
and understand any issues, as the next step in our work
involves a more comprehensive study to thoroughly assess the
scope of this inference research, and exposure to privacy risks.

IV. PRELIMINARY EXPERIMENT

A. Setup

The first task was to gather system data from a set of
individuals’ devices. In terms of scope, at this stage we
focused on computer log-files and on devices with Unix-based
OSs. Moreover, given that we were interested in inferring
relationships between individuals, we targeted a participant



cohort likely to have some real-world social relationships.
Consequently, the participants recruited were from two general
groups within the university’s Computer Science department,
namely an undergraduate and a researcher cohort. There were
11 undergraduates and 6 researchers surveyed, resulting in a
total of 23 computer devices; these encompassed their own
personal devices and devices used for work. As is common
with all studies dealing with personal information, participants
were fully informed of the goals and process of the experiment,
and required to sign ethics consent forms before involvement.

Collecting log data from participant’s devices was relatively
straightforward, once we had the necessary privileges to access
the appropriate folders (e.g., /var/logs). To automate this and
the subsequent (and more complicated) data isolation and
extraction task, we developed several Python scripts. These
scripts were also central in protecting the privacy of the
participants, by replacing each of the device identifiers (serial
numbers, MAC addresses, etc.) with a salted SHA-1 digest.
For the data-isolation task, we designed a set of regular expres-
sions based on known patterns within log files that would allow
for efficient searching of the desired system-connection events
(such as those presented in Section III-B). These expressions
were able to capture records for USB, WiFi, Bluetooth and
LAN connections. Once connections and connected device
details were identified, these were then extracted and placed
in separate files, one per scanned device.

The final task was the application of SNA techniques to
the device files to facilitate further analysis. This involved
the generation of graphs in Graph Exchange XML Format
and then importing these into the network-analysis and visu-
alisation tool, Gephi (gephi.org), to allow a more user-
friendly SNA assessment. Graphs were created such that
devices were represented by vertices (nodes) and links or
connections between them were shown as graph edges. We
defined each edge to have a small set of properties common
to all connections, namely, type of connection, start and end
times, and source of the connection information. These would
be used for later analyses.

B. Hypotheses
The hypotheses of the experiment were as follows:

H1) It is possible to identify and produce social network
graphs using the log data gathered — This aims to validate
our thinking that technology devices can be linked by USB,
Bluetooth, WiFi access point, and LAN connections mediated
by Dynamic Host Configuration Protocol (DHCP).
H2) The prevalence of certain connection types exceeds others
and this provides insight into the individuals’ relationship
network — Here we aim to test two sub-hypotheses: (a)
Shared WiFi access is the most common kind of link. This
looks at devices connecting to the same WiFi access point. (b)
Connections via USB and Bluetooth devices are considerably
rarer and hint towards a stronger social bond (potentially even
trust) between device owners.
H3) The properties of the device graphs resulting from our
analysis reflect those of an accurate model of the social

network between device owners — In detail: (a) Given that
participants study or work in the same department, we might
expect that a majority of their devices are connected; (b) In the
graph, the most connected devices (individuals), and strongest
links between devices (individuals) in the sampled network
become apparent; (c) It is possible to differentiate the two main
groups of participants (i.e., undergraduates and researchers) by
assessing the clustering of nodes in the device graphs.

V. ANALYSIS AND RESULTS

A. SNA concepts and metrics supporting our analyses

Here we introduce some relevant SNA concepts and metrics.
Degree centrality of a node is a measure of how connected a
node is to other nodes in the network [26]. It is typically used
as an indicator for node influence or popularity.
Giant components are informally defined as occurring when
a single connected component contains a significant fraction of
all network nodes [34]. This is used to provide general insight
into the network’s connectivity.
Affiliation graphs connect actors to foci such as activities,
or groups, rather than to each other [35]. Such graphs are
bipartite, meaning their nodes can be partitioned into two
sets (here, people and foci), with no two nodes in either set
adjacent. If the network we find is bipartite, there may be some
value in viewing it as an affiliation graph.

