
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

The Coinductive Resumption Monad

Maciej Piróg1, Jeremy Gibbons2

Department of Computer Science
University of Oxford

Abstract

Resumptions appear in many forms as a convenient abstraction, such as in semantics of concurrency
and as a programming pattern. In this paper we introduce generalised resumptions in a category-
theoretic, coalgebraic context and show their basic properties: they form a monad, they come
equipped with a corecursion scheme in the sense of Adámek et al.’s notion of completely iterative
monads (cims), and they enjoy a certain universal property, which specialises to the coproduct
with a free cim in the category of cims.

Keywords: resumptions, completely iterative monads, coalgebra

1 Introduction

1.1 Resumptions

Resumptions were introduced by Milner [32] to denote the external behaviour
of a communicating agent in concurrency theory. In categorical terms, as
given by Abramsky [1], a resumption is an element of the carrier of the final
coalgebra νR of the functor RX = (X × O)I on Set, where I and O are
the sets of possible inputs and outputs respectively. Informally, a resump-
tion is a function that consumes some input and returns some output paired
with another resumption, and finality implies that the process of consuming
and producing can be iterated indefinitely. There are many possible general-
isations, for example to the final coalgebra of the functor Pfin((-) × O)I for
agents with finitely-branching nondeterministic behaviour, or, depending on

1 maciej.pirog@cs.ox.ac.uk
2 jeremy.gibbons@cs.ox.ac.uk

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:maciej.pirog@cs.ox.ac.uk
mailto:jeremy.gibbons@cs.ox.ac.uk

Piróg, Gibbons

the computational effect realised by the agent, any monad in place of Pfin, as
studied by Hasuo and Jacobs [24].

The idea of ‘resumable’ computations appeared also in the context of com-
putational effects and monadic programming. Cenciarelli and Moggi [13]
defined what they called the generalised resumption monad transformer as
TA = µX.M(ΣX + A), where M is a monad, Σ is an endofunctor, and A
is an object of variables, which allows to sequentially compose resumptions.
The resumption monad can be alternatively given by M(ΣM)∗, a composition
of M and the free monad generated by the composition of Σ and M . It is
canonical in the sense that it is the coproduct of M and Σ∗ in the category of
monads and monad morphisms, as shown by Hyland, Plotkin, and Power [26].

The resumption monad is given by an initial algebra, so it is not ex-
actly a generalisation of the resumptions studied by Milner and others. Intu-
itively, it models resumptions that can be iterated only finitely many times.
Thus, it is natural to ask about final coalgebras of functors of the shape
M(Σ(-) +A). Indeed, Goncharov and Schröder [21] used monads of the shape
TA = νX.M(X + A) to give semantics to concurrent processes with generic
effects, while the monad TA = νX.M(ΣX +A) was discussed by the present
authors [39] under the name “coinductive resumption monad”. In this pa-
per, we further generalise the latter construction and take a closer look at its
properties.

1.2 Coinduction

Usually, an effect-free data structure is called coinductive if it is given by the
carrier of a final coalgebra. Informally, finality means that a coalgebra c : X →
FX that describes one step can be repeated indefinitely to build a structure
of type νF layer by layer. In the monadic world, however, the steps are often
meant to interact – if we imagine that monadic values are computations, all
the steps should be composed (monadically speaking, multiplied out) into
one, big computation; if we view monads as algebraic theories, we should take
into account that operations in one layer have their arguments in the next
layer. Obviously, not every monad is coinductive in this sense, because the
notion of multiplication of infinitely many layers is not always well-defined.
Thus, to capture the notion of coinduction in the monadic context, we adopt
a property called complete iterativity, introduced by Elgot et al. [16] and later
studied by Adámek et al. [4,30]. A monad M is completely iterative (is a ‘cim’)
if it is equipped with an additional coinductive structure: certain (‘guarded’)
morphisms e : X → M(X + A), where X represents variables (seeds of the
corecursion) and A is an object of parameters (final values), have unique
solutions e† : X →MA coherent with the monadic structure of M .

Not too surprisingly, the usual notion of coinduction is captured by

2

Piróg, Gibbons

free completely iterative monads (informally: layers do not interact). The
free completely iterative monad generated by an endofunctor F is given
as F∞A = νX.FX + A with the monadic structure given by substitution
in A. An ordinary coalgebra X → FX can be seen as a guarded morphism
X → F∞(X + 0), where 0 is the initial object of the base category, with the
unique solution X → F∞0 ∼= νF .

