Computing Science

REPRESENTING AND SOLVING
FINITE-DOMAIN CONSTRAINT PROBLEMS
USING SYSTEMS OF POLYNOMIALS

Chris Jefferson, Peter Jeavons
Computing Laboratory, University of Oxford, Oxford
{Chris.Jefferson,Peter. Jeavons}@comlab.ox.ac.uk

Martin J. Green
Department of Computer Science,
Royal Holloway, University of London, Egham, UK
M.J.Green@cs.rhul.ac.uk

M.R.C. van Dongen
Department of Computer Science, University College Cork, Ireland
Dongen@cs.ucc.ie

CS-RR-07-07

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

In this paper we investigate the use of a system of multivariate polynomials to
represent the restrictions imposed by a collection of constraints. The advantage of
using polynomials to represent constraints is that it allows many different forms of
constraints to be treated in a uniform way. Systems of polynomials have been widely
studied, and a number of general techniques have been developed, including algo-
rithms that generate an equivalent system with certain desirable properties, called a
Grobner Basis. General algorithms to compute a Grébner Basis have doubly expo-
nential complexity, but we observe that for the systems we use to describe constraint
problems over finite domains a Grébner Basis can be computed more efficiently than
this. We also describe a family of algorithms, related to the calculation of Grobner
Bases, that can be used on any system of polynomials to compute an equivalent sys-
tem in polynomial time. We show that these modified algorithms can simulate the
effect of the local-consistency algorithms used in constraint programming. Finally,
we describe how these algorithms can be used in a similar way to local consistency
techniques to solve certain broad classes of constraint problems in polynomial time.

1 Introduction

The constraint programming paradigm [17] involves modelling a real-world problem as
a set of variables together with a set of constraints; the constraints restrict the allowed
combinations of values that can be simultaneously assigned to the variables. As well as
capturing many practical computational problems, this very general paradigm includes a
number of special cases corresponding to problems with particular forms of constraints,
such as INTEGER PROGRAMMING and SATISFIABILITY. The study of efficient ways to
represent and solve such constraint problems is currently a very active area of research
within artificial intelligence [17].

In a constraint programming system each variable has to be assigned a value from
some specified (often finite) domain, and each constraint describes the set of allowed
combinations of values for some subset of the variables. A constraint may sometimes
be specified explicitly, by listing the allowed (or disallowed) combinations of values in
a table. More often, a constraint is specified implicitly by using some combination of
available predicates, equations, inequalities and logical connectives.

In this paper we explore the use of systems of polynomials to specify constraints. We
will say that a system of polynomials allows a particular combination of values for a set
of variables if the simultaneous assignment of those values to the variables makes all of
the polynomials in the system evaluate to zero. Such an assignment is called a solution
to the system of polynomials.

The use of systems of polynomials has been considered a number of times in the
constraints literature [2, 13, 14, 16], but is typically used to represent constraints on
continuous variables. Here we focus on the use of polynomials to represent finite-domain
constraints. The advantage of representing such constraints using polynomials is that
they can then be treated in a uniform way along with continuous constraints, allowing
the development of very general constraint-solving techniques. Another advantage is that
systems of polynomials can be processed by standard computer algebra packages such as

Mathematica and REDUCE, so our approach helps to unify constraint programming
with other forms of mathematical programming. The approach of using polynomials to
represent finite-domain constraints has previously been explored by Clegg, Edmonds and
Impagliazzo, but only for the special case of SATISFIABILITY problems [6].

Polynomials provide a very flexible and generic representation for problems from a
wide variety of areas, and they have been intensively studied. In particular, Buchberger [4]
showed that for any system of polynomials it is possible to compute an equivalent system
with a number of desirable properties, which he called a Grobner Basis. Given a Grobner
Basis, it is possible to obtain the solutions to a system of polynomials very easily (or
determine that it has no solutions). A Grobner Basis provides a convenient representation
for the whole set of solutions which can be used to answer a wide range of questions
about them, such as the correlations between individual variables, or the total number
of solutions.

In general, the complexity of computing a Grobner Basis for a system of polynomials
is doubly exponential in the size of the system, except in certain special cases. However,
we show in Section 5 that for the systems we use to represent constraints over finite
domains this complexity is only singly exponential, and so is comparable with other
general search techniques. In Section 6 we discuss a modified form of the algorithm for
computing a Grobner Basis which runs in polynomial time, but is incomplete, in the
sense that it computes a system which is not necessarily a Grobner Basis. The system
computed by our modified algorithm has the same solutions as the original system and
represents a set of equivalent constraints which is locally consistent. We show in Section 7
that this modified form of the algorithm can be used to achieve the same benefits as the
local-consistency algorithms which are widely used in constraint processing. Finally, in
Section 8 we discuss the use of adaptive consistency techniques for systems of polynomials.

2 Polynomials, Varieties and Ideals

In this section we introduce the basic concepts related to polynomials which are used
throughout the paper. For a more detailed introduction see, for example, [8].

Definition 2.1. Let K be any field and {zi,...,x,} a set of variables. A polyno-
mial p(zy,...,z,) over K with variables x1,...,z, is a finite sum of terms of the
form kx1* -z, where k € K and o; € {0,1,2,...}, i = 1,...,n. A single prod-
uct £ - - - 1, is called a monomial? over {zy,...,z,}.

The set of all polynomials over K with variables x1, ..., x,, together with the standard
addition and multiplication operations, forms a ring, which is denoted K[z1,...,z,]. A
system of polynomials is a set of polynomials which all belong to the same polynomial
ring; this set may be finite or infinite.

2Unfortunately, the words “term” and “monomial” are used by some authors the opposite way round!
Here we follow the terminology of [8].

Definition 2.2. Let P be a system of polynomials from Klzy,...,z,]. The variety of
P, denoted V (P), is the set of all solutions to P, that is,

V(P) ={(K1,...,kpn) €K : Vp € P, p(k1,...,kp) =0}.

Definition 2.3. An ideal I over the polynomial ring Kz, ..., z,] is a system of poly-
nomials from K[z, ...,x,] which satisfies the following conditions:

1. For all f1, fo € I we have that f1 + fo € I;

2. For allu € Klzy,...,z,] and all f € I we have that uf € I.

Definition 2.4. Let {p1,...,pm} be a finite system of polynomials from Klxy, ..., z,)].
The ideal generated by {p1,...,pn}, denoted I({p1,...,pm}), is given by

L({p1,-- - om}) = {Zulpl DU EK[:L‘l,...,:vn]}

=1

Given a finite system of polynomials P = {p1,...,pm}, from Klz,...,z,], it is easy
to see that the ideal generated by P has exactly the same set of solutions as the original
system, that is, V (I(P)) = V (P).

