
Towards a Process Algebra Framework for
Supporting Behavioural Consistency and

Requirements Traceability in SysML

Jaco Jacobs and Andrew Simpson

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road

Oxford OX1 3QD
{jaco.jacobs, andrew.simpson}@cs.ox.ac.uk

Abstract. The Systems Modeling Language (SysML), an extension of
a subset of the Unified Modeling Language (UML), is a visual modelling
language for systems engineering applications. At present, the semi-
formal SysML, which is widely utilised for the design of complex hetero-
geneous systems, lacks integration with other more formal approaches. In
this paper, we describe how Communicating Sequential Processes (CSP)
and its associated refinement checker, Failures Divergence Refinement
(FDR), may be used to underpin an approach that facilitates the refine-
ment checking of behavioural consistency of SysML diagrams; we also
show how the proposed approach supports requirements traceability. We
illustrate our contribution by means of a small case study.

Keywords: CSP, SysML, Requirements Traceability

1 Introduction

State-of-the-art systems are typically organic, multi-disciplinary compositions
of interconnecting components or systems, functioning as a whole in order to
achieve a shared goal.

The Systems Modeling Language (SysML) [1], proposed by the Object Man-
agement Group (OMG)1, is a graphical modelling notation that can be used
to describe complex, heterogeneous systems comprised of various components.
These, in turn, might be simple structural elements, or might themselves be
viewed as systems comprised of various components working together.

One of the biggest challenges in the specification and design of a complex
system, potentially composed of several subsidiary systems, is to ensure that
the proposed design is logically consistent. There are, of course, various aspects
to take into account when looking at the notion of consistency. For example,
it is possible to consider whether the non-behavioural aspects — embodied by
the structural constructs of the modelling language — are specified such that
they are logically sound, and that the constraints imposed upon them, hold. It

1 http://www.omg.org

is also possible to consider more closely the behavioural aspects of a proposed
design, and this is our focus in this paper. For this purpose, we utilise Com-
municating Sequential Processes (CSP) [2, 3]. In contrast to SysML, which one
might categorise as a semi-formal notation, CSP has a rigorous mathematical
underpinning with an elegant means of specifying and reasoning about complex
behaviour. Moreover, the Failures Divergence Refinement (FDR) [4] tool — a
refinement checker for CSP — readily allows for the reasoning about correctness
of designs and verification that asserted properties hold. Specifically, by trans-
lating SysML into CSP we can precisely define the intended behaviour of a given
SysML model, by making use of the underlying formal semantics of CSP. Con-
sequently, this allows refinement checking of the SysML model. However, when
attempting to formalise behaviour, we still need to consider structural aspects:
if we are to define a sensible behavioural semantics, we cannot be agnostic with
respect to the static composition of the SysML model. Moreover, the resulting
CSP process network and its associated communication configuration need to
reflect the structural specification of the model. It is worth noting at this point
that the intention here is not to propose a means of replacing SysML modelling
tools, but, rather, to develop a formal framework that can be used in conjunction
with SysML, with a view to complementing the modelling activity. The subse-
quent integration of graphical and formal notations would have the potential to
allow the modeller to reap the benefits of both methods.

Modelling a system with SysML relies on the concept of blocks — each with
an associated set of states — that communicate via events, possibly resulting in
a change of state for one or more of the communicating blocks. The architecture
of these systems allows a top-down design, starting from an abstract level with
high level concepts, down to levels with increasingly more detail. These successive
transformations allow replacing an abstract block with a composition of parts,
but the big drawback of this decomposition is that it is at best semi-formal and
cannot guarantee consistency between a block and its parts. Process algebras,
like CSP, can help in this respect.

Requirements traceability plays an important role as part of any model-
based systems engineering methodology. In SysML, requirements can be related
to other requirements, as well as to other model elements via one or more rela-
tionships: a behavioural construct can be allocated to a particular requirement,
and we can subsequently use FDR to ensure that the model satisfies it.

