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Abstra
tIn this paper we investigate the use of a system of multivariate polynomials torepresent the restri
tions imposed by a 
olle
tion of 
onstraints. The advantage ofusing polynomials to represent 
onstraints is that it allows many di�erent forms of
onstraints to be treated in a uniform way. Systems of polynomials have been widelystudied, and a number of general te
hniques have been developed, in
luding algo-rithms that generate an equivalent system with 
ertain desirable properties, 
alled aGr�obner Basis. General algorithms to 
ompute a Gr�obner Basis have doubly expo-nential 
omplexity, but we observe that for the systems we use to des
ribe 
onstraintproblems over �nite domains a Gr�obner Basis 
an be 
omputed more eÆ
iently thanthis. We also des
ribe a family of algorithms, related to the 
al
ulation of Gr�obnerBases, that 
an be used on any system of polynomials to 
ompute an equivalent sys-tem in polynomial time. We show that these modi�ed algorithms 
an simulate thee�e
t of the lo
al-
onsisten
y algorithms used in 
onstraint programming. Finally,we des
ribe how these algorithms 
an be used in a similar way to lo
al 
onsisten
yte
hniques to solve 
ertain broad 
lasses of 
onstraint problems in polynomial time.1 Introdu
tionThe 
onstraint programming paradigm [17℄ involves modelling a real-world problem asa set of variables together with a set of 
onstraints; the 
onstraints restri
t the allowed
ombinations of values that 
an be simultaneously assigned to the variables. As well as
apturing many pra
ti
al 
omputational problems, this very general paradigm in
ludes anumber of spe
ial 
ases 
orresponding to problems with parti
ular forms of 
onstraints,su
h as Integer Programming and Satisfiability. The study of eÆ
ient ways torepresent and solve su
h 
onstraint problems is 
urrently a very a
tive area of resear
hwithin arti�
ial intelligen
e [17℄.In a 
onstraint programming system ea
h variable has to be assigned a value fromsome spe
i�ed (often �nite) domain, and ea
h 
onstraint des
ribes the set of allowed
ombinations of values for some subset of the variables. A 
onstraint may sometimesbe spe
i�ed expli
itly, by listing the allowed (or disallowed) 
ombinations of values ina table. More often, a 
onstraint is spe
i�ed impli
itly by using some 
ombination ofavailable predi
ates, equations, inequalities and logi
al 
onne
tives.In this paper we explore the use of systems of polynomials to spe
ify 
onstraints. Wewill say that a system of polynomials allows a parti
ular 
ombination of values for a setof variables if the simultaneous assignment of those values to the variables makes all ofthe polynomials in the system evaluate to zero. Su
h an assignment is 
alled a solutionto the system of polynomials.The use of systems of polynomials has been 
onsidered a number of times in the
onstraints literature [2, 13, 14, 16℄, but is typi
ally used to represent 
onstraints on
ontinuous variables. Here we fo
us on the use of polynomials to represent �nite-domain
onstraints. The advantage of representing su
h 
onstraints using polynomials is thatthey 
an then be treated in a uniform way along with 
ontinuous 
onstraints, allowingthe development of very general 
onstraint-solving te
hniques. Another advantage is thatsystems of polynomials 
an be pro
essed by standard 
omputer algebra pa
kages su
h as1



Mathemati
a and REDUCE, so our approa
h helps to unify 
onstraint programmingwith other forms of mathemati
al programming. The approa
h of using polynomials torepresent �nite-domain 
onstraints has previously been explored by Clegg, Edmonds andImpagliazzo, but only for the spe
ial 
ase of Satisfiability problems [6℄.Polynomials provide a very 
exible and generi
 representation for problems from awide variety of areas, and they have been intensively studied. In parti
ular, Bu
hberger [4℄showed that for any system of polynomials it is possible to 
ompute an equivalent systemwith a number of desirable properties, whi
h he 
alled a Gr�obner Basis. Given a Gr�obnerBasis, it is possible to obtain the solutions to a system of polynomials very easily (ordetermine that it has no solutions). A Gr�obner Basis provides a 
onvenient representationfor the whole set of solutions whi
h 
an be used to answer a wide range of questionsabout them, su
h as the 
orrelations between individual variables, or the total numberof solutions.In general, the 
omplexity of 
omputing a Gr�obner Basis for a system of polynomialsis doubly exponential in the size of the system, ex
ept in 
ertain spe
ial 
ases. However,we show in Se
tion 5 that for the systems we use to represent 
onstraints over �nitedomains this 
omplexity is only singly exponential, and so is 
omparable with othergeneral sear
h te
hniques. In Se
tion 6 we dis
uss a modi�ed form of the algorithm for
omputing a Gr�obner Basis whi
h runs in polynomial time, but is in
omplete, in thesense that it 
omputes a system whi
h is not ne
essarily a Gr�obner Basis. The system
omputed by our modi�ed algorithm has the same solutions as the original system andrepresents a set of equivalent 
onstraints whi
h is lo
ally 
onsistent. We show in Se
tion 7that this modi�ed form of the algorithm 
an be used to a
hieve the same bene�ts as thelo
al-
onsisten
y algorithms whi
h are widely used in 
onstraint pro
essing. Finally, inSe
tion 8 we dis
uss the use of adaptive 
onsisten
y te
hniques for systems of polynomials.2 Polynomials, Varieties and IdealsIn this se
tion we introdu
e the basi
 
on
epts related to polynomials whi
h are usedthroughout the paper. For a more detailed introdu
tion see, for example, [8℄.De�nition 2.1. Let K be any �eld and fx1; : : : ; xng a set of variables. A polyno-mial p(x1; : : : ; xn) over K with variables x1; : : : ; xn is a �nite sum of terms of theform �x1�1 � � � xn�n , where � 2 K and �i 2 f0; 1; 2; : : :g, i = 1; : : : ; n. A single prod-u
t x1�1 � � � xn�n is 
alled a monomial2 over fx1; : : : ; xng.The set of all polynomials over K with variables x1; : : : ; xn, together with the standardaddition and multipli
ation operations, forms a ring, whi
h is denoted K [x1 ; : : : ; xn℄. Asystem of polynomials is a set of polynomials whi
h all belong to the same polynomialring; this set may be �nite or in�nite.2Unfortunately, the words \term" and \monomial" are used by some authors the opposite way round!Here we follow the terminology of [8℄. 2