Example 2.5. In this example, assume the polynomials are drawn from Clz, y, z], where
C is the field of complex numbers.

The ideal I ({z + y,y + z}) has variety {(a,—a,a) : a € C}.

The ideal I ({z(z — 1),y + = — 3,z — x}) has variety {(0,3,0),(1,2,1)}. O

There are two standard ways to combine ideals to obtain new ideals:

Definition 2.6. The sum of two ideals I and J, denoted by I+ J, is defined by I + J =
{f+g:fel,ge J}. The product of two ideals I and J, denoted by I x J, is defined
byl xJ={fg: fel,geJ}.

These two standard ways of combining two ideals have a straightforward effect on the
corresponding varieties, as the next result indicates.

Lemma 2.7 ([8]). For any pair of ideals I and J, we have:
1.VUI+J)=V{I)NV(J);
2. V(I xJ)=V(I)UuV(J).

Furthermore, given two finite systems of polynomials, they can be combined in straight-
forward ways to obtain generating sets for the sum and product of their corresponding
ideals, as the next result indicates.

Lemma 2.8 ([8]). For any pair of ideals I = 1({p1,...,pm}) and J =1({aq,...,q}),
we have:

1. I+J:I({p17"'7pm7q17"'7ql});
2. I xJ=1{pigj : i €{1,...,m},j €{1,...,0}}).

Combining Lemmas 2.7 and 2.8, if we have two finite systems of polynomials, each
with an associated set of solutions, then it is easy to obtain a new system of polynomials
whose solutions are precisely the union or intersection of these two sets of solutions.
For example, in the case of the intersection, we simply concatenate the two systems of
polynomials.

3 Representing Constraints by Systems of Polynomials

In this section we show how various forms of constraint can be mapped to a system of
polynomials whose set of solutions is precisely the set of combinations of values allowed
by the constraint. If we do this for each constraint in a problem, then by the observation
above, we can simply concatenate the systems of polynomials we obtain to create a system
which represents the entire problem.

We shall assume for simplicity that each variable in the constraints we are trying to
represent has a specified domain of possible values, and that these values are represented
by natural numbers. Hence each constraint allows some set of tuples of natural numbers.

We shall represent a constraint over some subset of the variables z1,...,x, by a
system of polynomials from Clzy,...,z,]. The solutions to this system will be precisely
the assignments (of natural numbers) that satisfy the constraint.

First note that we can restrict the domain of possible values for each individual
variable to a specified finite set by including in our system a polynomial of the following
form for each variable.

Definition 3.1. The domain polynomaial of a variable x with domain D 1is the poly-
nomial [];cp(z — j).

In this paper we shall assume that all the variables have finite domains and we will
always include a domain polynomial for each variable in the system used to represent a
constraint (even though they are sometimes redundant). This has the advantage® that
it makes our solution methods complete, and provides a simple bound on the complexity
(see Sections 4 and 5). Note that the system of polynomials consisting of just the domain
polynomials for the variables z1,...,x, represents the rather trivial constraint which
allows all possible combinations of values (from the domains) for these variables.

Example 3.2. [Constant constraints] Probably the simplest non-trivial form of con-
straint on a collection of variables (z1,...,z,) is a constant constraint which allows
only a single assignment, say (k1,..., K,), assigning x; to x; for ¢ = 1,...,r. This con-
straint is easily represented by the system of polynomials {z1 — k1,22 — K2, ..., T, — K, },
which has just one solution corresponding to the single allowed assignment. a

It has the further technical advantage that it ensures that the ideals generated by our systems of
polynomials are radical [3, Lemma 8.19].

Example 3.3. [Disjunctive constraints] Some forms of constraint, such as the propo-
sitional clauses used in the SATISFIABILITY problem, are specified as a disjunction of
simpler constraints. Using Lemmas 2.7 and 2.8, it follows that any such constraint can
be represented by the system of polynomials consisting of the set of all products of all
the polynomials in the systems representing the disjuncts. For example, consider the
polynomial Hie{l,...,r} (z; — ki). This polynomial is satisfied if, for some ¢ € {1,...,r},
we have that x; is assigned k;. In other words, at least one of the x;’s is assigned the
associated x;. This type of polynomial can therefore be used to represent a clause in an
instance of SATISFIABILITY, by setting each x; to either 0 or 1, depending on whether
the corresponding literal in the clause is negative or positive. For example, the clause
-z V y V -z is represented by the polynomial z(y — 1)z, which is equal to zyz — zz. O

Example 3.4. [Linear Equations| Any linear equation involving variables z1, ..., z, can
be written in the form p(z1,...,x,) = 0, where p is a special form of polynomial in which
> a; <1 for all terms k1! - - - z,%". This means that any constraint which is expressed
by one or more linear equations is naturally represented by a system of polynomials. This
includes many of the constraints encountered in INTEGER PROGRAMMING problems. [

Example 3.5. [Inequality] Consider the constraint “z < y” over the variables z and y
which each have the domain {1,2,...,d}. The set of solutions to this constraint can be
represented by the system of polynomials P = {p;(z,y) : i =1,...,d}, where

pley) = [[@=»] w-y).

1<j<i i+1<5<d
g

Example 3.6. [Table constraints] Any constraint which specifies an explicit list of al-
lowed combinations can be seen as a disjunction of constant constraints, so in principle
we can use the methods described in Examples 3.2 and 3.3 to build a suitable system of
polynomials to represent such constraints. However, in practice this method has a major
limitation, in that it may produce systems of huge size.

Fortunately, there is a more sophisticated algorithm which computes a system of
polynomials with a specified finite set of solutions in polynomial time in the size of that
set [5]. In other words, there is a known algorithm which can be used to find a system of
polynomials to represent any constraint specified by an explicit list of allowed tuples in
polynomial time. O

The examples above illustrate how constraints specified in various ways can be mapped
to systems of polynomials whose solutions are precisely the combinations of values allowed
by the constraints.

4 Grobner Bases

Once we have constructed a system of polynomials whose solutions are precisely the
assignments that satisfy a given collection of constraints, there are a number of questions

we may wish to ask, such as: Does this system of polynomials have a solution? Does z3
take the value 7 in all solutions? In this section we examine ways in which a system of
polynomials can be manipulated to obtain a new system with the same set of solutions
which makes answering such questions easier.

Note that any two systems of polynomials which generate the same ideal have the
same sets of solutions, since the variety of a system of polynomials is equal to the variety
of the ideal that it generates. It turns out that a system of polynomials is particularly
convenient to work with if it is a Grobner Basis for the ideal that it generates. To define
this property, we first have to define an ordering for the monomials in our polynomials.