B. The network of devices

Using the approach detailed in Section IV, we collected
and processed system log-files on the 17 study participants to
produce the graph displayed in Figure 1, called Network A.
In total, there were 23 scanned systems, and 249 others (e.g.,
USB, Bluetooth, WiFi access points, Gateways) discovered
in their log files. These are colour-coded according to the
key in Figure 1, with scanned systems labelled according
to their computer type and shown in red and yellow nodes,
and discovered systems presented in the other coloured nodes.
Below are some initial findings and comments.

The first general point as it pertains to the stated hypotheses
is that it is indeed very possible to identify and produce social
networks using the data found in system logs (thus validating
H1). As mentioned before, this can be particularly useful in
defining some initial relationships between devices that might
then be further used to link owners of such devices. It was
also apparent that some systems were richer in data than
others. This could be because they are used more frequently, or
connected to other devices more often. Alternatively, devices’
connections could have been missed due to different logging
styles. Known omissions at this point are: (i) Arch Linux
(archlinux.org) systems do not log USB serial numbers
(thus, USB devices are not uniquely identifiable); and (ii)
Apple Macs do not always seem to log connections to DHCP
servers, Gateways, or Nameservers.

We also found that Bluetooth connections and ad-hoc net-
works seem very rare in practice. This is contrary to our
initial thoughts, but perhaps should be unsurprising – we noted
that both were rather difficult to account for in testing, and
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Fig. 1. Network A showing a graph of the connections between the scanned and discovered technology devices

informally, most participants did not report using them often in
everyday life. Other connection types including WiFi and USB
do appear as hypothesised – Figure 1 clearly demonstrates the
vast prevalence of WiFi as a connector in comparison to USB
or Bluetooth – thus providing some validation for H2.a.

To assess the extent to which connection types are shared,
we defined a share rate metric. This metric captures the frac-
tion of nodes of that type that have a degree (i.e., association
with other devices) of at least 1. From our analysis of share
rates across device types, the most significant finding was that
USB devices have one of the lowest (at 9% as compared to the
37.5% of WiFi access points), suggesting that although they
are being used to share data, they are mainly used as private
devices. This finding provides some support for the hypothesis
(H2.b) that sharing a USB device may be a useful indicator for
friendship between users; we do, however, acknowledge that
some systems do not log unique identifiers for USB devices,
so that may have affected this initial result.

Another finding was that there was a recognisable ‘giant
component’ in Network A, in the sense described, and that
all the other components (i.e., sub-graphs not connected to
the giant component) contained only one scanned system
each. To an extent, this supports the hypothesis (H3.a) that
a majority of devices would be connected given their shared
affiliation with the Computer Science department – in most
cases where devices have connections, they are joined to the
giant component. From the graph, yet another notable finding

is that there seems to be a clear distinction between devices
that ‘socialise’ (i.e., interact a lot) and those which do not, even
within the giant component. This and its relation to degree
centrality are discussed further in the next section.

C. Determining relationships between the scanned devices
Network A gives a clear picture of which devices are

acquainted with each other, but as it is bipartite, it does not
directly link together any devices belonging to specific people.
Can it be viewed as an affiliation network in which the scanned
devices act as actors, and the discovered devices as foci?
Feld defines a focus as any social, psychological, or physical
entity around which joint activities between individuals are
organised [36]. This raises the question: how can technological
devices and connections act as foci, or evidence for the
presence of foci, in a social network of humans? Borgatti and
Halgin [35] describes several methods for analysing affiliation
networks. Only some involve drawing a co-affiliation network
(in our case, a network of the scanned devices), but all require
foci that provide suitable evidence of social interaction.

We are going to need a weaker definition than Feld’s. While
it could be argued that, for example, a meeting to exchange
data might be organised around a storage device that changes
hands, Feld’s definition does not encompass many of the
links that we believe might be found in our current network.
Therefore, we define a technological focus as a technologically
detectable event which indicates that some social interaction
has occurred between individuals. This is a broad definition



encompassing, for example, phone calls, friendships on social-
networking sites, in-person meetings recorded on CCTV, etc.

Which of the interactions in Network A are, or could be
argued to be, technological foci in this sense? Consider the
connection types that may occur between two devices: (i)
Sharing a WiFi access point suggests that the two devices
have both visited the same physical location. We argue that
this does not constitute a focus since there is no evidence that
the users of the two devices ever met; (ii) Sharing a WiFi
access point at the same time however, does suggest that the
two users were at least in close proximity, so we treat such
events as foci; (iii) Sharing a USB or Bluetooth device is strong
evidence for deliberate collaboration and sharing of data, and
thus constitutes a focus; (iv) Sharing a DHCP server, gateway
or nameserver is not considered to constitute a focus, as these
may be shared by large sections of a network.