De�nition 2.2. Let P be a system of polynomials from K [x1 ; : : : ; xn℄. The variety ofP , denoted V (P ), is the set of all solutions to P , that is,V (P ) = fh �1; : : : ; �n i 2 K n : 8p 2 P ; p(�1; : : : ; �n) = 0g :De�nition 2.3. An ideal I over the polynomial ring K [x1 ; : : : ; xn℄ is a system of poly-nomials from K [x1 ; : : : ; xn℄ whi
h satis�es the following 
onditions:1. For all f1; f2 2 I we have that f1 + f2 2 I;2. For all u 2 K [x1 ; : : : ; xn℄ and all f 2 I we have that uf 2 I.De�nition 2.4. Let fp1; : : : ; pmg be a �nite system of polynomials from K [x1 ; : : : ; xn℄.The ideal generated by fp1; : : : ; pmg, denoted I (fp1; : : : ; pmg), is given byI (fp1; : : : ; pmg) = ( mXi=1 uipi : ui 2 K [x1 ; : : : ; xn℄) :Given a �nite system of polynomials P = fp1; : : : ; pmg, from K [x1 ; : : : ; xn℄, it is easyto see that the ideal generated by P has exa
tly the same set of solutions as the originalsystem, that is, V (I (P )) = V (P ).Example 2.5. In this example, assume the polynomials are drawn from C [x; y; z℄, whereC is the �eld of 
omplex numbers.The ideal I (fx+ y; y + zg) has variety fh a;�a; a i : a 2 C g.The ideal I (fx(x� 1); y + x� 3; z � xg) has variety fh 0; 3; 0 i ; h 1; 2; 1 ig. �There are two standard ways to 
ombine ideals to obtain new ideals:De�nition 2.6. The sum of two ideals I and J , denoted by I + J , is de�ned by I + J =ff + g : f 2 I; g 2 Jg. The produ
t of two ideals I and J , denoted by I � J , is de�nedby I � J = ffg : f 2 I; g 2 Jg.These two standard ways of 
ombining two ideals have a straightforward e�e
t on the
orresponding varieties, as the next result indi
ates.Lemma 2.7 ([8℄). For any pair of ideals I and J , we have:1. V (I + J) = V (I) \V (J);2. V (I � J) = V (I) [V (J).Furthermore, given two �nite systems of polynomials, they 
an be 
ombined in straight-forward ways to obtain generating sets for the sum and produ
t of their 
orrespondingideals, as the next result indi
ates.Lemma 2.8 ([8℄). For any pair of ideals I = I (fp1; : : : ; pmg) and J = I (fq1; : : : ; qlg),we have: 3



1. I + J = I (fp1; : : : ; pm; q1; : : : ; qlg);2. I � J = I (fpiqj : i 2 f1; : : : ;mg; j 2 f1; : : : ; lgg).Combining Lemmas 2.7 and 2.8, if we have two �nite systems of polynomials, ea
hwith an asso
iated set of solutions, then it is easy to obtain a new system of polynomialswhose solutions are pre
isely the union or interse
tion of these two sets of solutions.For example, in the 
ase of the interse
tion, we simply 
on
atenate the two systems ofpolynomials.3 Representing Constraints by Systems of PolynomialsIn this se
tion we show how various forms of 
onstraint 
an be mapped to a system ofpolynomials whose set of solutions is pre
isely the set of 
ombinations of values allowedby the 
onstraint. If we do this for ea
h 
onstraint in a problem, then by the observationabove, we 
an simply 
on
atenate the systems of polynomials we obtain to 
reate a systemwhi
h represents the entire problem.We shall assume for simpli
ity that ea
h variable in the 
onstraints we are trying torepresent has a spe
i�ed domain of possible values, and that these values are representedby natural numbers. Hen
e ea
h 
onstraint allows some set of tuples of natural numbers.We shall represent a 
onstraint over some subset of the variables x1; : : : ; xn by asystem of polynomials from C [x1 ; : : : ; xn℄. The solutions to this system will be pre
iselythe assignments (of natural numbers) that satisfy the 
onstraint.First note that we 
an restri
t the domain of possible values for ea
h individualvariable to a spe
i�ed �nite set by in
luding in our system a polynomial of the followingform for ea
h variable.De�nition 3.1. The domain polynomial of a variable x with domain D is the poly-nomial Qj2D(x � j).In this paper we shall assume that all the variables have �nite domains and we willalways in
lude a domain polynomial for ea
h variable in the system used to represent a
onstraint (even though they are sometimes redundant). This has the advantage3 thatit makes our solution methods 
omplete, and provides a simple bound on the 
omplexity(see Se
tions 4 and 5). Note that the system of polynomials 
onsisting of just the domainpolynomials for the variables x1; : : : ; xr represents the rather trivial 
onstraint whi
hallows all possible 
ombinations of values (from the domains) for these variables.Example 3.2. [Constant 
onstraints℄ Probably the simplest non-trivial form of 
on-straint on a 
olle
tion of variables hx1; : : : ; xr i is a 
onstant 
onstraint whi
h allowsonly a single assignment, say h �1; : : : ; �r i, assigning �i to xi for i = 1; : : : ; r. This 
on-straint is easily represented by the system of polynomials fx1� �1; x2� �2; : : : ; xr � �rg,whi
h has just one solution 
orresponding to the single allowed assignment. �3It has the further te
hni
al advantage that it ensures that the ideals generated by our systems ofpolynomials are radi
al [3, Lemma 8.19℄. 4



Example 3.3. [Disjun
tive 
onstraints℄ Some forms of 
onstraint, su
h as the propo-sitional 
lauses used in the Satisfiability problem, are spe
i�ed as a disjun
tion ofsimpler 
onstraints. Using Lemmas 2.7 and 2.8, it follows that any su
h 
onstraint 
anbe represented by the system of polynomials 
onsisting of the set of all produ
ts of allthe polynomials in the systems representing the disjun
ts. For example, 
onsider thepolynomial Qi2f1;:::;rg(xi � �i). This polynomial is satis�ed if, for some i 2 f1; : : : ; rg,we have that xi is assigned �i. In other words, at least one of the xi's is assigned theasso
iated �i. This type of polynomial 
an therefore be used to represent a 
lause in aninstan
e of Satisfiability, by setting ea
h �i to either 0 or 1, depending on whetherthe 
orresponding literal in the 
lause is negative or positive. For example, the 
lause:x _ y _ :z is represented by the polynomial x(y � 1)z, whi
h is equal to xyz � xz. �Example 3.4. [Linear Equations℄ Any linear equation involving variables x1; : : : ; xr 
anbe written in the form p(x1; : : : ; xr) = 0, where p is a spe
ial form of polynomial in whi
hP�i � 1 for all terms �x1�1 � � � xr�r . This means that any 
onstraint whi
h is expressedby one or more linear equations is naturally represented by a system of polynomials. Thisin
ludes many of the 
onstraints en
ountered in Integer Programming problems. �Example 3.5. [Inequality℄ Consider the 
onstraint \x � y" over the variables x and ywhi
h ea
h have the domain f1; 2; : : : ; dg. The set of solutions to this 
onstraint 
an berepresented by the system of polynomials P = fpi(x; y) : i = 1; : : : ; dg, wherepi(x; y) = Y1�j�i(x� j) Yi+1�j�d(y � j): �Example 3.6. [Table 
onstraints℄ Any 
onstraint whi
h spe
i�es an expli
it list of al-lowed 
ombinations 
an be seen as a disjun
tion of 
onstant 
onstraints, so in prin
iplewe 
an use the methods des
ribed in Examples 3.2 and 3.3 to build a suitable system ofpolynomials to represent su
h 
onstraints. However, in pra
ti
e this method has a majorlimitation, in that it may produ
e systems of huge size.Fortunately, there is a more sophisti
ated algorithm whi
h 
omputes a system ofpolynomials with a spe
i�ed �nite set of solutions in polynomial time in the size of thatset [5℄. In other words, there is a known algorithm whi
h 
an be used to �nd a system ofpolynomials to represent any 
onstraint spe
i�ed by an expli
it list of allowed tuples inpolynomial time. �The examples above illustrate how 
onstraints spe
i�ed in various ways 
an be mappedto systems of polynomials whose solutions are pre
isely the 
ombinations of values allowedby the 
onstraints.4 Gr�obner BasesOn
e we have 
onstru
ted a system of polynomials whose solutions are pre
isely theassignments that satisfy a given 
olle
tion of 
onstraints, there are a number of questions5