Definition 4.1. A monomial ordering, <, on a set of variables {x1,...,x,} is a total
ordering on monomials over {xi,...,zy} which satisfies the conditions:

1. For all monomials py, po and pg we have py < pe = 1 X gy < o X 43;
2. Every non-empty set of monomials has a smallest element with respect to <.

Example 4.2. One important monomial ordering is the lexicographic ordering, <,
which is defined by

1M 2O <o 1P = (o) < (Brye)
where the ordering on tuples of natural numbers is the usual lexicographic ordering. [

Example 4.3. Another important monomial ordering is the total degree lexico-
graphic ordering, <4 ex, Which is defined by

21 2y <aex 11 = (Z o < Zﬁz) v

(Zai=2@> AN ag,...,an) <{(Bry...,0n)

where the ordering on tuples of natural numbers is the usual lexicographic ordering. [

Once we have ordered the monomials, we can identify a distinguished term in every
polynomial, in the following way.

Definition 4.4. Given a monomial ordering < on the set of variables {x1,...,z,} and
a non-zero polynomial v =) ki from Klzy,...,xy,], where each k; € K and each p;
is a monomial over {zy,...,z,}, the leading monomsial (LM) of u is the mazimum of

the p; under the monomial ordering <. If the leading monomial is pj (for some j), then
the leading term (LT) of u is kjju;.

Example 4.5. Consider the polynomial 423 + 2y? 4+ zy in the polynomial ring Clz, y].
Under the lexicographic ordering, with < y, the leading monomial is y? whilst the
leading term is 2y2. Under total degree lexicographic ordering, with = < v, the leading
monomial is 3 whilst the leading term is 423. g

Using the notion of leading term we can now define a form of division algorithm for
multi-variate polynomials.

Definition 4.6. For any system of polynomials P = {p1,...,pm} from Klzy,..., z,],
and any polynomial u € Klzy,...,z,], a remainder of u on division by P, denoted
u|p, is obtained by repeatedly performing the following “reduction” rule until it cannot be
further applied:

Choose any i € {1,...,m} such that LT (p;) divides some term T of u and replace u
with u — W;i)pi'

Unfortunately, in the general case the remainder of a given polynomial on division
by a given system of polynomials is not uniquely defined. This is because the result
of performing the division algorithm in Definition 4.6 is not unique: it can produce
different results depending on the order in which the polynomials in P are considered.
Furthermore, in general, even when a polynomial f is in the ideal I (P), it is not always
the case that f|p = 0. For example, z cannot be reduced by either polynomial in the
system {z? + z, 2%}, although it can clearly be written as the first polynomial minus the
second, and hence belongs to the ideal generated by this system.

Definition 4.7 ([4, 3]). A system of polynomials G from Kz, ..., z,] is called a Grobner
Basis (with respect to a given monomial ordering) if it satisfies the property that u|q is
uniquely defined for any v € K|z, ..., x,].

One very useful property of a Grobner Basis is that it can be used to determine
whether a given polynomial belongs to the ideal that the basis generates, as the next
result shows.

Theorem 4.8 ([8]). If G is a Gréobner Basis, then f|g = 0 if and only if f € I(G).

The next example demonstrates the use of a Grobner Basis to provide a convenient
representation for a table constraint.

Example 4.9. The following relation over the set D = {1,2,3,4} appeared in [12,
Example 13] where it was used as an example of a relation having a large amount of
Symimetry:

R={(1,2,2,3,4) ,(1,2,2,4,3) ,(1,2,3,1,2) ,
(2,4,2,3,4) ,(2,4,2,4,3) ,(2,4,3,1,2) }.

If we consider this relation as a constraint on the variables (a,b,c,d,e), then it can be
represented by the following system of polynomials:

G={e>—9¢ +26e—24, B> —6b+8,
d+2¢* —13e+17, 2c— > +7e—16, 2a —b}.

This system of polynomials is a Grobner Basis (with respect to the lexicographic mono-
mial order where e < b < d < ¢ < a). The two uni-variate polynomials in the set G
correspond to unary constraints: they indicate that the second component of any so-
lution satisfying the constraint has to be in {2,4} and the last component has to be

in {2,3,4}. The remaining polynomials in the set G are bi-variate: they indicate rela-
tionships which were implicit in R and which are revealed by the Grobner Basis. The
fact that these polynomials are linear in the variables d,c and a indicates that for any
(bye) € {2,4} x{2,3,4} there is exactly one (a,b,c,d,e) € R and vice versa. In par-
ticular, if (a,b,c,d,e) € Rthend = —2e?+13e—17,c = (€>—~T7e+16)/2, and a = b/2.

U

One remarkable result established by Buchberger is that given any finite system of
polynomials, and any fixed monomial ordering, it is possible to compute a new system
of polynomials which generates the same ideal and is a Grobner Basis [4, 8]. One way
to do this is to use Algorithm 1, which is known as Buchberger’s Algorithm [4, 8]*. The
algorithm makes use of a construct called the S-polynomial of two given polynomials,
which is defined as follows.

Definition 4.10. Given two monomials z1*' - -z, and 1% --- x5, their lowest
common multiple (LcM) is xz;™¥(@181) ..y max(an,fn)

Gliven two polynomials w1 and ue and a monomial ordering, the S-polynomial of uy
and ugy, denoted S-Pol (uy,us), is

LOM(LM(u1), LM(u)) LOM(LM(u1), LM(uz))
Lr(uy) ' LT (us)

ug .

Example 4.11. Let p = 23 + 2% and ¢ = 43 + 23, and take a total degree lexicographic
ordering with z < y < . Then we have S-Pol (p,q) = y323 — 2323,

Note that although the leading terms of the two polynomials are eliminated in the
calculation of their S-polynomial, the result may have a leading monomial which is higher
in the monomial ordering than either of these original leading terms, as this example
shows. g

Example 4.12. Cousider a set () of domain polynomials corresponding to distinct vari-
ables. Note that each domain polynomial in) is uni-variate, and the leading terms of
any two domain polynomials for distinct variables do not share a variable. This implies
that the S-polynomial of any two domain polynomials in () is reduced by those two poly-
nomials to zero (see Lemma 3.3.1 of [1]). Hence, applying Buchberger’s Algorithm to
@ will not change the set. It follows that any set of domain polynomials corresponding
to any collection of distinct variables is a Grobner Basis with respect to any monomial
ordering. g

i

Example 4.13. Recall from Example 3.5 that the constraint “z < y” over the variables
z and y which each have the domain {1,2,...,d} can be represented by the system of
polynomials P = {p;(z,y) : i =1,...,d}, where

pley) = [[@=»] w-y).