It is straightforward to identify the scanned devices in
Network A which have shared a USB or Bluetooth device
(by node colour), but simultaneous access to a WiFi access
point is much harder to visibly detect. For 19,041 out of
the 22,467 connections (85%) to such points, the end time
of the connection could not be determined. Even when the
connection was reported as successful, a significant proportion
last under a minute. We are not convinced that this accurately
represents the amount of time that a user would typically be
expected to be connected, so for now, we take the median
time of 36 minutes, and assume this time for unknown
connections. While this is not ideal, and indeed may seem
to be an overestimation, we believe this to be a conservative
estimate, as (i) the University timetable is divided into 60-
minute slots, and (ii) it is possible that one physically static
session of use involves multiple connections due to reboots or
connection errors (the authors experienced many such erratic
connections). Future work will need to address this problem.

Our creation of the co-affiliation device graph is as follows:
1) Let each scanned device be a graph node.
2) A graph edge is created between two scanned devices if a
direct link via USB, Bluetooth or WiFi exists between them.
3) To determine the weight (i.e., significance) of WiFi-link
edges, we compute the total number of minutes that both
devices were simultaneously connected to the WiFi point.
For USB or Bluetooth-link edges, as we posit that these
connections are an indicator of a real relationship between
device owners, these are assigned a higher edge weighting; a
value of 60 was chosen, equivalent to an hour’s co-location.
If two devices have connected by both USB or Bluetooth and
WiFi, their values as calculated above are summed to give a
final edge weight.

The resulting graph is presented in Figure 2 with larger edge
weights highlighted by thicker edges between nodes.

In terms of relationships within device groups, 8 of the
11 undergraduate computers were connected to another node
and 3 were solo. In the research cohort, it was somewhat
to the contrary as 4 computers were connected and 8 were
solo. There is evidence to support the perspective that the
nature of participants’ roles had an influence on their ties
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Fig. 2. Network B showing undergraduates (as red nodes), researchers (as
yellow nodes) and the types of connections present between them (edge labels)

and connections. That is, undergraduates informally reported
being more social generally and in their university lives via
group projects, LAN (gaming) parties and so on. Researchers,
however, seemed more isolated and even if they did work
together, tended to opt for mechanisms such as email or instant
messengers to communicate and share data and files.

Other important graph features worth noting include the
strength of relationships between individual devices and gen-
eral connectivity of devices in the network; these speak to
H3.b. In Figure 2 for instance, it is possible to quickly identity
that the strongest link between devices is that between the
Ubuntu-style PC in the centre of the graph and other Ubuntu-
style PC to its immediate right; we note here that these PCs
do belong to different individuals. Such an association could
be indicative of human friendship, potentially even a close
one. Considering the question of how connected a device is to
other devices, we use the degree centrality metric introduced in
Section V-A and scale the node sizes accordingly; see Figure 3.

Fig. 3. Network B with the size of undergraduate and researcher nodes scaled
according to how well connected they are in the device network



From the new graph, we can quickly spot the most connected
device in the network, and incidentally, also the device (and
potentially individual) acting as the bridge between the un-
dergraduate and researcher cohorts. This paragraph therefore
validates H3.b.

The final question pertaining to our hypotheses is: could
the network in Figure 2 be used to infer the two main social
groups? To test, we ran the highly-referenced clustering algo-
rithm of Blondel et al. [37] on the graph, with resolution set
at 1. As apparent in the new network shown in Figure 4, it is
indeed possible to automatically identify the two predominant
groups (thus validating H3.c), with half of researchers devices
occupying the blue cluster and most of undergraduates’ in
the green cluster; the network modularity of 0.218 is not
ideal (the closer to 1, the better) but can be accounted for
by the number of disconnected graph nodes. Our clustering
analysis largely ignores nodes that are not connected, i.e., 27%
of undergraduate and 50% of researcher devices. This high
percentage highlights a potential issue for our wider study, in
that, on occasion, device logs may simply not be maintained
or certain devices may never be connected.
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Fig. 4. Network B with the clusters of devices identified, each in a different
colour. Here we can spot two device (individual) clusters in blue and green.