we may wish to ask, su
h as: Does this system of polynomials have a solution? Does x3take the value 7 in all solutions? In this se
tion we examine ways in whi
h a system ofpolynomials 
an be manipulated to obtain a new system with the same set of solutionswhi
h makes answering su
h questions easier.Note that any two systems of polynomials whi
h generate the same ideal have thesame sets of solutions, sin
e the variety of a system of polynomials is equal to the varietyof the ideal that it generates. It turns out that a system of polynomials is parti
ularly
onvenient to work with if it is a Gr�obner Basis for the ideal that it generates. To de�nethis property, we �rst have to de�ne an ordering for the monomials in our polynomials.De�nition 4.1. A monomial ordering, �, on a set of variables fx1; : : : ; xng is a totalordering on monomials over fx1; : : : ; xng whi
h satis�es the 
onditions:1. For all monomials �1, �2 and �3 we have �1 � �2 ) �1 � �3 � �2 � �3;2. Every non-empty set of monomials has a smallest element with respe
t to �.Example 4.2. One important monomial ordering is the lexi
ographi
 ordering, �lex,whi
h is de�ned byx1�1 � � � xn�n �lex x1�1 � � � xn�n () h�1; : : : ; �n i < h�1; : : : ; �n i ;where the ordering on tuples of natural numbers is the usual lexi
ographi
 ordering. �Example 4.3. Another important monomial ordering is the total degree lexi
o-graphi
 ordering, �d-lex, whi
h is de�ned byx1�1 � � � xn�n �d-lex x1�1 � � � xn�n () �X�i <X �i�_�X�i =X�i� ^ h�1; : : : ; �n i < h �1; : : : ; �n iwhere the ordering on tuples of natural numbers is the usual lexi
ographi
 ordering. �On
e we have ordered the monomials, we 
an identify a distinguished term in everypolynomial, in the following way.De�nition 4.4. Given a monomial ordering � on the set of variables fx1; : : : ; xng anda non-zero polynomial u = Pi �i�i from K [x1 ; : : : ; xn℄, where ea
h �i 2 K and ea
h �iis a monomial over fx1; : : : ; xng, the leading monomial (lm) of u is the maximum ofthe �i under the monomial ordering �. If the leading monomial is �j (for some j), thenthe leading term (lt) of u is �j�j.Example 4.5. Consider the polynomial 4x3 + 2y2 + xy in the polynomial ring C [x; y℄.Under the lexi
ographi
 ordering, with x � y, the leading monomial is y2 whilst theleading term is 2y2. Under total degree lexi
ographi
 ordering, with x � y, the leadingmonomial is x3 whilst the leading term is 4x3. �Using the notion of leading term we 
an now de�ne a form of division algorithm formulti-variate polynomials. 6



De�nition 4.6. For any system of polynomials P = fp1; : : : ; pmg from K [x1 ; : : : ; xn℄,and any polynomial u 2 K [x1 ; : : : ; xn℄, a remainder of u on division by P , denotedujP , is obtained by repeatedly performing the following \redu
tion" rule until it 
annot befurther applied:Choose any i 2 f1; : : : ;mg su
h that lt(pi) divides some term � of u and repla
e uwith u � �lt(pi)pi.Unfortunately, in the general 
ase the remainder of a given polynomial on divisionby a given system of polynomials is not uniquely de�ned. This is be
ause the resultof performing the division algorithm in De�nition 4.6 is not unique: it 
an produ
edi�erent results depending on the order in whi
h the polynomials in P are 
onsidered.Furthermore, in general, even when a polynomial f is in the ideal I (P ), it is not alwaysthe 
ase that fjP = 0. For example, x 
annot be redu
ed by either polynomial in thesystem fx2 + x; x2g, although it 
an 
learly be written as the �rst polynomial minus these
ond, and hen
e belongs to the ideal generated by this system.De�nition 4.7 ([4, 3℄). A system of polynomials G from K [x1 ; : : : ; xn℄ is 
alled aGr�obnerBasis (with respe
t to a given monomial ordering) if it satis�es the property that ujG isuniquely de�ned for any u 2 K [x1 ; : : : ; xn℄.One very useful property of a Gr�obner Basis is that it 
an be used to determinewhether a given polynomial belongs to the ideal that the basis generates, as the nextresult shows.Theorem 4.8 ([8℄). If G is a Gr�obner Basis, then fjG = 0 if and only if f 2 I (G).The next example demonstrates the use of a Gr�obner Basis to provide a 
onvenientrepresentation for a table 
onstraint.Example 4.9. The following relation over the set D = f 1; 2; 3; 4 g appeared in [12,Example 13℄ where it was used as an example of a relation having a large amount ofsymmetry: R = f h 1; 2; 2; 3; 4 i ; h 1; 2; 2; 4; 3 i ; h 1; 2; 3; 1; 2 i ;h 2; 4; 2; 3; 4 i ; h 2; 4; 2; 4; 3 i ; h 2; 4; 3; 1; 2 i g :If we 
onsider this relation as a 
onstraint on the variables h a; b; 
; d; e i, then it 
an berepresented by the following system of polynomials:G = f e3 � 9e2 + 26e� 24 ; b2 � 6b+ 8 ;d+ 2e2 � 13e + 17 ; 2
� e2 + 7e� 16 ; 2a� b g :This system of polynomials is a Gr�obner Basis (with respe
t to the lexi
ographi
 mono-mial order where e � b � d � 
 � a). The two uni-variate polynomials in the set G
orrespond to unary 
onstraints: they indi
ate that the se
ond 
omponent of any so-lution satisfying the 
onstraint has to be in f 2; 4 g and the last 
omponent has to be7