1<5<i i+1<j<d

“More sophisticated and efficient refinements of this algorithm have been developed, and are generally
used in practice, but this simple version is sufficient to illustrate the technique and allow a straightforward
complexity analysis.

Algorithm 1 Buchberger’s Algorithm

1: GIVEN: P: Set of initial polynomials

2: RETURNS: G: Grobner Basis

3: BEGIN: G := P, T :={{91,92} : {91,92} C G}
4: while T 75 0 do

5. Select {g1,¢2} from T and set T':= T \ {{g1,92}}
6: h:=S-Pol(g1,92)

7 h0:==h|G

8 if hg # 0 then

9: T:=TU{{g,ho} : g € G}

10: G:=GU {ho}

11: end if

12: end while

Whatever monomial ordering we choose, P is a Grobner Basis. To see this, it is sufficient
to show that S-Pol (ps,pp) |p = 0 for all a,b € {1,...,d}. Without loss of generality
assume a < b. Then the greatest common divisor of p, and py is:

II @-5 JI w-9

1<j<a b+1<5<d

After dividing both polynomials by this, the first will become a polynomial only in y, and
the second a polynomial only in z. The result then follows by Lemma 3.3.1 of [1]. a

Once we have computed a Grobner Basis, it is then much easier to obtain the solutions
to the original set of polynomials (or determine that there are no solutions). In particular,
we can decide whether the system has a solution using the following well-known result
(proved in [3, Theorem 7.40]).

Theorem 4.14 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and I
be an ideal in Klzy,...,x,]. The variety V(1) is empty if and only if I contains the
polynomial 1.

Hence to decide whether a system of polynomials has any solutions we can simply cal-
culate a Grobner Basis (with respect to any monomial ordering) and then check whether
it contains a polynomial that is a non-zero constant. If so, the system has no solutions.
Otherwise, at least one solution exists.

Example 4.15. A collection of benchmark instances of the SATIFIABILITY problem are
provided at www.satlib.org. These can easily be converted to systems of polynomi-
als and then passed to a computer algebra package, such as Mathematica, to obtain a
Groebuer Basis.

Some of these benchmark instances contain random 3-clauses. For example, the in-

stance “uf20-01” contains 91 random 3-clauses over 20 variables, as follows:

{z4 V —z18 V219, 23V "5V 218, "25 V "8 V 1215,
Va7V xie V x20, X7 VTV 13, 9 V x12 V Xy, v,
ZI9 V 17 V “r19, T2 V 12 V L1717, T4 V —T5 V —|.’L‘16}.

A straightforward mapping to polynomials as described in Example 3.3 gives the following
system of 91 polynomials:

{1 —z4) 218 (1 —219), (1 —23) 25 (1 —218), T528715,
(1 —z7) 21620, 27 (1 — 210) 13, Toz12 (1 —217), -+,
(1 —xz9) (1 —z17) z19, 22 (1 —z12) (1 —217), (1 — 24) 25216}

If we combine this system with domain polynomials z;(x; — 1), restricting each variable x;
to the Boolean values 0 or 1, then the in-built GroebnerBasis command of Mathematica
calculates the following Grobner Basis for the combined system in around 2 seconds®:

{90 — 1,27y — w19, 15 — T19, T17 — 1, 16, 15 — 1, 714 — 1, T13219,
$%3 — 13,12, T11 — 19, 10T19 — 19, T13T10 — 10 + 19, :1;%0 — T10,T9T19 — T19,
T13T9 — Tg — T13 + 1, ToT10 — T19, T — Ty, TT19 — T19, T13Ts — Tg + T19, TgT10 — Ts,
I8$9—£L‘19,JE%—Is,I7,I6I19,$13I6—I6—£L‘13—I19+1,I10$6—$6—$10+1,$6I9—I9+I19,
Tels, I% — X6, L5, T4T19 — T19,L13T4 — T4 + 19, T4T10 — 10, T4T9 — T19, L4Tg — T8,
LTeTlg4 — T4 — Tg + 1,.’132 — X4,T3 — T19,T2 — L19,T1 + 19 — 1}.

By Theorem 4.14, this indicates that this instance is soluble. Furthermore, many of
the polynomials in this basis are linear, indicating that the corresponding variables have
fixed values in all solutions. For example, variable x99 must be assigned the value 1 in
all solutions. O

Once we have determined that a system has a solution, we can build such a solution
by constructing progressively larger satisfying partial assignments which we can verify
will extend to a complete solution.

One way to do this is to generate a Grobner Basis G for the system just once. We
can then check whether any particular partial assignment s extends to a solution by
checking whether the polynomial p; which forbids precisely that assignment is in the
ideal generated by G. To do this we simply have to compute ps|c. If ps|e¢ = 0, then p;
is in the ideal, and hence the assignment s cannot be part of a solution, otherwise p; is
not in the ideal, and hence s can be extended to a solution.

An alternative method is to add polynomials representing the partial assignment
(recall Example 3.2) to the system and regenerate the Grobner Basis. We then use
Hilbert’s Nullstellensatz to determine the satisfiability of the new system. Since we can
construct solutions in this way without backtracking, all solutions to a problem with n
variables, each with d possible values, can be found with at most n x d iterations.

S All timings reported in this paper were obtained using Mathematica 5.2 running under Windows XP
on a Pentium 4 processor running at 3.2GHz.

10

5 Complexity

For a general system of polynomials P, the worst-case complexity of Buchberger’s Algo-
rithm is doubly exponential in the size of P [3, Page 513], and hence it can only be used
with confidence for very small systems.

However, the systems of polynomials we are considering have the special property that
they contain a domain polynomial for each variable, limiting the possible values for that
variable to a fixed finite set. We will now show that in this special case the complexity of
Buchberger’s Algorithm is only singly exponential, and hence essentially no worse than
other general solution methods for finite domain constraint satisfaction problems, such
as backtrack search.

Lemma 5.1. Let P be a system of polynomials over x1,...,x, which contains a domain
polynomial for each variable of degree at most d. The total number of new polynomials
added to P by Buchberger’s Algorithm is at most d", each of which contains at most d"
monomials.

Proof. Note that in Algorithm 1 each polynomial h is reduced by P before being added
to the set G. If any term of h contains any variable z whose exponent is larger than d,
then it will be reduced by the domain polynomial to give a lower power of . Moreover,
each new polynomial added to G must have a different leading monomial from all current
members of G, or else it will be further reduced before being added. The number of
distinct monomials over xq,...,z,, where each power is at most d — 1 is d". Further,
each of these monomials has at most d” monomials with this property which precede it
in any monomial ordering, so each polynomial added contains at most d” monomials. [

Lemma 5.1 shows that the number of times that we can generate a new non-zero
polynomial (line 8 of Algorithm 1) is bounded by d". Each of these adds at most |P|+ d"
elements to 7' (line 9). Therefore, the central loop (lines 4-12) executes at most |P|* +
(|P|+d™)d" < (|P|+d")? times. Calculating the S-polynomials and reduced polynomials
(lines 6 and 7) are both polynomial in the size of their input (also polynomial-size in
|P| + d"). Therefore, Algorithm 1 runs in polynomial time in |P| + d".