In Section 2, we define the necessary mathematical structures, based on the
syntax of SysML, required to formulate behavioural CSP descriptions. (We as-
sume that the reader is familiar with CSP.) Section 3 presents a bird’s eye view of
how CSP can be used in combination with SysML in order to create well-formed
models and ensure that requirements are satisfied. To this end, we provide a
formal semantics for state machines, within the context of SysML. In Section 4,
we introduce a small case study which we use as a means of illustrating and val-
idating the contribution. Finally, Section 5 summarises the contribution of this
paper, places it in context with respect to other research, and outlines possible
avenues of further work.

2 Syntactical structures

In order to define a formal semantics for blocks, parts and state machines, we
need a precise description of their syntax. To this end, we define simple math-
ematical constructs that are closely related to the syntactical structure of their
corresponding SysML counterparts. Our purpose is not to formulate a complete
syntactical specification of the considered constructs, but rather to employ these
expositions to assist us in defining the formal behavioural semantics in a com-
prehensible and sympathetic fashion.

2.1 Model and signals

Let the SysML model be a quintuple (B,P,M,R,S), where B is the set of
blocks, P is the set of parts, M is the set of state machines, and R is the set
containing all requirements. S contains the set of all signals; these are used as a
means of communication between state machines.

A signal Si ∈ S is uniquely identified by a name, NSi
∈ NS , and contains a

sequence of parameters. Let NS contain the names of all signals. The function
name : S → NS returns the unique name of a signal. The sequence of parameters
PSi

of a signal Si is given by params(Si) = PSi
.

2.2 Blocks and parts

The fundamental modelling construct present in SysML is the block. Each block is
assigned an associated main behaviour, called its classifier behaviour. Depending
on the purpose of the block, the classifier behaviour can either be a state machine
(for reactive, event-driven blocks) or an activity (for transformational blocks that
take inputs to outputs via a sequence of actions).

A block Bi ∈ B is a classifier that describes common behavioural and struc-
tural features of its instances, and can be considered akin to a UML class. We
assume that the classifier behaviour is specified using state machines, and given
by the function classifier : B → M. These blocks communicate via events (in-
stances of signals) that act as stimuli for the respective state machines.

A block makes known the names of the operations, for method calls, or recep-
tions, for signals, that: it responds to (i.e. the block provides the behaviour); or,
alternatively, expects its SysML environment to respond to (i.e. the environment
provides the behaviour). These behavioural features are designated as provided
and required behavioural features. In this paper we consider only asynchronous
communication using signal events, therefore all behavioural features are recep-
tions. We define the functions prov : B → PS and reqd : B → PS to return
provided and required receptions.

The internal block diagram, as per Figure 1, graphically sets out the internal
structure of a block from its parts. In contrast, a block definition diagram, also
presented in Figure 1, depicts the composition of a block, but abstracts away
from the internal structure. A part is connected to another part via a connector;
it is an instance of a block. As such, it represents a particular usage of its

«requirement»

R

«statemachine»

S

«block»

B
«satisfy»

«refine»

stm State Machine

s

trigger(t)
[guard]

req Requirement

«statemachine»

S'

«refine»

/effect

s

[guard]/effect
trigger(t)[guard]/effect

[guard]/effect

[guard]/effect

bdd Block Definition ibd Internal Block

«block»

B

«block»

B'
«block»

B'' p: B'

p: B''

connector

Fig. 1. Examples of a requirement, a state machine, a block definition, and an internal
block diagram. Block definition and internal block diagrams are used to model static,
structural aspects. In contrast, the state machine diagram models dynamic behaviour.
Requirements and their relationship to other modelling constructs are shown on a
requirement diagram.

classifying block within the context of its owning block. Each part Pi ∈ P is
typed by a block Bj ∈ B; the function type : P → B reflects this.

The connector serves as a bidirectional link between the block instances and
is used to convey signals send between communicating block instances.

2.3 State machines

We now define a structural model for non-hierarchical state machines, our main
concern in this paper. Figure 1 presents an example of a state machine diagram
with the modelling constructs we consider here.

A state machine Mi ∈ M consists of a finite set of states, denoted SMi
, and

transitions between those states, denoted TMi . We partition SMi such that S I
Mi

represents the set of initial states, SF
Mi

the set of final states, SS
Mi

the set of simple

states, SJ
Mi

the set of junction states, and finally SC
Mi

the set of choice states.
Assume that the aforementioned sets are mutually disjoint: we have ∀ sj , sk :
{S I

Mi
,SF

Mi
,SS

Mi
,SJ

Mi
,SC

Mi
} • sj 6= sk ⇒ sj ∩ sk = ∅. Furthermore, assume that

S I
Mi

is the singleton set, that is, there is a unique initial state. In addition, we

assume that a final state is optional: SF
Mi

can be the empty set.

