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Abstract

Given any †-symmetric monoidal category C we construct a new category Mix(C),
which, in the case that C is a †-compact category, is isomorphic to Selinger’s CPM(C)
[Sel]. Hence, if C is the category FdHilb of finite dimensional Hilbert spaces and linear
maps we exactly obtain completely positive maps as morphisms. This means that mixed-
ness of states and operations, within the categorical quantum axiomatics developed in [AC1,
AC2, Sel, CPv, CPq], is a concept which exists independently of the quantum and classi-
cal structure. Moreover, since our construction does not require †-compactness, it can be
applied to categories which have infinite dimensional Hilbert spaces as objects. Finally, in
general Mix(C) is not a †-category, so does not admit a notion of positivity. This means
that, in the abstract, the notion of ‘complete positivity’ can exist independently of a notion
of ‘positivity’, which points at a very unfortunately terminology.

1 Definition of Mix(C)

A †-symmetric monoidal category [Sel] (C,⊗, †) is a symmetric monoidal category (C,⊗) with
an involutive identity-on-objects contravariant functor (−)†, which preserves the tensor, and rel-
ative to which all the natural isomorphisms of the symmetric monoidal structure are unitary, that
is, their adjoint coincides with their inverse.

We will rely on the graphical calculus for †-symmetric monoidal categories of [Sel]. It ex-
tends the graphical calculus for symmetric monoidal categories of [JS]. For example

1A f g ◦ f f ⊗ g f ⊗ 1C (f ⊗ g) ◦ h

for f : A → B, g : B → C and h : E → A⊗B depict as:
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These boxes are subject to the intuitively obvious graphical rules:

f

g f

g
=

g

f g
=

f

A C A C A C A C

B D B D D B D B

which capture commutation of the diagrams:

A⊗ C
1A⊗g //

f⊗1C

��

A⊗D

f⊗1D

��

A⊗ C
σA,C //

f⊗g
��

C ⊗A

g⊗f
��

B ⊗ C
1B⊗g // B ⊗D B ⊗D

σB,D // D ⊗B
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More sophisticated ones such as:

=
ket

ket

bra

bra

(1)

follow by coherence. The adjoint depicts as reversal i.e. f : A → B and f † : B → A depict as:

ff †

A B

AB

where asymetric boxes are required to make this reversal visible.
For f : A⊗ C → B and h : X → Y ⊗A let

Ξ(f, h) := (1Y ⊗ f) ◦ ((h ◦ h†)⊗ 1C) ◦ (1Y ⊗ f)† : Y ⊗B → Y ⊗B .

For f : A ⊗ C → B and g : A ⊗ D → B we set f ' g iff for all X, Y ∈ |C| and for all
h : X → Y ⊗A we have that Ξ(f, h) = Ξ(g, h) i.e.

=
h

g

g

†

Y

D

B

B

Y

h†
X

h

f

f

†

Y

C

B

B

Y

h†
X

A A

A A

Clearly ' defines an equivalence relation on
⋃

C∈|C| Hom(A⊗ C,B).

Lemma 1.1. If f ' f ′ : A⊗D(′) → B and g ' g′ : B ⊗ E(′) → C then

g ◦ (f ⊗ 1E) ' g′ ◦ (f ′ ⊗ 1E′) : A⊗ (D(′) ⊗ E(′)) → C ,

and if f ' f ′ : A⊗ E(′) → B and g ' g′ : C ⊗ F (′) → D then,

(f⊗g)◦(1A⊗σC,E⊗1F ) ' (f ′⊗g′)◦(1A⊗σC,E′⊗1F ′) : (A⊗C)⊗(E(′)⊗F (′)) → B⊗D ,

where for notational convenience we took associativity to be strict and used brackets merely to
group the input types A and C and variable types D(′), E(′) and F (′).

Proof: Straightforward verification. 2
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Definition 1.2. Given any †-symmetric monoidal category C define a new category Mix(C) as
follows: i. it has the same objects as C ; ii. its hom-sets are

Mix(C)(A,B) :=
{

[f ]
∣∣∣ f ∈

⋃
C∈|C|

Hom(A⊗ C,B)
}

where [f ] denotes the equivalence class containing f for the equivalence relation ' ; iii. its iden-
tities are inherited from C ; iv. for [f ] : A → B and [g] : B → C the composite [g]◦ [f ] : A → C
is the equivalence class in

⋃
F∈|∈C| Hom(A⊗ F,C) for ' which contains

g ◦ (f ⊗ 1E) ◦ αA,D,E : A⊗ (D ⊗ E) → B ,

i.e., diagrammatically

f

g

A

C

D E

B

v. for [f ] : A → B and [g] : C → D the tensor [g] ⊗ [f ] : A → C is the equivalence class in⋃
G∈|∈C| Hom((A⊗ C)⊗G, B ⊗D) for ' which contains

(f ⊗ g) ◦ α†
A,C,E,F ◦ (1A ⊗ σC,E ⊗ 1F ) ◦ αA,C,E,F : (A⊗ C)⊗ (E ⊗ F ) → B ⊗D ,

i.e., diagrammatically

f g

A C

B D

E F

By Lemma 1.1 this composition and this tensor are both well-defined and the reader can easily
verify that we indeed obtain a symmetric monoidal category.