On the other hand, our next example demonstrates that a Grobner Basis representing
a constraint problem can be very large, even for some very simple problems.

Example 5.2. Consider the constraint problem with variables zy,...,z, (each with
domain {1,...,d}) and a line of inequality constraints z; < z9 < -+ < z,.

We can construct a system of polynomials, PP, whose solutions are the solutions to this
constraint problem simply by combining the Grobner Bases for the inequality constraint
on each pair of adjacent variables, as given in Example 3.5. However, the resulting system
of dn polynomials is not a Grobner Basis for the ideal generated by P, as we shall now
demonstrate.

For any set J = {i1,i2,...,iq} such that 1 <i; <iy < --- < iy < n, we define the
polynomial p; as follows: p;(z;,,...,2i,) = (@i, — 1)(zs, — 2) - (24, — d). Note that
any solution to the constraint problem we are considering is a solution to p; = 0, so
ps € I(P). But this means that this ideal contains polynomials which have as leading

11

monomials all possible monomials of total degree d. It is known [8] that the leading
monomials of the polynomials in any Grobner Basis generate all the leading monomials
of all polynomials in the ideal. Hence P is not a Grobuer Basis. However, the much larger
set of polynomials, containing all (":ﬁzl) polynomials of the form p;, can be shown to
be a Grobner Basis with respect to any monomial ordering.

For example, when n = 10 and d = 5 this set of polynomials contains (194) = 2002
polynomials. It takes more than 7 minutes to calculate this Grobner Basis using Mathe-

matica. O

Example 5.2 shows that the size of the Grobuer Basis grows rapidly with n and d in this
case, whatever monomial ordering is used, and can be expensive to compute, even though
the underlying constraint problem is very straightforward. This is because the Grobner
Basis encodes information about all of the relationships that can be deduced between all
of the variables in the problem. In the next section we consider modifying Buchberger’s
Algorithm to obtain a system of polynomials which encodes only local relationships among
the variables.

6 A Weaker Form of Basis

In order to obtain a polynomial-time variant of Buchberger’s Algorithm, we will now
describe a modified form of the basic algorithm which will generally be incomplete, in
the sense that it generates a system of polynomials which may not always be a Grobner
Basis, but can still provide useful information, as we will establish below. This approach
has been previously studied by Clegg et al. [6] for the special case of constraint problems
over Boolean domains (that is, for instances of the SATISFIABILITY problem). In this
section we will extend their approach to a more general setting by defining a new form
of basis for a polynomial system.
We first define a link between Grobner Bases and a certain proof system.

Definition 6.1. Given a system of polynomials P from Kz, ..., z,] we define a derivation-
proof from P of a polynomial f to be a sequence of polynomials (f1,..., fy) such that
fo=1f, and fori=1,...,b, we have:

ElpEPU{fl,...,fi_l},EIUEK[Il,...,ZEn],fi:p’u \
af_’lafk € {fla"'7fifl}7 fl :fj+fk

If there exists a derivation-proof of f from P, then we denote this by P F f.

Notice that a polynomial f has a derivation-proof from some system of polynomials
P if and only if f is in the ideal generated by P. Hence, by Theorem 4.8, given a Grobner
Basis G, and a polynomial f, f|¢ =0 if and only if G F f.

In order to obtain more efficient algorithms for processing polynomials we will now
restrict the notion of a derivation-proof, in order to define a weaker form of proof system,
and a correspondingly weaker notion of basis. We do this by restricting the polynomials
that can be used in a derivation.

12

Definition 6.2. A derivation-proof (f1,...,fy) is called a ¢-proof if the polynomial
derived at every step satisfies a specified property ¢ (that is, ¢(f;) holds, fori=1,...,b).
If there exists a ¢-proof of f from P then we write Pty f.

We will say that a system of polynomials G is a ¢-basis if, for any polynomial f
satisfying ¢, flg = 0 if and only if G k4 f.

Our next theorem will establish a sufficient condition for a system of polynomials
to be a ¢-basis, for a broad class of properties ¢. The proof is similar in style to the
usual proof that “Buchberger’s S-pair criterion” is a sufficient condition to establish a
Grobner Basis (see, for example, [8, Page 83, Theorem 6]). First we need some technical
definitions, and a standard lemma.

Definition 6.3. Given a system of polynomials P, and a property ¢, we say that a
polynomial f has a ¢-representation over P if f can be written as), p;h; where each
pi € P, and each p;h; satisfies ¢.

Given a system of polynomials P, and a monomial ordering <, we say that a polyno-
mial f is semi-reducible over P with respect to < if f can be written as), p;h; where
each p; € P, and each p;h; satisfies LM(p;h;) < LM(f).

Lemma 6.4 ([8, Page 81, Lemma 5]). Suppose we have a linear sum of polynomials
Yoiiycifi, where ¢; € K and LM(f;) = p for all 4.

Ifm(Y7 cifi) < p, then Y7 ¢ifi is a linear sum, with coefficents in K, of the
S-polynomials S-Pol (f;, fx) for 1 < j,k < s. Furthermore, LM(S-Pol (f;, fx)) < u for
each j,k.

Theorem 6.5. Let < be a monomial ordering, and let ¢ be a property of polynomials
such that if ¢(f) holds, and LM(g) = LM(f), then ¢(g) also holds.

Let Q be a system of polynomials such that, for all q1,qs € Q, if S-Pol(q1,q2) satisfies
¢, then S-Pol (q1,q2) is semi-reducible over @ with respect to <.

Then for any polynomial p satisfying ¢ the following are equivalent:

1. Q |—¢ Py
2. p is ¢p-representable over Q;

3. p is semi-reducible over Q) with respect to <;

4- plg =0

Proof. We first show that (2) < (3).

To establish that (2) = (3), assume for contradiction that there exists some polyno-
mial p which is ¢-representable over () but not semi-reducible over @ with respect to <.
Since p is ¢-representable, we know that p can be expressed as) h;q;, where each ¢; € Q
and each h;q; satisfies ¢. Since p is not semi-reducible, we know that in any such repre-
sentation LM(p) < max;{LM(h;q;)}. Choose a representation for which max;{LM(h;q;)} is
minimal (according to <) and call this monomial /.