Refer to Figure 1. Diagrammatically, initial and final states are indicated
by a solid circle and encircled solid circle, respectively, whereas junction and
choice states are indicated using a solid circle and diamond shaped node. When
labelling transitions, we use the following convention: trigger[guard]/effect.

A function outgoing : SMi
→ PTMi

returns the set of outgoing transitions
for a state. In order to make the formalisation easier, assume the existence
of outgoing ′ and outgoing ′′, where the former returns, for a particular state,
all guarded outgoing transitions, and the latter returns all those that are not
guarded. Thus,

∀ s : SMi
• outgoing(s) = outgoing ′(s) ∪ outgoing ′′(s)
∧
outgoing ′(s) ∩ outgoing ′′(s) = ∅

A transition consists of a trigger, a guard, and an effect. Additionally, a transition
is defined to exist between a source and target state. We define the following
functions, to return for a transition t :

– the source state, given by source : TMi → SMi ;

– the target state, given by target : TMi
→ SMi

;

– the trigger, given by trigger : TMi
→ S;

– the guard, given by guard : TMi → EMi ; and

– the effect, given by effect : TMi
→ seqS.

In the above, EMi represents a set of expressions. Let eval(e, p) represent
the evaluation of an expression e by considering the values of the instantiated
parameter sequence p, returning a value from the set B = {true, false}. Specif-
ically, for a transition t , we substitute2 the parameters passed on the receive
signal event, params(trigger(t)), in the guard expression, guard(t) ∈ EMi . We
write eval(guard(t), params(trigger(t))) to denote this.

One can take an alternative stance with respect to the guards of transitions.
Specifically, the CSP non-deterministic choice operator can be used instead of
conditional choice. We opt for conditional choice here, as we assume the parame-
ters of the receive signal event to be of relevance when evaluating the conditions.

We distinguish between two types of transitions: simple transitions and com-
plex transitions via junction and choice pseudo states, respectively. A simple
transition exists between two simple states. A complex transition is treated as
two separate transitions between a simple state and a pseudo state, and a pseudo
state and a simple state, where the pseudo state is either a junction or choice
state. Thus it allows for the specification of multiple paths between states, al-
though only a single path can be taken in response to any event. Again, Figure 1
presents an example of this.

2 In SysML, parameters are matched based on their names and types.

3 A CSP view of SysML

This section outlines an approach to integrate the semi-formal SysML notation
with the process algebra CSP. Throughout, we make use of the structures defined
in Section 2. First, we provide a formal process semantics for a set of communi-
cating SysML blocks — a central aspect to any SysML model. We then consider
how CSP and refinement can be utilised to support requirements traceability —
a core SysML concept supported via the requirement diagram.

3.1 Signals and events

In CSP, for a signal Si , the name of the signal name(Si) is used as a component
of the CSP event. In our formalisation, an effect corresponds to a sequence of
send signal events, whereas a trigger corresponds to a receive signal event. We
write snd(Si) for a send signal event, where the parameters of the event are
communicated as outputs on the corresponding CSP channel. Conversely, for a
receive signal event, written rcv(Si) the parameters are modelled as inputs. The
signal types the corresponding send and receive signal events and this is reflected
in the CSP channel definition. For a signal Si , with parameter component given
by params(Si) = 〈p0, p1, . ., pn〉, we have (for a CSP channel c)

– snd(Si) = c.name(Si)!p0!p1...!pn

– rcv(Si) = c.name(Si)?p0?p1...?pn

For the base case where params(Si) = 〈〉, the corresponding input and output
components are simply omitted.

3.2 State machines

Consider a state machine Mi . We provide mapping rules, starting from an initial
state, using a translation function T . Every rule, T (m, s), is defined such that it
describes the behaviour of state machine m at state s. These rules define local
process definitions, where each state and pseudo state is represented by a CSP
process. This approach is similar to that taken by Ng and Butler [5].