in f 2; 3; 4 g. The remaining polynomials in the set G are bi-variate: they indi
ate rela-tionships whi
h were impli
it in R and whi
h are revealed by the Gr�obner Basis. Thefa
t that these polynomials are linear in the variables d; 
 and a indi
ates that for anyh b; e i 2 f 2; 4 g � f 2; 3; 4 g there is exa
tly one h a; b; 
; d; e i 2 R and vi
e versa. In par-ti
ular, if h a; b; 
; d; e i 2 R then d = �2 e2+13 e�17, 
 = ( e2�7 e+16 )=2, and a = b=2.�One remarkable result established by Bu
hberger is that given any �nite system ofpolynomials, and any �xed monomial ordering, it is possible to 
ompute a new systemof polynomials whi
h generates the same ideal and is a Gr�obner Basis [4, 8℄. One wayto do this is to use Algorithm 1, whi
h is known as Bu
hberger's Algorithm [4, 8℄4. Thealgorithm makes use of a 
onstru
t 
alled the S-polynomial of two given polynomials,whi
h is de�ned as follows.De�nition 4.10. Given two monomials x1�1 � � � xn�n and x1�1 � � � xn�n, their lowest
ommon multiple (l
m) is x1max(�1;�1) � � � xnmax(�n;�n).Given two polynomials u1 and u2 and a monomial ordering, the S-polynomial of u1and u2, denoted S-Pol (u1; u2), isl
m(lm(u1); lm(u2))lt(u1) u1 � l
m(lm(u1); lm(u2))lt(u2) u2 :Example 4.11. Let p = x3 + z3 and q = y3 + z3, and take a total degree lexi
ographi
ordering with z � y � x. Then we have S-Pol (p; q) = y3z3 � x3z3.Note that although the leading terms of the two polynomials are eliminated in the
al
ulation of their S-polynomial, the result may have a leading monomial whi
h is higherin the monomial ordering than either of these original leading terms, as this exampleshows. �Example 4.12. Consider a set Q of domain polynomials 
orresponding to distin
t vari-ables. Note that ea
h domain polynomial in Q is uni-variate, and the leading terms ofany two domain polynomials for distin
t variables do not share a variable. This impliesthat the S-polynomial of any two domain polynomials in Q is redu
ed by those two poly-nomials to zero (see Lemma 3.3.1 of [1℄). Hen
e, applying Bu
hberger's Algorithm toQ will not 
hange the set. It follows that any set of domain polynomials 
orrespondingto any 
olle
tion of distin
t variables is a Gr�obner Basis with respe
t to any monomialordering. �Example 4.13. Re
all from Example 3.5 that the 
onstraint \x � y" over the variablesx and y whi
h ea
h have the domain f1; 2; : : : ; dg 
an be represented by the system ofpolynomials P = fpi(x; y) : i = 1; : : : ; dg, wherepi(x; y) = Y1�j�i(x� j) Yi+1�j�d(y � j):4More sophisti
ated and eÆ
ient re�nements of this algorithm have been developed, and are generallyused in pra
ti
e, but this simple version is suÆ
ient to illustrate the te
hnique and allow a straightforward
omplexity analysis. 8



Algorithm 1 Bu
hberger's Algorithm1: GIVEN: P : Set of initial polynomials2: RETURNS: G: Gr�obner Basis3: BEGIN: G := P , T := ffg1; g2g : fg1; g2g � Gg4: while T 6= ; do5: Sele
t fg1; g2g from T and set T := T n ffg1; g2gg6: h := S-Pol (g1; g2)7: h0 := hjG8: if h0 6= 0 then9: T := T [ ffg; h0g : g 2 Gg10: G := G [ fh0g11: end if12: end whileWhatever monomial ordering we 
hoose, P is a Gr�obner Basis. To see this, it is suÆ
ientto show that S-Pol (pa; pb) jP = 0 for all a; b 2 f1; : : : ; dg. Without loss of generalityassume a < b. Then the greatest 
ommon divisor of pa and pb is:Y1�j�a(x� j) Yb+1�j�d(y � j)After dividing both polynomials by this, the �rst will be
ome a polynomial only in y, andthe se
ond a polynomial only in x. The result then follows by Lemma 3.3.1 of [1℄. �On
e we have 
omputed a Gr�obner Basis, it is then mu
h easier to obtain the solutionsto the original set of polynomials (or determine that there are no solutions). In parti
ular,we 
an de
ide whether the system has a solution using the following well-known result(proved in [3, Theorem 7.40℄).Theorem 4.14 (Hilbert's Nullstellensatz). Let K be an algebrai
ally 
losed �eld and Ibe an ideal in K [x1 ; : : : ; xn℄. The variety V (I) is empty if and only if I 
ontains thepolynomial 1.Hen
e to de
ide whether a system of polynomials has any solutions we 
an simply 
al-
ulate a Gr�obner Basis (with respe
t to any monomial ordering) and then 
he
k whetherit 
ontains a polynomial that is a non-zero 
onstant. If so, the system has no solutions.Otherwise, at least one solution exists.Example 4.15. A 
olle
tion of ben
hmark instan
es of the Satifiability problem areprovided at www.satlib.org. These 
an easily be 
onverted to systems of polynomi-als and then passed to a 
omputer algebra pa
kage, su
h as Mathemati
a, to obtain aGroebner Basis.Some of these ben
hmark instan
es 
ontain random 3-
lauses. For example, the in-
9



stan
e \uf20-01" 
ontains 91 random 3-
lauses over 20 variables, as follows:fx4 _ :x18 _ x19; x3 _ :x5 _ x18; :x5 _ :x8 _ :x15;_ x7 _ :x16 _ :x20; :x7 _ x10 _ :x13; :x9 _ :x12 _ x17; � � � ;x9 _ x17 _ :x19; :x2 _ x12 _ x17; x4 _ :x5 _ :x16g:A straightforward mapping to polynomials as des
ribed in Example 3.3 gives the followingsystem of 91 polynomials:f(1� x4) x18 (1� x19) ; (1� x3)x5 (1� x18) ; x5x8x15;(1� x7) x16x20; x7 (1� x10) x13; x9x12 (1� x17) ; � � � ;(1� x9) (1� x17) x19; x2 (1� x12) (1� x17) ; (1� x4)x5x16g:If we 
ombine this system with domain polynomials xi(xi�1), restri
ting ea
h variable xito the Boolean values 0 or 1, then the in-built GroebnerBasis 
ommand of Mathemati
a
al
ulates the following Gr�obner Basis for the 
ombined system in around 2 se
onds5:fx20 � 1; x219 � x19; x18 � x19; x17 � 1; x16; x15 � 1; x14 � 1; x13x19;x213 � x13; x12; x11 � x19; x10x19 � x19; x13x10 � x10 + x19; x210 � x10; x9x19 � x19;x13x9 � x9 � x13 + 1; x9x10 � x19; x29 � x9; x8x19 � x19; x13x8 � x8 + x19; x8x10 � x8;x8x9�x19; x28�x8; x7; x6x19; x13x6�x6�x13�x19+1; x10x6�x6�x10+1; x6x9�x9+x19;x6x8; x26 � x6; x5; x4x19 � x19; x13x4 � x4 + x19; x4x10 � x10; x4x9 � x19; x4x8 � x8;x6x4 � x4 � x6 + 1; x24 � x4; x3 � x19; x2 � x19; x1 + x19 � 1g:By Theorem 4.14, this indi
ates that this instan
e is soluble. Furthermore, many ofthe polynomials in this basis are linear, indi
ating that the 
orresponding variables have�xed values in all solutions. For example, variable x20 must be assigned the value 1 inall solutions. �On
e we have determined that a system has a solution, we 
an build su
h a solutionby 
onstru
ting progressively larger satisfying partial assignments whi
h we 
an verifywill extend to a 
omplete solution.One way to do this is to generate a Gr�obner Basis G for the system just on
e. We
an then 
he
k whether any parti
ular partial assignment s extends to a solution by
he
king whether the polynomial ps whi
h forbids pre
isely that assignment is in theideal generated by G. To do this we simply have to 
ompute psjG. If psjG = 0, then psis in the ideal, and hen
e the assignment s 
annot be part of a solution, otherwise ps isnot in the ideal, and hen
e s 
an be extended to a solution.An alternative method is to add polynomials representing the partial assignment(re
all Example 3.2) to the system and regenerate the Gr�obner Basis. We then useHilbert's Nullstellensatz to determine the satis�ability of the new system. Sin
e we 
an
onstru
t solutions in this way without ba
ktra
king, all solutions to a problem with nvariables, ea
h with d possible values, 
an be found with at most n� d iterations.5All timings reported in this paper were obtained using Mathemati
a 5.2 running under Windows XPon a Pentium 4 pro
essor running at 3.2GHz. 10