13

If we set I = {i : LM(h;q;) = pp}, then we obtain:

p=>> vrr(h)g+ Y (hi—vr(hi))gi +) hig;

icl icl il

where all of the polynomials in the first summation have leading monomial /i, and all
polynomials in the other summations have a leading monomial which is strictly smaller
(according to <).

By Lemma 6.4, we can express the first summation as a linear sum of S-polynomials
of pairs of LT(h;)g; terms. We can then rewrite these S-polynomials, as follows, where we
write L for LoM(LT(g;),LT(gx)):

Hp Hp
S-Pol hi)q; h =" hi)gg — ——F—— h
o (LT(])qJ’LT(k)qk) LT(hJ)LT(qJ) LT(])q] LT(hk) LT(Qk) LT(k)qk
__Hp My
ir(g) ¥ (g
:&< Lk . Lik qk>
Ljx \vr(g;) 7 vr(qr)
Hp
= —— S-Pol (g; .
Ly S-Pol (g, qr.)

By Lemma 6.4, each S-Pol(LT(h;)q;,LT(ht)qr) has leading monomial strictly smaller
than p,, and hence so does each S-Pol (¢;,qx). By our choice of property ¢, this means
that each S-Pol(gj,qy) satisfies ¢. By our assumption about @, this mean that each
S-Pol (¢, qx) is semi-reducible over @ with respect to <. Hence we can express each
S-Pol (L1(hj)q;,LT(hk)gr) as a sum of polynomials from @ with polynomial coefficients
where each term in the summation has leading monomial strictly smaller than f,. This
contradicts the minimality of y, and hence establishes the result that (2) = (3).

The converse is straightforward: by the choice of property ¢, it follows immediately
from Definition 6.3 that any polynomial which is semi-reducible and satisfies ¢ is also
¢-representable. Hence (3) = (2).

Next we show that (1) < (2). Let p be any polynomial such that Q k4 p. We will
show that p is ¢-representable over () by induction on the length of the ¢-proof of p from
@ (see Definition 6.1). For the base case, if p = qu, for some ¢ € @), and p satisfies ¢,
then p is clearly ¢-representable over ().

Now assume that p has a ¢-proof of length 4, and the result holds for all shorter
proofs.

If p = fju for some f; with a shorter proof, then we know by the induction hypothesis
that f; is ¢-representable over (), and hence semi-reducible over () with respect to <,
by the argument above. This means that f; =) h;q; where LM(h;q;) < LM(f;). Hence
p = Y higiu where LM(h;q;u) < LM(f;ju) = LM(p). Hence in this case p is semi-reducible
over () with respect to <, and hence ¢-representable, by the argument above.

If p = fj + fi for some f;, fi with shorter proofs, then we know by the induction
hypothesis that f; and f; are ¢-representable over (). Adding these representations gives
a ¢-representation for p over Q).

14

Hence, in all cases p is ¢-representable, so we have shown that (1) = (2).

The converse is immediate from Definition 6.3 and Definition 6.1, since any polynomial
which is ¢-representable over a set () clearly has a ¢-proof from Q).

Finally, we show that (3) < (4). Assume for contradiction that there exists a polyno-
mial p satisfying ¢ which is semi-reducible over with respect to <, but with p|g # 0.
Chose such a polynomial whose leading monomial is as small as possible (according to
<). Since p is semi-reducible, we know that p can be expressed as > h;g;, where each
gi in @ and each h;q; satisfies LM(h;g;) < LM(p). In this summation there must exist at
least one h;g; such that LM(h;g;) = LM(p), and for this value of i we have LT(¢;)|LT(p).

Now consider the polynomial p’ = p — ETT(((Z)) qi-

By the results above, Q) -4 p. Hence Q) k4 p', so p/ is also semi-reducible over) with
respect to <, by the results above. Since the leading monomial of p’ is strictly smaller
than the leading monomial of p, we know by the choice of p that p'|¢p = 0. However
this implies that p|g = 0, which contradicts the choice of p. Hence we have shown that
(3) = (4).

The converse follows immediately from Definition 4.6, since any polynomial which
reduces to 0 over (Q must be semi-reducible over Q). O

We have shown that the conditions described in Theorem 6.5 are sufficient to ensure
that the system of polynomials () is a ¢-basis. Now consider a modified form of the origi-
nal Buchberger Algorithm, as shown in Algorithm 1, which only considers S-polynomials
which satisfy the property ¢. In other words, the algorithm only performs lines 7-11 when
the S-polynomial h satisfies ¢. Such a modified form of the algorithm will be called a
¢-truncated Buchberger Algorithm. When ¢ is a property of the form specified in The-
orem 6.5, the system of polynomials computed by a ¢-truncated Buchberger Algorithm
will satisfy the conditions of Theorem 6.5, and hence will be a ¢-basis.

Even though a ¢-basis computed in this way is not guaranteed to be a Grobner Basis,
it does generate the same ideal as the original system of polynomials, and can reveal
significant information about this ideal, and hence the corresponding set of solutions.
Moreover, we will show below that for some classes of problems computing a ¢-basis in
this way (for an appropriate choice of ¢) is sufficient to decide whether any solutions
exist.

Moreover, for some choices of the property ¢, the time complexity of the ¢-truncated
Buchberger Algorithm is much lower than the time complexity of the complete Buchberger
Algorithm.

The first specific property ¢ that we consider is based on the total degree of the
monomials occurring in a polynomial. We will say that a polynomial satisfies the property
[degree < m] if, for each of its monomials ;%' - - - z,*", the sum of the exponents > ;" | «;
is at most m. We first need to ensure that the monomial ordering we are using has the
property that if 4 satisfies the [degree < m| property, and pg < p1, then pg also satisfies
the [degree < m] property. Such an ordering is called a graded monomial ordering. Many
such orderings exist, including the standard total degree lexicographic ordering [3, 8] (see
Example 4.3).

15

Lemma 6.6. Let P be a system of polynomials from Klzy,...,z,]. The total number of
new polynomials added to P by the [degree < m]-truncated Buchberger Algorithm using
any graded monomial ordering is at most (nj;lm), each of which contains fewer than (nj;lm),

monomials.

Proof. Similar to the proof of Lemma 5.1, except that the number of distinct monomials
over xi,..., T, satisfying [degree < m] is (":“nm), and each of these therefore has fewer
than (njnm), monomials which precede it in any graded monomial ordering. O

By a similar argument to the argument given for the full algorithm above, this result
implies that the truncated algorithm is polynomial-time in |P| and (";m) The value of

+ . . .
("F™) is O(n™), and therefore polynomial in n for fixed m.