Initial state. We start with the unique initial state s0 ∈ S I
Mi

. In order for the
state machine to be well-defined, the initial state must have a single outgoing
transition that defines its unique starting point. The lone outgoing transition,
t ∈ outgoing(s0), may optionally include a sequence of effects.

T (Mi , s0) = Effect(effect(t)) o
9 T (Mi , target(t))

In the above, the CSP process Effect takes a sequence of events and commu-
nicates them in order before successfully terminating.

Effect(s) =
if null(s) then

Skip
else

snd(head(s))→ Effect(tail(s))

Simple state. Consider a simple state s ∈ SS
Mi

. We define the following functions:

– ∀ s : SS
Mi
• simple ′(s) = {t : outgoing ′(s) | target(t) ∈ SS

Mi
}, that returns

guarded transitions to simple states;
– ∀ s : SS

Mi
• simple ′′(s) = {t : outgoing ′′(s) | target(t) ∈ SS

Mi
}, that returns

transitions with no guard condition that lead to simple states;
– ∀ s : SS

Mi
• junction ′(s) = {t : outgoing ′(s) | target(t) ∈ SJ

Mi
}, that returns

guarded transitions to junction states;
– ∀ s : SS

Mi
• junction ′′(s) = {t : outgoing ′′(s) | target(t) ∈ SJ

Mi
}, that returns

transitions with no guard condition that lead to junction states;
– ∀ s : SS

Mi
• choice ′(s) = {t : outgoing ′(s) | target(t) ∈ SC

Mi
}, that returns

guarded transitions to choice states;
– ∀ s : SS

Mi
• choice ′′(s) = {t : outgoing ′′(s) | target(t) ∈ SC

Mi
}, that returns

transitions with no guard condition that lead to choice states.

The arrival of a SysML signal event serves as the trigger; consequently this
is made available as a CSP event. If the signal signature has a data component
associated with it, this is made available as an input along with the channel
modelling the event. Next, the guard (if it exists) is evaluated and if false the
event is discarded without effect. Conversely, if the guard evaluates to true the
effects are executed in order before behaving as the process associated with the
destination state. Recall that in our formalisation, an effect corresponds to the
sending of a series of send signal events, in the order prescribed by the sequence
modelling the effect. In addition, we need to consider the eventuality where the
state machine receives a signal event not expected in the current state s: that
is, an instance of a signal event Sj such that Sj /∈ {t : outgoing(s) • trigger(t)}.
Here, the state machine discards the unexpected event. In the following, assume
that unexpected(s) returns the set of unexpected events for state s (receive signal
events that are valid in other states of SM but not in s).

Junction or choice states are modelled as a parametrised CSP processes:
we assume that the data component, i.e. the parameters, of the receive signal
event that served as the trigger, will be used in the guard of the next leg of the
compound transition. A choice state is distinct from a junction state in that a
junction state only allows for a trigger and optional guard on the first leg of the
compound transition, whereas a choice state allows a trigger, guard and effect.

The CSP channel in is used for communicating with the event queue of the
state machine Mi .

T (Mi , s) =

2 t : simple ′(s) • in.rcv(trigger(t))→
(if eval(guard(t), params(trigger(t))) then

Effect(effect(t)) o
9 T (Mi , target(t))

else
T (Mi , s))

2

2 t : simple ′′(s) • in.rcv(trigger(t))→
Effect(effect(t)) o

9 T (Mi , target(t))

2

2 t : junction ′(s) • in.rcv(trigger(t))→
(if eval(guard(t), params(trigger(t))) then
T (Mi , target(t))[params(trigger(t))]

else
T (Mi , s))

2

2 t : junction ′′(s) • in.rcv(trigger(t))→
T (Mi , target(t))[params(trigger(t))]

2

2 t : choice ′(s) • in.rcv(trigger(t))→
(if eval(guard(t), params(trigger(t))) then

Effect(effect(t)) o
9 T (Mi , target(t))[params(trigger(t))]

else
T (Mi , s))

2

2 t : choice ′′(s) • in.rcv(trigger(t))→
Effect(effect(t)) o

9 T (Mi , target(t))[params(trigger(t))]
2

2 t : unexpected(s) • in.rcv(trigger(t))→ T (Mi , s)