5 ComplexityFor a general system of polynomials P , the worst-
ase 
omplexity of Bu
hberger's Algo-rithm is doubly exponential in the size of P [3, Page 513℄, and hen
e it 
an only be usedwith 
on�den
e for very small systems.However, the systems of polynomials we are 
onsidering have the spe
ial property thatthey 
ontain a domain polynomial for ea
h variable, limiting the possible values for thatvariable to a �xed �nite set. We will now show that in this spe
ial 
ase the 
omplexity ofBu
hberger's Algorithm is only singly exponential, and hen
e essentially no worse thanother general solution methods for �nite domain 
onstraint satisfa
tion problems, su
has ba
ktra
k sear
h.Lemma 5.1. Let P be a system of polynomials over x1; : : : ; xn whi
h 
ontains a domainpolynomial for ea
h variable of degree at most d. The total number of new polynomialsadded to P by Bu
hberger's Algorithm is at most dn, ea
h of whi
h 
ontains at most dnmonomials.Proof. Note that in Algorithm 1 ea
h polynomial h is redu
ed by P before being addedto the set G. If any term of h 
ontains any variable x whose exponent is larger than d,then it will be redu
ed by the domain polynomial to give a lower power of x. Moreover,ea
h new polynomial added to G must have a di�erent leading monomial from all 
urrentmembers of G, or else it will be further redu
ed before being added. The number ofdistin
t monomials over x1; : : : ; xn, where ea
h power is at most d � 1 is dn. Further,ea
h of these monomials has at most dn monomials with this property whi
h pre
ede itin any monomial ordering, so ea
h polynomial added 
ontains at most dn monomials.Lemma 5.1 shows that the number of times that we 
an generate a new non-zeropolynomial (line 8 of Algorithm 1) is bounded by dn. Ea
h of these adds at most jP j+dnelements to T (line 9). Therefore, the 
entral loop (lines 4-12) exe
utes at most jP j2 +(jP j+dn)dn < (jP j+dn)2 times. Cal
ulating the S-polynomials and redu
ed polynomials(lines 6 and 7) are both polynomial in the size of their input (also polynomial-size injP j+ dn). Therefore, Algorithm 1 runs in polynomial time in jP j+ dn.On the other hand, our next example demonstrates that a Gr�obner Basis representinga 
onstraint problem 
an be very large, even for some very simple problems.Example 5.2. Consider the 
onstraint problem with variables x1; : : : ; xn (ea
h withdomain f1; : : : ; dg) and a line of inequality 
onstraints x1 � x2 � � � � � xn.We 
an 
onstru
t a system of polynomials, P , whose solutions are the solutions to this
onstraint problem simply by 
ombining the Gr�obner Bases for the inequality 
onstrainton ea
h pair of adja
ent variables, as given in Example 3.5. However, the resulting systemof dn polynomials is not a Gr�obner Basis for the ideal generated by P , as we shall nowdemonstrate.For any set J = fi1; i2; : : : ; idg su
h that 1 � i1 � i2 � � � � � id � n, we de�ne thepolynomial pJ as follows: pJ(xi1 ; : : : ; xid) = (xi1 � 1)(xi2 � 2) � � � (xid � d): Note thatany solution to the 
onstraint problem we are 
onsidering is a solution to pJ = 0, sopJ 2 I (P ). But this means that this ideal 
ontains polynomials whi
h have as leading11



monomials all possible monomials of total degree d. It is known [8℄ that the leadingmonomials of the polynomials in any Gr�obner Basis generate all the leading monomialsof all polynomials in the ideal. Hen
e P is not a Gr�obner Basis. However, the mu
h largerset of polynomials, 
ontaining all �n+d�1n�1 � polynomials of the form pJ , 
an be shown tobe a Gr�obner Basis with respe
t to any monomial ordering.For example, when n = 10 and d = 5 this set of polynomials 
ontains �149 � = 2002polynomials. It takes more than 7 minutes to 
al
ulate this Gr�obner Basis using Mathe-mati
a. �Example 5.2 shows that the size of the Gr�obner Basis grows rapidly with n and d in this
ase, whatever monomial ordering is used, and 
an be expensive to 
ompute, even thoughthe underlying 
onstraint problem is very straightforward. This is be
ause the Gr�obnerBasis en
odes information about all of the relationships that 
an be dedu
ed between allof the variables in the problem. In the next se
tion we 
onsider modifying Bu
hberger'sAlgorithm to obtain a system of polynomials whi
h en
odes only lo
al relationships amongthe variables.6 A Weaker Form of BasisIn order to obtain a polynomial-time variant of Bu
hberger's Algorithm, we will nowdes
ribe a modi�ed form of the basi
 algorithm whi
h will generally be in
omplete, inthe sense that it generates a system of polynomials whi
h may not always be a Gr�obnerBasis, but 
an still provide useful information, as we will establish below. This approa
hhas been previously studied by Clegg et al. [6℄ for the spe
ial 
ase of 
onstraint problemsover Boolean domains (that is, for instan
es of the Satisfiability problem). In thisse
tion we will extend their approa
h to a more general setting by de�ning a new formof basis for a polynomial system.We �rst de�ne a link between Gr�obner Bases and a 
ertain proof system.De�nition 6.1. Given a system of polynomials P from K [x1 ; : : : ; xn℄ we de�ne a derivation-proof from P of a polynomial f to be a sequen
e of polynomials h f1; : : : ; fb i su
h thatfb = f, and for i = 1; : : : ; b, we have:9p 2 P [ ff1; : : : ; fi�1g;9u 2 K [x1 ; : : : ; xn℄; fi = pu _9fj; fk 2 ff1; : : : ; fi�1g; fi = fj + fkIf there exists a derivation-proof of f from P , then we denote this by P ` f.Noti
e that a polynomial f has a derivation-proof from some system of polynomialsP if and only if f is in the ideal generated by P . Hen
e, by Theorem 4.8, given a Gr�obnerBasis G, and a polynomial f, fjG = 0 if and only if G ` f.In order to obtain more eÆ
ient algorithms for pro
essing polynomials we will nowrestri
t the notion of a derivation-proof, in order to de�ne a weaker form of proof system,and a 
orrespondingly weaker notion of basis. We do this by restri
ting the polynomialsthat 
an be used in a derivation. 12