7 Local Consistency

In this section we show that the local consistency algorithms used in constraint program-
ming can be expressed by ¢-proofs on the corresponding systems of polynomials, for a
suitable choice of property ¢. By relating this property to the property [degree < m]
considered in the previous section, we show that a local consistency algorithm can be
simulated by a truncated Buchberger Algorithm, and hence any information obtained
by enforcing local counsistency can be obtained by performing a truncated Buchberger
Algorithm.

A constraint problem is said to be strong k-consistent if any consistent assignment
to k — 1 or fewer variables can be extended to a consistent assignment to any additional
variable. Strong k-consistency can be enforced in polynomial-time (for any fixed k) [7].
One method of achieving this is given in Algorithm 7.1.

Algorithm 7.1 (Enforcing strong (k-+1)-consistency).

1. For each set of k or fewer variables, define a new constraint, equal to the relational
join of the projections of all constraints onto those variables.

2. Replace each constraint by the relational join of that constraint with the projections
of all other constraints onto its variables.

3. Repeat (2) until no changes are made.

It is known that, for several broad classes of constraint problems, the existence of
a solution can be decided by enforcing strong k-consistency. These include problems
with bounded tree-width [11] and problems where the constraints are binary and maz-
closed [15].

We now observe that if our original constraints each involve at most k£ variables,
then the operations described in Algorithm 7.1 only ever involve constraints on k or
fewer variables. These operations can be simulated using operations on polynomials
representing the constraints in such a way that the polynomials computed never involve
more than k variables. (For example, projection of a constraint onto some subset of

16

variables can be simulated using the Extension Theorem [8, Page 115] on some Grébner
Basis of the system which is generated using a lexicographic monomial ordering.)

We will say that a polynomial satisfies the property [#vars < k] if it involves at most
k variables. Recall that if some system of polynomials over at most k variables has no
solution then, by Hilbert’s Nullstellensatz, any Grobner Basis of this system must contain
a constant polynomial. This implies that there is a [#vars < k|-proof of 1 from these
polynomials.

Now counsider any constraint problem represented by a system of polynomials P, where
each polynomial in P satisfies [#vars < k]. Our observations above imply that, if applying
strong (k4 1)-consistency to this constraint problem results in an empty constraint, then
there must be a [#vars < k]-proof of 1 from P.

Unfortunately, the property [#vars < k| does not satisfy the conditions of Theo-
rem 6.5 with any standard monomial ordering, and it does not seem to be possible to
verify directly whether a polynomial has a [#vars < k]-proof of 1 using a [#vars < k-
truncated Buchberger Algorithm. However, the next two results show that the existence
of a [#vars < k]-proof of 1 implies the existence of a [degree < k x (d — 1) + 1]-proof of
1, where d is the maximum domain size.

Lemma 7.2. Let Q) be a set of domain polynomaials for z1,...,xz,, with degree at most d.
For any polynomial u from Klz1,...,z,], if u satisfies [#vars < k], then u|g is uniquely
defined, and satisfies both [#vars < k] and [degree < k x (d — 1)].

Proof. By Example 4.12, any set of domain polynomials forms a Grobner Basis, and so
we can reduce any polynomial by this set and obtain a unique result.

If & monomial in w is reduced by the domain polynomial for variable z, it must have
contained z and therefore the resulting monomials introduced cannot contain any more
variables than the monomial being reduced. This means that reduction by the domain
polynomials preserves the property [#vars < k].

After all possible reductions have been performed, no monomial can contain a power
of any variable higher than d — 1, else it could be further reduced. As no monomial
can contain more than k variables, this means all monomials must satisfy [degree <
kx (d—1)]. O

Theorem 7.3. Let p1,...,pm,u be polynomials from Kz, ..., x,], and let Q be a set of
domain polynomials for x1,...,x,, of degree at most d. If each p; satisfies [#vars < k|,

and {p1,-..,Pm} Figvars<i] U, then
{p1|Q7 S apm|Q} ue l_[degreegkx(dfl)+l] U|Q :

Proof. We first note that d < k x (d — 1) + 1, so each domain polynomial in () satisfies
[degree < k x (d — 1) + 1]. Moreover, by Lemma 7.2, the polynomials p1|g, . ..,pm|g and
u|q also all satisfy [degree < k x (d — 1) + 1].

Assume that the derivation-proof of u from {pi,...,p,} is given by the list of poly-
nomials (f1,..., fp). By induction on the length of this proof, b, we shall show that we
can obtain a [degree < k x (d — 1) + 1]-derivation of u|g from {p1|g,...,pmlo} U Q.

17

If fy is derived by adding two earlier polynomials f; and fg, then it is straightforward
to show that fy|g = fj|lg + fklg, so by the induction hypothesis we are done.

If f3 is derived by multiplying some polynomial p from the set {p1,...,pm }U{f1,-.., fo—1}

by some arbitrary polynomial h from Kzy,...,z,], then, without loss of generality, we
may assume that h is a polynomial consisting of a single variable, say . There are then
two cases to consider:

e (pz)|g = (plg)z; this means that fylg = (p|g)z, so by the induction hypothesis,
we are done.

e (pz)|g # (p|lg)z; this can only happen if (p|g)z contains some monomials where the
exponent of z is equal to the degree of ¢;, where ¢; is the domain polynomial for x.
In this case we can subtract appropriate multiples of ¢; to obtain (pz)|g, and hence,
by the induction hypothesis, obtain a (possibly longer) [degree < k x (d — 1) + 1]-
proof of f;|g from {pi|q,...,pmlo} U Q.

O

It follows from Theorem 7.3 that we can check for the existence of a [#vars < k]-proof
indirectly, using a [degree < m]-truncated Buchberger Algorithm, for m =k x (d—1)+1.
Hence, for a fixed domain size d, any constraint problem which can be decided by strong
k-consistency can be decided in polynomial-time by a truncated Buchberger Algorithm.

8 Adaptive Consistency

Another local consistency method which is commonly used in constraint programming is
to vary the level of consistency which is enforced during the solution process depending
on the local structure of the constraints. This technique is known as adaptive consis-
tency [10], and is often implemented using a general algorithmic framework called bucket
elimination [9].