One final point regarding these two clusters is that while
researchers exhibit a high preference for USB sharing, un-
dergraduates are much more likely to connect to the same
WiFi points. This might be indicative of higher interpersonal
trust between researchers, or simply the result of researcher
connections being mostly via DHCP, while undergraduates
use email, the cloud, and so on, to interact. At the very
least however, these clusters do highlight the fact that digital
footprints can result in some level of privacy exposure to
individuals, in the context of their real-world human social
relationships.

D. Limitations

The main limitation of this preliminary study is intrinsic to
the use of log-files and the now-apparent fact that computer
OSs vary considerably in what is logged, and some even allow
users to control what gets logged. While this is positive from
a privacy perspective, it has limited the extent to which we
could properly test what can be inferred from this particular
digital footprint. Without useful data, our approach would
suffer significantly and result in a network of orphaned nodes;
this may have happened with some of the nodes in Network
A, possibly resulting in a graph that is not fully representative
of the offline social network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have sought to exploit the notion of owner-
device coupling to investigate whether low-level metadata
maintained by devices can be used to make inferences about
the social relationships between their owners. To this end,
we have proposed and experimented with an approach based
on SNA and basic Computer Forensics through which this
could be achieved. From our preliminary experimentation we
found that this inference task is possible, and that there is
notable insight (regarding device connectivity, link strength,
and clusters of individuals) to be gleaned from such analyses.
This provides cause for concern from a privacy perspective as
it highlights yet another way that the digital footprints, which
we inadvertently create through the use of technology devices,
can expose us to privacy risks; here, the exposure of our real-
world social relationships.

As it relates to future work, although our experiment was
successful and yielded positive results, our aim was always
to use it as a pilot study to better inform the planning of
a larger, more thorough experiment. This future experiment
would seek to rigorously assess the privacy risks to individuals
based on what can be found in, and inferred from technology-
level data and metadata; initially, our focus is log-files but this
will broadened as the research progresses. Reflecting on our
preliminary study, there are several areas to be further explored
and a number of challenges to be overcome as we go forward.
Here, we present three of these, starting with the scope of data
collection.

In this work, we focused on Unix-based OSs due to
their prevalence in our immediate environment. In the wider
world, however, the Windows OS is much more popular and
therefore, a more comprehensive experiment should seek to
encompass these systems as well. We envisage a technique
similar to the Linux syslog analysis but this time targeting the
Windows registry (especially folders such as USBSTOR, De-
vices, NetworkList) and Event Viewer to extract information on
connections to external devices. Moreover, as we concentrate
more on coupling, expanding our scope to mobile devices (e.g.,
Android, iOS, Windows) is imperative. An initial issue here
which we are yet to tackle is that some system logs appear
to be frequently purged in order to save on precious internal
storage space.



Another area for further consideration is the reality that
different versions of the same OS can have different logging
formats. This issue was noticed between some Apple Mac
OS versions in particular. To ensure that our wider study
captures all the relevant data therefore, the logging format of
each OS version would need to be thoroughly studied and the
regular expressions updated and extended as appropriate. This
would hopefully address the issues regarding missing device
connections and disconnections encountered in this initial
experiment. Also, a more complete dataset would undoubtedly
benefit our SNA analysis and lead to more representative, and
informative findings.

The final area concerns the participant cohort. The prelim-
inary study used a small, convenience sample of individuals
and aimed to characterise the main relationships and groups.
As we seek to thoroughly assess the exposure to privacy
risks from technology-level data in our next study, it would
be advantageous to extend this scope in two ways. Firstly,
enlarging the sample size of participants to determine whether
it is possible to identify previously unknown relationships – a
challenge to tackle here would be finding sufficient individuals
willing to grant us the necessary privileges and share their
system log-files. Second, formally assessing real-life associa-
tions, friendships and trust relationships between participants
(via self-report questionnaires, for instance) and creating a
social network from these, that could then be compared against
the technology-device network to assess how closely that
corresponds to the reported ground truth. Experimenting with
these should provide insight into the privacy risks faced and
complement other work assessing the risks to privacy as a
result of digital footprints.
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