De�nition 6.2. A derivation-proof h f1; : : : ; fb i is 
alled a �-proof if the polynomialderived at every step satis�es a spe
i�ed property � (that is, �(fi) holds, for i = 1; : : : ; b).If there exists a �-proof of f from P then we write P `� f.We will say that a system of polynomials G is a �-basis if, for any polynomial fsatisfying �, fjG = 0 if and only if G `� f.Our next theorem will establish a suÆ
ient 
ondition for a system of polynomialsto be a �-basis, for a broad 
lass of properties �. The proof is similar in style to theusual proof that \Bu
hberger's S-pair 
riterion" is a suÆ
ient 
ondition to establish aGr�obner Basis (see, for example, [8, Page 83, Theorem 6℄). First we need some te
hni
alde�nitions, and a standard lemma.De�nition 6.3. Given a system of polynomials P , and a property �, we say that apolynomial f has a �-representation over P if f 
an be written as Pi pihi where ea
hpi 2 P , and ea
h pihi satis�es �.Given a system of polynomials P , and a monomial ordering �, we say that a polyno-mial f is semi-redu
ible over P with respe
t to � if f 
an be written as Pi pihi whereea
h pi 2 P , and ea
h pihi satis�es lm(pihi) � lm(f).Lemma 6.4 ([8, Page 81, Lemma 5℄). Suppose we have a linear sum of polynomialsPsi=1 
ifi, where 
i 2 K and lm(fi) = � for all i.If lm(Psi=1 
ifi) � �, then Psi=1 
ifi is a linear sum, with 
oeÆ
ents in K , of theS-polynomials S-Pol (fj; fk) for 1 � j; k � s. Furthermore, lm(S-Pol (fj; fk)) � � forea
h j; k.Theorem 6.5. Let � be a monomial ordering, and let � be a property of polynomialssu
h that if �(f) holds, and lm(g) � lm(f), then �(g) also holds.Let Q be a system of polynomials su
h that, for all q1; q2 2 Q, if S-Pol (q1; q2) satis�es�, then S-Pol (q1; q2) is semi-redu
ible over Q with respe
t to �.Then for any polynomial p satisfying � the following are equivalent:1. Q `� p;2. p is �-representable over Q;3. p is semi-redu
ible over Q with respe
t to �;4. pjQ = 0Proof. We �rst show that (2), (3).To establish that (2) ) (3), assume for 
ontradi
tion that there exists some polyno-mial p whi
h is �-representable over Q but not semi-redu
ible over Q with respe
t to �.Sin
e p is �-representable, we know that p 
an be expressed asPhiqi, where ea
h qi 2 Qand ea
h hiqi satis�es �. Sin
e p is not semi-redu
ible, we know that in any su
h repre-sentation lm(p) � maxiflm(hiqi)g. Choose a representation for whi
h maxiflm(hiqi)g isminimal (a

ording to �) and 
all this monomial �p.13



If we set I = fi : lm(hiqi) = �pg, then we obtain:p =Xi2I lt(hi)qi +Xi2I (hi � lt(hi))qi +Xi62I hiqiwhere all of the polynomials in the �rst summation have leading monomial �p, and allpolynomials in the other summations have a leading monomial whi
h is stri
tly smaller(a

ording to �).By Lemma 6.4, we 
an express the �rst summation as a linear sum of S-polynomialsof pairs of lt(hi)qi terms. We 
an then rewrite these S-polynomials, as follows, where wewrite Ljk for l
m(lt(qj); lt(qk)):S-Pol (lt(hj)qj ; lt(hk)qk) = �plt(hj) lt(qj) lt(hj)qj � �plt(hk) lt(qk) lt(hk)qk= �plt(qj) qj � �plt(qk) qk= �pLjk � Ljklt(qj) qj � Ljklt(qk) qk�= �pLjk S-Pol (qj; qk) :By Lemma 6.4, ea
h S-Pol (lt(hj)qj ; lt(hk)qk) has leading monomial stri
tly smallerthan �p, and hen
e so does ea
h S-Pol (qj; qk). By our 
hoi
e of property �, this meansthat ea
h S-Pol (qj; qk) satis�es �. By our assumption about Q, this mean that ea
hS-Pol (qj; qk) is semi-redu
ible over Q with respe
t to �. Hen
e we 
an express ea
hS-Pol (lt(hj)qj ; lt(hk)qk) as a sum of polynomials from Q with polynomial 
oeÆ
ientswhere ea
h term in the summation has leading monomial stri
tly smaller than �p. This
ontradi
ts the minimality of �p and hen
e establishes the result that (2)) (3).The 
onverse is straightforward: by the 
hoi
e of property �, it follows immediatelyfrom De�nition 6.3 that any polynomial whi
h is semi-redu
ible and satis�es � is also�-representable. Hen
e (3)) (2).Next we show that (1) , (2). Let p be any polynomial su
h that Q `� p. We willshow that p is �-representable over Q by indu
tion on the length of the �-proof of p fromQ (see De�nition 6.1). For the base 
ase, if p = qu, for some q 2 Q, and p satis�es �,then p is 
learly �-representable over Q.Now assume that p has a �-proof of length i, and the result holds for all shorterproofs.If p = fju for some fj with a shorter proof, then we know by the indu
tion hypothesisthat fj is �-representable over Q, and hen
e semi-redu
ible over Q with respe
t to �,by the argument above. This means that fj = Phiqi where lm(hiqi) � lm(fj). Hen
ep =Phiqiu where lm(hiqiu) � lm(fju) = lm(p). Hen
e in this 
ase p is semi-redu
ibleover Q with respe
t to �, and hen
e �-representable, by the argument above.If p = fj + fk for some fj ; fk with shorter proofs, then we know by the indu
tionhypothesis that fj and fk are �-representable over Q. Adding these representations givesa �-representation for p over Q. 14



Hen
e, in all 
ases p is �-representable, so we have shown that (1)) (2).The 
onverse is immediate from De�nition 6.3 and De�nition 6.1, sin
e any polynomialwhi
h is �-representable over a set Q 
learly has a �-proof from Q.Finally, we show that (3), (4). Assume for 
ontradi
tion that there exists a polyno-mial p satisfying � whi
h is semi-redu
ible over Q with respe
t to �, but with pjQ 6= 0.Chose su
h a polynomial whose leading monomial is as small as possible (a

ording to�). Sin
e p is semi-redu
ible, we know that p 
an be expressed as Phiqi, where ea
hqi in Q and ea
h hiqi satis�es lm(hiqi) � lm(p). In this summation there must exist atleast one hiqi su
h that lm(hiqi) = lm(p), and for this value of i we have lt(qi)j lt(p).Now 
onsider the polynomial p0 = p� lt(p)lt(qi)qi.By the results above, Q `� p. Hen
e Q `� p0, so p0 is also semi-redu
ible over Q withrespe
t to �, by the results above. Sin
e the leading monomial of p0 is stri
tly smallerthan the leading monomial of p, we know by the 
hoi
e of p that p0jQ = 0. Howeverthis implies that pjQ = 0, whi
h 
ontradi
ts the 
hoi
e of p. Hen
e we have shown that(3)) (4).The 
onverse follows immediately from De�nition 4.6, sin
e any polynomial whi
hredu
es to 0 over Q must be semi-redu
ible over Q.We have shown that the 
onditions des
ribed in Theorem 6.5 are suÆ
ient to ensurethat the system of polynomials Q is a �-basis. Now 
onsider a modi�ed form of the origi-nal Bu
hberger Algorithm, as shown in Algorithm 1, whi
h only 
onsiders S-polynomialswhi
h satisfy the property �. In other words, the algorithm only performs lines 7-11 whenthe S-polynomial h satis�es �. Su
h a modi�ed form of the algorithm will be 
alled a�-trun
ated Bu
hberger Algorithm. When � is a property of the form spe
i�ed in The-orem 6.5, the system of polynomials 
omputed by a �-trun
ated Bu
hberger Algorithmwill satisfy the 
onditions of Theorem 6.5, and hen
e will be a �-basis.Even though a �-basis 
omputed in this way is not guaranteed to be a Gr�obner Basis,it does generate the same ideal as the original system of polynomials, and 
an revealsigni�
ant information about this ideal, and hen
e the 
orresponding set of solutions.Moreover, we will show below that for some 
lasses of problems 
omputing a �-basis inthis way (for an appropriate 
hoi
e of �) is suÆ
ient to de
ide whether any solutionsexist.Moreover, for some 
hoi
es of the property �, the time 
omplexity of the �-trun
atedBu
hberger Algorithm is mu
h lower than the time 
omplexity of the 
omplete Bu
hbergerAlgorithm.The �rst spe
i�
 property � that we 
onsider is based on the total degree of themonomials o