1.3 Contributions

The monad TA = νX.M(ΣX+A) can alternatively be given as M(ΣM)∞. In
Section 3, we generalise this construction toMS∞, where S is any right module
of M (all the necessary definitions and notations are given in Section 2). We
give it a monadic structure and prove that it is completely iterative. Moreover,
if M is also a cim, MS∞ is a cim both ‘vertically’ (informally, we build new
levels of the free structure) and ‘horizontally’ (we unfold more M structure)
simultaneously.

In Section 4, we turn our attention back to the instance M(ΣM)∞. We
show that it enjoys a certain universal property, which entails that it is the
coproduct of Σ∞ and M in the category of cims. In Section 5, we discuss
corollaries and potential applications of our construction in semantics and
programming.

We present only short outlines of some proofs. For the full proofs, consult
the associated technical appendix available online at http://www.cs.ox.ac.
uk/people/maciej.pirog/crm-appendix.pdf.

2 Idealised and completely iterative monads

In the rest of the paper, we work in a base category B with finite coproducts.
For brevity, we assume strict associativity of the coproduct bifunctor. The
left and right injections are called inl and inr respectively. For an endofunctor
F : B → B, we denote the carrier of the initial F -algebra as µF , and the
carrier the final F -coalgebra as νF . The unique morphism from a coalgebra
〈A, g : A → FA〉 to the final coalgebra 〈νF, ξ : νF → FνF 〉 is written as
[(g)]. We use the letters M,N, T for monads. Their monadic structure is
always denoted as η (unit) and µ (multiplication), possibly with superscripts
to assign the natural transformations to the appropriate monad. The category
of monads and monad morphisms is denoted as Mnd, while the category of
Eilenberg-Moore algebras of a monad M is denoted as M -Malg.

Definition 2.1 Let M be a monad. An endofunctor M together with a natu-
ral transformation (an action) µ : MM →M is called a (right) M -module if
µ ·Mη = id : M →M and µ · µM = µ ·Mµ : MM2 →M . We define a mor-
phism between two M-modules 〈M,µ〉 and 〈M̃, µ̃〉 as a natural transformation

3

http://www.cs.ox.ac.uk/people/maciej.pirog/crm-appendix.pdf
http://www.cs.ox.ac.uk/people/maciej.pirog/crm-appendix.pdf

Piróg, Gibbons

f : M → M̃ such that µ̃ · fM = f · µ : MM → M̃ .

Slightly abusing notation, we may denote a module 〈M,µ〉 simply as M .

Example 2.2 The following are examples of modules:

(i) For a monad M , the pair 〈M,µM〉 is an M -module.

(ii) Let m : M → T be a monad morphism. Then the pair 〈T, µT · Tm〉 is
an M -module.

(iii) Let 〈M,µM〉 be an M -module and F be an endofunctor. Then,
〈FM,FµM〉 is an M -module.

(iv) With the definitions as above, let λ : TM → MT be a distributive law
between monads. The pair 〈MT, (µM ∗ µT) ·MλT 〉 is a module of the
induced monad MT .

(v) If 〈M,µM〉 and 〈M̃, µ̃M〉 are two M -modules, the pair 〈M+M̃, µM+µ̃M〉
is also an M -module.

(vi) Let F be an endofunctor with a right adjoint U . Then, F is an UF -
module with the action given by εF : FUF → F , where ε is the counit
of the adjunction.

Definition 2.3 An idealised monad is a triple consisting of a monad M , an
M-module 〈M,µM〉, and a module homomorphism σ : 〈M,µM〉 → 〈M,µM〉.
We say that M is idealised with 〈M,µM〉. If M = M + Id, we say that M is
ideal. For an endofunctor F , a natural transformation k : F → M is ideal if
it factors through σ.

If not stated otherwise, for an idealised monad M , by µM we always denote
the action of the associated module M , and by σM the associated module
homomorphism.

Example 2.4 Extending Example 2.2 (iv) and (v), it holds that:

(i) Let M be idealised with M and λ : TM → MT be a distributive law
between monads. The induced monad MT is idealised with MT . The
associated module morphism is given by σMT : MT →MT .

(ii) Let M be idealised with M as well as with M̃ . Then, M is idealised with

M + M̃ . The associated module morphism is given by [σ, σ′] : M + M̃ →
M , where σ and σ′ are the respective associated morphisms of the two
modules.