Junction or choice state. Consider a junction state s ∈ SJ
Mi

, or alternatively

a choice state s ∈ SC
Mi

. Furthermore, assume a set of outgoing transitions such

that ∀ t : outgoing(s) • target(t) ∈ SS
Mi

. The second leg of the complex transition
(emanating from the choice or junction state) consists of a guard and optional
sequence of effects. In order for the state machine to be well-defined, we assume
that all guards must be mutually exclusive and that one of the guards always
evaluates to true. The assumption here sits well with the notion that a state
machine cannot stay indefinitely within a pseudo state and that it is merely
a temporary point along a transition, designed to determine the next simple
state. As such, one of the available transitions must be selected based on the
guards, and the subsequent effects executed. In addition, note that there are no
triggering events possible in a junction or choice state, because the triggering
event is assumed to have occurred on the previous leg of the compound transition.

T (Mi , s)[params(trigger(′t))]3 =

2 t : outgoing ′(s) •
(if eval(guard(t), params(trigger(′t))) then

Effect(effect(t)) o
9 T (Mi , target(t))

else
Stop)

3 Formal parameters corresponding to the signal (parameter component thereof) that
typed the send signal event that served as the trigger. The transition ′t is that of
the first leg of the compound transition.

SysML allows a junction or choice state to have multiple incoming transitions,
but these can always be recast into separate pseudo states, each with a single
incoming transition. As such, our formalisation assumes a single incoming tran-
sition per pseudo state, as the definition of parametrised process is dependent
on the triggering component of the transition.

Final state. Consider a final state sf ∈ SF
Mi

. A final state has no outgoing
transitions and is trivially modelled as the deadlocked process.

T (Mi , sf) = Stop

Process. The state machine as a whole is modelled with a single process that con-
tains all the localised process descriptions defined above. The overall structure
is similar to that given by Davies and Crichton [6]. The state machine receives
all communications through an event queue, modelled as a CSP buffer of size
1. It communicates with this buffer on a CSP channel, in. Each of the localised
processes have access to this channel in order to receive communications from
the event queue. The overall process T (Mi)(queue, in) initially behaves as the
process associated with the initial state T (Mi , s0). The local process EQ mod-
els the event queue. Here, we assume a queue with a maximum capacity of 1;
the queue blocks when full. Non-blocking semantics, where events are discarded
when the queue becomes full, is conceivable; so are event queues with different
capacities. A semantics with an unbounded queue is also conceivable, although
this is not finite state, and therefore not amenable to verification with FDR.

T (Mi)(queue, in) =
let
T (Mi , s0) = . . .
...
T (Mi , sf) = Stop
EQ = queue?a → in.a → EQ

within
T (Mi , s0) [| {| in |} |] EQ

The state machine of a block Bi only receives (through its event queue) the
provided receptions, prov(Bi). The required features, reqd(Bi), are communi-
cated across the connectors linking parts. In our formalisation, the name of the
part is used as the channel name. For example, if another part Pi provides a fea-
ture Sj that a part Pk requires, the state machine of Pk uses name(Pi).snd(Sj)
to model the event.

3.3 Blocks and parts

The structure of the SysML model is described by a block Bi ∈ B, composed
from N constituent block instances, the parts {P0 . . PN−1} ⊆ P. The classi-
fier behaviour of each part Pj is modelled via a state machine Mj , given by
classifier(type(Pj)).

The complete system, Bi , can be modelled by placing the processes corre-
sponding to each of the state machines Mj , where 0 ≤ j ≤ N − 1, in parallel:

Bi = ‖ j : {0 . .N − 1} • [αMj]Mj

3.4 Requirements

A requirement Ri ∈ R is a SysML-specific modelling construct represented ex-
plicitly in the syntax of the language via the requirement diagram. Requirements,
in their most basic form, are typically text-based, and allow for the description
of conditions that must be satisfied by a particular system. Requirements can
be related to other requirements and to modelling constructs via several rela-
tionships. For the purposes of this paper, we concern ourselves with the satisfy
and refine relationship, which are defined as follows.

“The satisfy relationship describes how a design or implementation model
satisfies one or more requirements” [1]

This relationship is used to state that a particular model element meets the
associated requirement. This is merely an assertion and not a proof of fact.