urring in a polynomial. We will say that a polynomial satis�es the property[degree � m℄ if, for ea
h of its monomials x1�1 � � � xn�n , the sum of the exponentsPni=1 �iis at most m. We �rst need to ensure that the monomial ordering we are using has theproperty that if �1 satis�es the [degree � m℄ property, and �2 � �1, then �2 also satis�esthe [degree � m℄ property. Su
h an ordering is 
alled a gradedmonomial ordering. Manysu
h orderings exist, in
luding the standard total degree lexi
ographi
 ordering [3, 8℄ (seeExample 4.3). 15



Lemma 6.6. Let P be a system of polynomials from K [x1 ; : : : ; xn℄. The total number ofnew polynomials added to P by the [degree � m℄-trun
ated Bu
hberger Algorithm usingany graded monomial ordering is at most �n+mm �, ea
h of whi
h 
ontains fewer than �n+mm �,monomials.Proof. Similar to the proof of Lemma 5.1, ex
ept that the number of distin
t monomialsover x1; : : : ; xn satisfying [degree � m℄ is �n+mm �, and ea
h of these therefore has fewerthan �n+mm �, monomials whi
h pre
ede it in any graded monomial ordering.By a similar argument to the argument given for the full algorithm above, this resultimplies that the trun
ated algorithm is polynomial-time in jP j and �n+mm �. The value of�n+mm � is O(nm), and therefore polynomial in n for �xed m.7 Lo
al Consisten
yIn this se
tion we show that the lo
al 
onsisten
y algorithms used in 
onstraint program-ming 
an be expressed by �-proofs on the 
orresponding systems of polynomials, for asuitable 
hoi
e of property �. By relating this property to the property [degree � m℄
onsidered in the previous se
tion, we show that a lo
al 
onsisten
y algorithm 
an besimulated by a trun
ated Bu
hberger Algorithm, and hen
e any information obtainedby enfor
ing lo
al 
onsisten
y 
an be obtained by performing a trun
ated Bu
hbergerAlgorithm.A 
onstraint problem is said to be strong k-
onsistent if any 
onsistent assignmentto k � 1 or fewer variables 
an be extended to a 
onsistent assignment to any additionalvariable. Strong k-
onsisten
y 
an be enfor
ed in polynomial-time (for any �xed k) [7℄.One method of a
hieving this is given in Algorithm 7.1.Algorithm 7.1 (Enfor
ing strong (k+1)-
onsisten
y).1. For ea
h set of k or fewer variables, de�ne a new 
onstraint, equal to the relationaljoin of the proje
tions of all 
onstraints onto those variables.2. Repla
e ea
h 
onstraint by the relational join of that 
onstraint with the proje
tionsof all other 
onstraints onto its variables.3. Repeat (2) until no 
hanges are made.It is known that, for several broad 
lasses of 
onstraint problems, the existen
e ofa solution 
an be de
ided by enfor
ing strong k-
onsisten
y. These in
lude problemswith bounded tree-width [11℄ and problems where the 
onstraints are binary and max-
losed [15℄.We now observe that if our original 
onstraints ea
h involve at most k variables,then the operations des
ribed in Algorithm 7.1 only ever involve 
onstraints on k orfewer variables. These operations 
an be simulated using operations on polynomialsrepresenting the 
onstraints in su
h a way that the polynomials 
omputed never involvemore than k variables. (For example, proje
tion of a 
onstraint onto some subset of16



variables 
an be simulated using the Extension Theorem [8, Page 115℄ on some Gr�obnerBasis of the system whi
h is generated using a lexi
ographi
 monomial ordering.)We will say that a polynomial satis�es the property [#vars � k℄ if it involves at mostk variables. Re
all that if some system of polynomials over at most k variables has nosolution then, by Hilbert's Nullstellensatz, any Gr�obner Basis of this system must 
ontaina 
onstant polynomial. This implies that there is a [#vars � k℄-proof of 1 from thesepolynomials.Now 
onsider any 
onstraint problem represented by a system of polynomials P , whereea
h polynomial in P satis�es [#vars � k℄. Our observations above imply that, if applyingstrong (k+1)-
onsisten
y to this 
onstraint problem results in an empty 
onstraint, thenthere must be a [#vars � k℄-proof of 1 from P .Unfortunately, the property [#vars � k℄ does not satisfy the 
onditions of Theo-rem 6.5 with any standard monomial ordering, and it does not seem to be possible toverify dire
tly whether a polynomial has a [#vars � k℄-proof of 1 using a [#vars � k℄-trun
ated Bu
hberger Algorithm. However, the next two results show that the existen
eof a [#vars � k℄-proof of 1 implies the existen
e of a [degree � k � (d � 1) + 1℄-proof of1, where d is the maximum domain size.Lemma 7.2. Let Q be a set of domain polynomials for x1; : : : ; xn, with degree at most d.For any polynomial u from K [x1 ; : : : ; xn℄, if u satis�es [#vars � k℄, then ujQ is uniquelyde�ned, and satis�es both [#vars � k℄ and [degree � k � (d� 1)℄.Proof. By Example 4.12, any set of domain polynomials forms a Gr�obner Basis, and sowe 
an redu
e any polynomial by this set and obtain a unique result.If a monomial in u is redu
ed by the domain polynomial for variable x, it must have
ontained x and therefore the resulting monomials introdu
ed 
annot 
ontain any morevariables than the monomial being redu
ed. This means that redu
tion by the domainpolynomials preserves the property [#vars � k℄.After all possible redu
tions have been performed, no monomial 
an 
ontain a powerof any variable higher than d � 1, else it 
ould be further redu
ed. As no monomial
an 
ontain more than k variables, this means all monomials must satisfy [degree �k � (d� 1)℄.Theorem 7.3. Let p1; : : : ; pm; u be polynomials from K [x1 ; : : : ; xn℄, and let Q be a set ofdomain polynomials for x1; : : : ; xn, of degree at most d. If ea
h pi satis�es [#vars � k℄,and fp1; : : : ; pmg `[#vars�k℄ u, thenfp1jQ; : : : ; pmjQg [Q `[degree�k�(d�1)+1℄ ujQ :Proof. We �rst note that d � k � (d � 1) + 1, so ea
h domain polynomial in Q satis�es[degree � k� (d� 1) + 1℄. Moreover, by Lemma 7.2, the polynomials p1jQ; : : : ; pmjQ andujQ also all satisfy [degree � k � (d� 1) + 1℄.Assume that the derivation-proof of u from fp1; : : : ; pmg is given by the list of poly-nomials h f1; : : : ; fb i. By indu
tion on the length of this proof, b, we shall show that we
an obtain a [degree � k � (d� 1) + 1℄-derivation of ujQ from fp1jQ; : : : ; pmjQg [Q.17