The bucket elimination algorithm for a constraint problem proceeds as follows. It
first orders the variables of the problem, and then partitions the constraints into separate
collections, known as buckets. Each bucket is associated with a particular variable. The
bucket associated with variable x contains all the constraints involving the variable x
which do not involve any variables occurring higher in the ordering. In other words, each
constraint is allocated to the bucket which is associated with whichever of the variables
of that constraint occurs highest in the ordering. Buckets are then processed in order,
according to the chosen variable ordering on their associated variables, from highest to
lowest. When the bucket associated with a variable z is processed, an “elimination proce-
dure” is performed over all the constraints in that bucket, yielding a new constraint that
does not involve the variable . This new constraint specifies the “effect” of the variable
z on the remainder of the problem. In other words, it allows just those combinations
of values that are allowed by the constraints in the bucket along with some value for .
The new constraint is then placed in the appropriate (lower) bucket and the processing
continues until all buckets are processed, or some constraint is generated which allows no
solutions, in which case the problem is declared to be insoluble.

18

bucketeliminate[polys_, vars_] :=Module[{buckets = {}, newpolys = polys},
Scan|[(buckets = Join[buckets, bucketassign[newpolys, vars]];
newpolys = GroebnerBasis[Cases[buckets, {{#}, poly } - poly], vars, {#}];
If[newpolys == {1},
Print["Unsatisfiable at variable ", #]; Return[False]];) &,

vars]]

bucketassign[polys_, vars] :=
Map|[{Select[vars, Function[var, MemberQ[Variables[#], var]], 1], #} &, polys]

Figure 1: Bucket elimination for a system of polynomials implemented in Mathematica

If constraints are represented by systems of polynomials, in the way that we are
proposing here, then bucket elimination can be implemented very simply using Grobner
Basis calculations. For each variable x, the bucket associated with = is assigned a subset
of the polynomials in the given system, consisting of all polynomials over z (and possibly
other variables lower in the ordering). If we calculate a Grébner Basis for these polyno-
mials, with respect to an appropriate elimination ordering [1], then the new constraint
we require is represented by the subset of polynomials in this Grobner Basis which do not
involve z. These new polynomials can then be allocated to lower buckets and processing
continues. An implementation of this algorithm as a Mathematica function is shown in
Figure 1, where the arguments are the set of polynomials, and the ordered list of variables
(highest first). A subsidiary function is also shown in the figure, which associates each
polynomial in the given set with the name of a variable indicating the bucket to which
that polynomial is allocated.

The complexity of the bucket elimination algorithm is exponential in a structural
parameter of the given constraint problem, called the induced width [9]. This value
depends on the way in which the constraints overlap and the chosen variable ordering.
For problems with (known) bounded tree-width it is possible to find (in polynomial time)
a variable ordering such that the induced width is also bounded, so all such problems can
be solved in polynomial time.

Example 8.1. Recall the simple constraint problem discussed in Example 5.2, with

variables z1,...,z, (each with domain {1,...,d}) and a line of inequality constraints:
1 < z9 < --- < xy,. It was shown in Example 5.2 that any Grobner Basis for this
n—+d

problem contains (d) polynomials, and the time required to compute such a Basis rises
rapidly with n and d.

However, if the variables are ordered along the line, the induced width of this problem
is 1, and the bucket elimination algorithm never has to deal with polynomials over more
than 2 variables. This means that the time required to decide whether a solution exists
increases only linearly with the number of variables in the problem.

For example, when n = 10 and d = 5 the Mathematica implementation shown in
Figure 1 verifies that the corresponding constraint problem is soluble in 0.015 seconds.

O

19

9 Conclusion

We have shown how polynomials provide a powerful general language for expressing many
different forms of constraint problems.

Once a problem has been expressed with a corresponding system of polynomials,
we have described a standard technique to find a new system of polynomials with the
same set of solutions, called a Grobner Basis. A Grobner Basis provides a convenient
representation of all the solutions to a system of polynomials and hence of all solutions to
the original constraint problem. It can be computed using a standard computer algebra
package, and can be used to answer many different questions about the solutions in a
straightforward way.

We have also shown that we may truncate the standard Grobner Basis algorithm
by defining a property which all polynomials added to the system must satisfy. If this
property is suitably specified, then the algorithm generates a useful system of polynomials
with the same solutions in polynomial time, albeit not normally a Grobner Basis. We
have demonstrated that we can use this truncated algorithm to achieve a kind of local
consistency which can simulate the k-consistency algorithms commonly used in constraint
programming.

Finally we have shown that adaptive consistency techniques for constraint problems
can be implemented very easily using Grobuner Basis techniques.

This paper presents our initial findings on using Grobner Basis techniques for solving
constraint problems. Obvious directions for future research are to determine for which
classes of constraint problems these techniques can efficiently find solutions, and to refine
the techniques so that they can be implemented more efficiently.

References

[1] W. Adams and P. Loustaunau. An Introduction to Grobner Bases. Graduate Studies
in Mathematics. American Mathematical Society, 1994.

[2] A. Aiba, K. Sakai, Y. Sato, D. Hawley, and R. Hasegawa. Constraint logic pro-
gramming language CAL. In Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 263—-76. Ohmsha Publishers, 1988.

[3] T. Becker and V. Weispfenning. Grébner Bases A Computational Approach to
Commutative Algebra. Graduate Texts in Mathematics. Springer, 1993.

[4] B. Buchberger. Grébner bases: An algorithmic method in polynomial ideal the-
ory. In R. Bose, editor, Multidimensional Systems Theory, Mathematics and Its
Applications, chapter 6, pages 184-232. D. Reidel Publishing Company, 1985.

[5] B. Buchberger and M. Moeller. The construction of multivariate polynomials with
preassigned zeros. In Computer Algebra, EUROCAM 82, number 144 in LNCS,
pages 24-31, 1982.

20

[6]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner basis algorithm to
find proofs of unsatisfiability. In STOC ’96: Proceedings of the 28th ACM Symposium
on Theory of Computing, pages 174-183. ACM Press, 1996.

M. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41:89-95,
1989.

D. Cox, J. Little, and J. O’Shea. Ideals, Varieties, and Algorithms An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, 1996.

R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41-85, 1999.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

E. Freuder. A sufficient condition for backtrack-bounded search. Journal of the
ACM, 32:755-761, 1985.

R. Gault and P. Jeavons. Implementing a test for tractability. Journal of Constraints,
9:139-160, 2004.

L. Granvilliers, E. Monfroy, and F. Benhamou. Symbolic-interval cooperation in
constraint programming. In Proceedings of ISSAC 2001, pages 150-166, 2001.

H. Hong. RISC-CLP(Real): Constraint logic programming over real numbers. In
B. F. and A. Colmerauer, editors, Constraint Logic Programming: Selected Research.
MIT Press, 1993.

P. Jeavons and M. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79(2):327-339, 1995.

E. Monfroy. The constraint solver collaboration language of BALI. In In Proceedings
of JCSLP 1998, pages 349-350, 1998.

F. Rossi, P. van Beek, and T. Walsh, editors. The Handbook of Constraint Program-
ming. Elsevier, 2006.

21