“The refine requirement relationship can be used to describe how a model
element or set of elements can be used to further refine a requirement” [1]

A text-based requirement can be captured in a SysML model, with the dan-
ger being that a textual description can often be ambiguous. Furthermore, such
a description is, in general (and for obvious reasons), not well-suited to auto-
mated reasoning. A more precise definition is possible in SysML, which allows
any behavioural formalism — for example, a state machine — to be assigned to a
requirement using the refine relationship. This results in a more formal represen-
tation of the corresponding desired behaviour. If this behavioural requirement
is subsequently mapped to CSP — as a corresponding characteristic process
— we can utilise the refinement checker to assist in reasoning about whether
this refinement holds for a given model. The characteristic process is therefore
a CSP process that describes the patterns of behaviour of an associated textual
requirement.

Consider Figure 1. Here, we assume that B, S and S’ all denote behavioural
constructs of SysML, and R represents a text-based requirement. In the case of
a static modelling construct like a block, we assume the corresponding classifier
behaviour. We base our treatment of the UML satisfy and refine relationships on
that of the satisfaction and refinement relations of [3]. In the following, CHARR

denotes the characteristic process of a textual requirement R, and B , S , and S ′

are the CSP processes for B, S and S’, respectively. For the satisfy relationship
between a behavioural formalism B and a textual requirement R, we define:

B satisfy R⇔ CHARR v B

The definition of the refine relationship is dependent on the model elements
involved in the relationship. In the case where the relationship is between two
behavioural formalisms S and S’, we define:

S′ refine S⇔ S v S ′

Alternatively, in the case where the refine relationship is expressed between a
behavioural formalism S and a textual requirement R, we define the correspond-
ing process S of the behavioural formalism S to be the characteristic process
CHARR of R:

S refine R⇔ CHARR = S

Therefore, using the definitions above (and substitution) we can check whether
S holds in B by executing a refinement check (where the set Hidden consists of
those events not present in S):

S v B \Hidden

If the refinement does not hold, FDR generates a counterexample that demon-
strates where the behaviour of B deviates from S , prompting the designer to
correct the design. Furthermore, we can check the refinement relation between
S and S’:

S v S ′ \Hidden

These successive transformations (assuming the refinements hold) are be-
havioural formalisms that we can think of as getting more specific as we move
along the refinement chain: S ′ is more refined than S , which means that (if
we only consider traces) traces [[S ′]] ⊆ traces [[S]] due to the reverse inclusion
characteristic of refinement. The direction of the arrowhead in the requirement
diagram, as per Figure 1, and its treatment in CSP is also of significance. In
UML, the direction of the arrow is from the dependent model element to the in-
dependent model element. The state machine B is dependent on the requirement
R: any change in R could impact B; CSP refinement honours this dependency.

The Requirement diagram is introduced in SysML and is a core part of the
language. Requirements traceability is undoubtedly a good thing; a formal rep-
resentation of requirement diagrams in CSP gives rise to a formal means of
requirements traceability. This provides a formal foundation for this otherwise
informal technique that serves as justification for the development of a formal
framework. It should be noted that the above approach hinges on the character-
istic process being specified correctly.

4 Case study: an access control system

Our case study is a small control component for a physical access control sys-
tem that can be used, for example, to manage admittance to a toll road. Each
authorised user is assigned a tag ; in order to gain access, the tag is placed on
a reader. If the tag is valid, a barrier moves to the open position; otherwise, it
remains closed.

bdd Access Control

«block»

Access

«block»

Barrier
«block»

Reader

ibd Access

r: Reader

b: Barrier

reader_barrier

t: Tag

reader_tag
«block»

Tag

Fig. 2. The block definition diagram modelling the case study as an Access block,
composed of aggregate blocks Barrier, Reader and Tag. The internal block diagram
of Access shows the internal decomposition into constituent parts, with connectors
indicating the links between block instances b, r and t.

4.1 Behavioural consistency of communicating blocks

We now describe how state-based behaviour of blocks may be modelled in CSP,
using the formalisms and translation approach defined in Section 2. We also
consider how their combined behaviour may be verified using FDR.