If fb is derived by adding two earlier polynomials fj and fk, then it is straightforwardto show that fbjQ = fjjQ + fkjQ, so by the indu
tion hypothesis we are done.If fb is derived by multiplying some polynomial p from the set fp1; : : : ; pmg[ff1; : : : ; fb�1gby some arbitrary polynomial h from K [x1 ; : : : ; xn℄, then, without loss of generality, wemay assume that h is a polynomial 
onsisting of a single variable, say x. There are thentwo 
ases to 
onsider:� (px)jQ = (pjQ)x; this means that fbjQ = (pjQ)x, so by the indu
tion hypothesis,we are done.� (px)jQ 6= (pjQ)x; this 
an only happen if (pjQ)x 
ontains some monomials where theexponent of x is equal to the degree of qi, where qi is the domain polynomial for x.In this 
ase we 
an subtra
t appropriate multiples of qi to obtain (px)jQ, and hen
e,by the indu
tion hypothesis, obtain a (possibly longer) [degree � k � (d � 1) + 1℄-proof of fijQ from fp1jQ; : : : ; pmjQg [Q.It follows from Theorem 7.3 that we 
an 
he
k for the existen
e of a [#vars � k℄-proofindire
tly, using a [degree � m℄-trun
ated Bu
hberger Algorithm, for m = k� (d�1)+1.Hen
e, for a �xed domain size d, any 
onstraint problem whi
h 
an be de
ided by strongk-
onsisten
y 
an be de
ided in polynomial-time by a trun
ated Bu
hberger Algorithm.8 Adaptive Consisten
yAnother lo
al 
onsisten
y method whi
h is 
ommonly used in 
onstraint programming isto vary the level of 
onsisten
y whi
h is enfor
ed during the solution pro
ess dependingon the lo
al stru
ture of the 
onstraints. This te
hnique is known as adaptive 
onsis-ten
y [10℄, and is often implemented using a general algorithmi
 framework 
alled bu
ketelimination [9℄.The bu
ket elimination algorithm for a 
onstraint problem pro
eeds as follows. It�rst orders the variables of the problem, and then partitions the 
onstraints into separate
olle
tions, known as bu
kets. Ea
h bu
ket is asso
iated with a parti
ular variable. Thebu
ket asso
iated with variable x 
ontains all the 
onstraints involving the variable xwhi
h do not involve any variables o

urring higher in the ordering. In other words, ea
h
onstraint is allo
ated to the bu
ket whi
h is asso
iated with whi
hever of the variablesof that 
onstraint o

urs highest in the ordering. Bu
kets are then pro
essed in order,a

ording to the 
hosen variable ordering on their asso
iated variables, from highest tolowest. When the bu
ket asso
iated with a variable x is pro
essed, an \elimination pro
e-dure" is performed over all the 
onstraints in that bu
ket, yielding a new 
onstraint thatdoes not involve the variable x. This new 
onstraint spe
i�es the \e�e
t" of the variablex on the remainder of the problem. In other words, it allows just those 
ombinationsof values that are allowed by the 
onstraints in the bu
ket along with some value for x.The new 
onstraint is then pla
ed in the appropriate (lower) bu
ket and the pro
essing
ontinues until all bu
kets are pro
essed, or some 
onstraint is generated whi
h allows nosolutions, in whi
h 
ase the problem is de
lared to be insoluble.18
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ket elimination for a system of polynomials implemented in Mathemati
aIf 
onstraints are represented by systems of polynomials, in the way that we areproposing here, then bu
ket elimination 
an be implemented very simply using Gr�obnerBasis 
al
ulations. For ea
h variable x, the bu
ket asso
iated with x is assigned a subsetof the polynomials in the given system, 
onsisting of all polynomials over x (and possiblyother variables lower in the ordering). If we 
al
ulate a Gr�obner Basis for these polyno-mials, with respe
t to an appropriate elimination ordering [1℄, then the new 
onstraintwe require is represented by the subset of polynomials in this Gr�obner Basis whi
h do notinvolve x. These new polynomials 
an then be allo
ated to lower bu
kets and pro
essing
ontinues. An implementation of this algorithm as a Mathemati
a fun
tion is shown inFigure 1, where the arguments are the set of polynomials, and the ordered list of variables(highest �rst). A subsidiary fun
tion is also shown in the �gure, whi
h asso
iates ea
hpolynomial in the given set with the name of a variable indi
ating the bu
ket to whi
hthat polynomial is allo
ated.The 
omplexity of the bu
ket elimination algorithm is exponential in a stru
turalparameter of the given 
onstraint problem, 
alled the indu
ed width [9℄. This valuedepends on the way in whi
h the 
onstraints overlap and the 
hosen variable ordering.For problems with (known) bounded tree-width it is possible to �nd (in polynomial time)a variable ordering su
h that the indu
ed width is also bounded, so all su
h problems 
anbe solved in polynomial time.Example 8.1. Re
all the simple 
onstraint problem dis
ussed in Example 5.2, withvariables x1; : : : ; xn (ea
h with domain f1; : : : ; dg) and a line of inequality 
onstraints:x1 � x2 � � � � � xn. It was shown in Example 5.2 that any Gr�obner Basis for thisproblem 
ontains �n+dd � polynomials, and the time required to 
ompute su
h a Basis risesrapidly with n and d.However, if the variables are ordered along the line, the indu
ed width of this problemis 1, and the bu
ket elimination algorithm never has to deal with polynomials over morethan 2 variables. This means that the time required to de
ide whether a solution existsin
reases only linearly with the number of variables in the problem.For example, when n = 10 and d = 5 the Mathemati
a implementation shown inFigure 1 veri�es that the 
orresponding 
onstraint problem is soluble in 0.015 se
onds.�19



9 Con
lusionWe have shown how polynomials provide a powerful general language for expressing manydi�erent forms of 
onstraint problems.On
e a problem has been expressed with a 
orresponding system of polynomials,we have des
ribed a standard te
hnique to �nd a new system of polynomials with thesame set of solutions, 
alled a Gr�obner Basis. A Gr�obner Basis provides a 
onvenientrepresentation of all the solutions to a system of polynomials and hen
e of all solutions tothe original 
onstraint problem. It 
an be 
omputed using a standard 
omputer algebrapa
kage, and 
an be used to answer many di�erent questions about the solutions in astraightforward way.We have also shown that we may trun
ate the standard Gr�obner Basis algorithmby de�ning a property whi
h all polynomials added to the system must satisfy. If thisproperty is suitably spe
i�ed, then the algorithm generates a useful system of polynomialswith the same solutions in polynomial time, albeit not normally a Gr�obner Basis. Wehave demonstrated that we 
an use this trun
ated algorithm to a
hieve a kind of lo
al
onsisten
y whi
h 
an simulate the k-
onsisten
y algorithms 
ommonly used in 
onstraintprogramming.Finally we have shown that adaptive 
onsisten
y te
hniques for 
onstraint problems
an be implemented very easily using Gr�obner Basis te
hniques.This paper presents our initial �ndings on using Gr�obner Basis te
hniques for solving
onstraint problems. Obvious dire
tions for future resear
h are to determine for whi
h
lasses of 
onstraint problems these te
hniques 
an eÆ
iently �nd solutions, and to re�nethe te
hniques so that they 
an be implemented more eÆ
iently.Referen
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