One can conveniently depict the morphisms of Mix(C) as containing “holes”:

f

f

†

and composition boils down to inserting a morphism in the hole of another one:
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f

f

†

g

g

†

while the tensor involves combining two holes into one:

f g

f † g†

2 Mix(†-CC) ' CPM(†-CC)

For a comprehensive account on †-compact categories we refer the reader to the existing literature
e.g. [AC1, AC2, Sel, CPv]. Here we limit ourselves to recalling the following:

• For each object A there exists an object A∗ and a morphism ηA = I → A ⊗ A∗ such that
A∗∗ = A and

λ†
A ◦ (η†A ⊗ 1A) ◦ (1A ⊗ ηA∗) ◦ ρA = ρ†A ◦ (1A ⊗ η†A∗) ◦ (ηA ⊗ 1A) ◦ λA = 1A . (2)

• For each morphism f : A → B there exist morphisms f∗ : A∗ → B∗ and f∗ : B∗ → A∗

which are such that (f∗)∗ = (f∗)∗ = f †, f∗∗ = f∗∗ = f and

(f ⊗ 1A∗) ◦ ηA = (1B ⊗ f∗) ◦ ηB . (3)

Graphically equations eq.(2) and eq.(3) become: *

=

A

A

A

AA

A

=

f

=

f *
A* A*B B

where the yellow boxes depict η and η†. The table
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f

f

† f

f
*

*

A*A

B B*

B*B

A A*

shows how in [Sel] all the from f : A → B derived morphisms are depicted.
For f : A⊗ C → B let

Γ(f) := (f ⊗ f∗) ◦ (1A ⊗ ηC ⊗ 1A∗) ◦ (ρA ⊗ 1A∗) : A⊗A∗ → B ⊗B∗ .

For f : A⊗ C → B and g : A⊗D → B we set f '̇ g iff Γ(f) = Γ(g) i.e.

B

AC

f

B

A

*f

*

*

=
B

AD

g

B

A

*
g

*

*

Clearly '̇ defines an equivalence relation on
⋃

C∈|C| Hom(A⊗ C,B).

Proposition 2.1. If in Definition 1.2 we replace ' by '̇ we obtain Selinger’s CPM(C).

Proof: Follows straightforwardly from the definition given in [Sel]. 2

Lemma 2.2. If C is †-compact then for f : A⊗ C → B and g : A⊗D → B TFAE :

(1) f ' g

(2)

=
f

f

†

A

C

B

B

A

g

g

†

A

D

B

B

A*

*

*

*

(3)

=
f

f

†

A

C

B

B

A

g

g

†

A

D

B

B

A

(4) f '̇ g
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Proof: Setting h := ηA∗ in Definition 1.2 realises (1)⇒(2). By eq.(2) we have

=h

f

f

†

h†

h

f

f

†
h†

h

f

f

†

h† =

so (2) implies Ξ(f, h) = Ξ(g, h) and hence f ' g i.e. (2)⇒(1). By eq.(1) we also have

f

f

† f

f

†
=

f

f

†

=

from which it easily follows that (3)⇔(2). The converse (2)⇔(3) to this is established similarly.
Finally, applying eq.(3) to f † we obtain:

f

*
f

=
f

f

†

f *f

=

from which we can conclude that also (3)⇔(4). 2

Theorem 2.3. If C is †-compact then Mix(C) and CPM(C) are isomorphic.

Proof: Follows by Proposition 2.1 and Lemma 2.2. 2

Corollary 2.4. The morphisms of Mix(FdHilb) are the completely positive maps.

3 The role of positivity

Concretely, i.e. in the standard quantum mechanics literature, a map is completely positive if it is
a morphism in CPM(FdHilb). More abstractly, as shown in [Sel], for C any †-compact cate-
gory, the morphisms of CPM(C) are completely positive maps. Theorem 2.3 and Corollary 2.4
show that we can generalise this even further to the morphisms of Mix(C) for any †-symmetric
monoidal category C. Conceptually, the ‘hidden object’ C ∈ |C| in Definition 1.2 represents the
variables relative to which we mix (e.g. lack of knowledge are an ancillary external system).
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Now recall that an endomorphism f : A → A is positive whenever it can be written as
f = g† ◦ g for some g : A → B. The reader can verify that Mix(C) does not canonically
inherit the †-structure from C. Since Mix(C) in general does not come with a †-structure the
canonical abstract generalisation of the notion of positivity does not apply to this category. This
means that, in the abstract, the notion of ‘complete positivity’ can exist independently of a notion
of ‘positivity’, which points at a very unfortunately terminology.

4 Remarks

We speculate on the following:

• Rather than requiring symmetry most probably it suffices to have a braid-structure, as it is
also the case for the traced monoidal categories in [JSV].

• If the †-symmetric monoidal category C also comes with a trace-structure in the sense of
[JSV] then it seems that Mix(C) does come with a †-structure.
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