The block Access is decomposed into constituent parts: the Barrier, Reader,
and Tag block instances (see Figure 2). These parts need to communicate in an
orchestrated fashion so as to incorporate the desired behaviour of the composing
block, Access. Figure 2 shows a snapshot of the structural constructs used in the
design: an instance of the block Reader, r, communicates with instances of the
blocks Tag, t, and Barrier, b, using events, typed by signals, via the various con-
nectors. The classifier behaviour of each block is modelled using a corresponding
state machine, as per Figure 3.

datatype BarrierSignal = open | close
channel barrier , blocal : BarrierSignal

Barrier(queue, in) =
let

INIT = CLOSE
CLOSE =

in.open → OPEN
2

in?discard : {close} → CLOSE
OPEN =

in.close → CLOSE
2

in?discard : {open} → OPEN
EQ = queue?a → in.a → EQ

within
INIT [| {| in |} |] EQ

idle wait

stm Reader

/initTag

open

[else]

readTag(t)

[t==invalid]

[t==valid]/open

/close

close open

close

open

stm Barrier

wait ready

initTag

stm Tag

/readTag(t)

Fig. 3. The state machines modelling the classifier behaviour of the Barrier, Reader and
Tag blocks.

BARRIER = Barrier(barrier , blocal)
αBARRIER = {| barrier , blocal |}

The definition of process Barrier , the CSP counterpart of the classifier be-
haviour of Barrier, is presented above. A datatype definition is used to type the
provided receptions of the Barrier block; these serve as triggers for the classifying
state machine.

datatype TagValue = valid | invalid
datatype ReaderSignal = readTag .TagValue
channel reader , rlocal : ReaderSignal

Reader(queue, in) =
let

INIT = IDLE
IDLE = tag .initTag →WAIT
WAIT = in.readTag?t → JUNCTION (t)
JUNCTION (t) =

if (t == valid) then barrier .open → OPEN
elseif (t == invalid) then IDLE
else ERROR

OPEN = barrier .close → IDLE
ERROR = STOP
EQ = queue?a → in.a → EQ

within
INIT [| {| in |} |] EQ

READER = Reader(reader , rlocal)

αREADER = {| reader , rlocal , tag .initTag , barrier .close, barrier .open |}

Similarly, the process Reader models the classifier behaviour of the Reader
block. In this case, an additional datatype definition is used to model the param-
eters passed with the signal. Definitions for Tag , TAG and αTAG are omitted:
these are defined in a similar fashion to the above.

We use parallel composition to construct the system in terms of its con-
stituent processes. The process Access is defined thus:

ACCESS = ‖(p, a) : Parts • [a]p

The set Parts, containing (process, alphabet) pairs, is given by:

Parts = {(BARRIER, αBarrier), (READER, αReader), (TAG , αTag)}

These recursive decompositions sit extremely well with the process algebraic
formalism CSP. Moreover, by utilising CSP in conjunction with SysML, we are
able to describe, and reason about, complex patterns of interaction to an extent
not currently possible using just SysML.

4.2 Requirements traceability and refinement

A text-based requirement can be formalised by allocating another SysML model
element to the requirement in order to clarify its description and limit ambigu-
ity. In addition, we can test whether a design satisfies the requirement. As an
example, consider the following text-based requirement:

“The barrier will only open if a valid tag is presented”

This requirement can be refined by a behavioural modelling construct, e.g.,
a state machine, as shown in Figure 4, that enriches the textual description.

The associated process, AccessRequirement , is defined thus:

AccessRequirement =
let

INIT = STATE
STATE = reader .readTag?t → JUNCTION (t)
JUNCTION (t) =

if (t == valid) then barrier .open → STATE
elseif (t == invalid) then STATE

within
INIT

Using the hiding operator and refinement we can test if the design satisfies
this requirement, which FDR confirms:

AccessRequirement vT ACCESS \ (Σ \NotHidden) [refinement holds]

In the above, Σ denotes the set of all CSP events within the context of the
specification. The set NotHidden is given by

NotHidden = {reader .readTag .valid , reader .readTag .invalid , barrier .open}

«statemachine»

AccessRequirement

«block»

Access

«satisfy»

«refine»

stm AccessRequirement

state

readTag(t)

[t==valid]/open[t==invalid]

req AccessControl

Text="The barrier will
only open if a valid tag
is presented"

«requirement»

AccessControl

Fig. 4. The state machine AccessRequirement refining the textual description of the
requirement AccessControl, which is satisfied by the Access block.

5 Conclusions

SysML is a standard that has only recently matured, and, as such, efforts to
integrate it with formal approaches are ongoing. Jacobs and Simpson [10] pre-
sented an approach to decompose an abstract SysML block into constituent,
concrete blocks. Activity diagrams [7] and state machine diagrams [5] have both
been given a formal semantics (considering a subset of the available modelling
constructs) in CSP. Abdelhalim et al. presented an approach based on checking
behavioural consistency between a UML state machine diagram and a corre-
sponding fUML activity diagram [8]. The diagrams are given a formal semantics
in CSP; FDR is then employed in order to ensure that a trace refinement holds
between the abstract state machine diagram and the concrete activity diagram.
Other noteworthy contributions include that of Davies and Crichton [6], which
provides a behavioural semantics to combinations of class, object, and state ma-
chine diagrams using CSP. Behavioural conformance is formalised within the
context of traces and failures refinement of CSP. As another example, Graves
and Bijan integrated SysML with a higher order type theory logic in an incre-
mental, top-down approach that aims to maintain the logical consistency of the
design, with a case study from the aerospace industry [9].

We have presented a bird’s eye view of how CSP and the associated re-
finement checker FDR can be used in conjunction with a model-based systems
engineering approach to systems modelling. Our focus is on the high level in-
tegration of blocks, where the behavioural characteristics are modelled using
SysML state machines. We cannot view these in isolation, but need to consider
them in their context of use as to ensure that the complete system functions as
intended. We showed how refinement can be utilised to facilitate requirements
traceability and bestow a sense of confidence in the validity of the design.

The choice of CSP is due to a number of factors. First, the behavioural aspects
of SysML can be modelled naturally by a process algebraic formalism such as
CSP, resulting in a formal framework where assertions about requirements can
be proved or refuted relatively straightforwardedly. Second, CSP’s approach to
process composition, combined with the fact that refinement is preserved within

SysML
Model

Transformation
Rules

+
Metamodels

FDRAnalysis

CSP

SysML
Architect

Fig. 5. High level overview of the approach.

context, would allow us to decompose a complex design of a system (or system of
systems) in such a way that the automated analysis is computationally feasible.

Future avenues of research will include the implementation of a formal re-
finement framework, using a model based approach similar to [8], where SysML
and CSP are each defined using a meta-model, and transformations are sub-
sequently used in order to translate from SysML to CSP, as per Figure 5. The
resulting framework will then be used to establish whether the design is logically
consistent, and if requirements are satisfied by the proposed design.

References

1. Object Management Group: Systems Modelling Language Specification, version
1.3. (2012)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
3. Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)
4. Department of Computer Science, University of Oxford & Formal Systems Europe:

Failures Divergence Refinement User Manual, version 2.94. (2012)
5. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Pro-

ceedings of the 1st International Conference on Software Engineering and Formal
Methods (SEFM 2003), IEEE (2003) 138–147

6. Davies, J.W.M., Crichton, C.R.: Concurrency and refinement in the Unified Mod-
elling Language. Electronic Notes in Theoretical Computer Science 70(3) (2002)
217–243

7. Dong, X., Philbert, N., Zongtian, L., Wei, L.: Towards formalizing UML activity
diagrams in CSP. In: Proceedings of the International Symposium on Computer
Science and Computational Technology (ISCSCT 2008), IEEE (2008) 450–453

8. Abdelhalim, I., Schneider, S.A., Treharne, H.: Towards a practical approach to
check UML/fUML models consistency using CSP. In: Proceedings of the 13th
International Conference on Formal Engineering Methods (ICFEM 2011). Volume
6991 of Lecture Notes in Computer Science. Springer (2011) 33–48

9. Graves, H., Bijan, Y.: Using formal methods with SysML in aerospace design and
engineering. Annals of Mathematics and Artificial Intelligence 63(1) (2011) 53–102

10. Jacobs, J., Simpson, A.C.: A process algebraic approach to decomposition of com-
municating SysML blocks. International Journal of Modeling and Optimization
3(2) (2013) 153–157