Definition 2.5 Let M be a monad idealised with M . A morphism e : X →
M(X + A) is called a guarded equation morphism if it factors as follows:

X 99KM(X + A) + A
[σX+A, ηX+A·inrX,A]
−−−−−−−−−−−−→M(X + A)

We call a morphism e† : X → MA a solution of e if the following diagram

4

Piróg, Gibbons

commutes:

X MA

M(X + A) M2A

e†

M [e†, ηA]

e µA

An idealised monad M is completely iterative (is a ‘cim’) if every guarded
equation morphism has a unique solution.

A monad morphism m : M → T , where T is idealised with 〈T , µT 〉, is said
to preserve solutions if there exists a natural transformation m : M → T ,
such that m · σM = σT ·m : M → T .

We denote the category of all cims and solution-preserving monad mor-
phisms as Cim.

Note that we use a different notion of morphisms between cims than
Adámek et al. [5], whose morphisms – called idealised monad morphisms –
preserve also the structure of modules. The name ‘solution-preserving’ comes
from the fact that for an equation morphism e and m as in the definition
above, it holds that mX+A · e is guarded and that (mX+A · e)† = mA · e† (see
the proof of a theorem by Milius [30, Prop. 5.9]).

An important example of a cim is the free cim Σ∞ generated by an endo-
functor Σ. Intuitively, it captures the monad of non-well-founded Σ-terms.
Given an endofunctor Σ (a signature), if the final coalgebra 〈νX.ΣX +A, ξA〉
exists for all objects A, then we define Σ∞A = νX.ΣX + A. One can show
that it is functorial in A, with the obvious action on morphisms, and that it
has a monadic structure given by substitution in A, which we denote as η∞

and µ∞. The monad Σ∞ is ideal and completely iterative. We define a natural
transformation emb : Σ→ Σ∞ as:

embA =
(

ΣA
Ση∞−−→ ΣΣ∞A

inl−→ ΣΣ∞A+ A
ξ−1

−−→ Σ∞A
)

As discussed by Aczel et al. [4], Σ∞ is the free cim generated by Σ. Intuitively,
this means that every ideal interpretation of Σ in a cim M extends in a unique
way to an interpretation of the entire structure in M . Formally:

Theorem 2.6 For a cim M and an ideal natural transformation k : Σ→M ,
there exists a unique monad morphism ι(k) : Σ∞ →M such that k = ι(k)·emb.
Moreover, the morphism ι(k) preserves solutions.

We also need the following cancellation property:

Lemma 2.7 For a cim M and a solution-preserving monad morphism m :
Σ∞ → M , the composition m · emb is an ideal natural transformation, and
ι(m · emb) = m.

5

Piróg, Gibbons

3 Monadic structure and complete iterativity

Let 〈S, µS〉 be a right M -module such that S∞ exists. We give a monadic
structure to MS∞ via a distributive law [11]. This construction is an adap-
tation of Hyland, Plotkin, and Power’s proof [26] that the inductive resump-
tions M(ΣM)∗ form a monad. We use the fact due to Adámek, Milius, and
Velebil [7] that the category of complete Elgot algebras is strictly monadic over
the base category B. Note that we cannot employ Uustalu’s construction on
parametrised monads [41] (successfully used by Goncharov and Schröder [21]
in the special case of MM∞), since MS∞ is not in general given by the carrier
of a final coalgebra; moreover, we make extensive use of the distributive law
later in the paper. We start by recalling the definition of Elgot algebras [7].

Definition 3.1 Let H be an endofunctor. For two objects A and X, we call
a morphism e : X → HX+A a flat equation morphism. We call a morphism
e† : X → A a solution in an H-algebra a : HA→ A if the following diagram
commutes:

X A

HX + A HA+ A

e†

He† + id

e [a, id]

Just like in the case of cims, we denote the solutions in Elgot algebras by
(-)† or (-)‡. This overloading should not impose any confusion, since we are
always clear about the types.

Definition 3.2 For flat equation morphisms e : X → HX + Y and f : Y →
HY + A, and a morphism h : Y → Z, we define two operations. The first
one, /, ‘renames’ the parameter Y using the morphism h:

h / e =
(
X

e−→ HX + Y
id+h−−→ HX + Z

)
The second one, �, unfolds the flat equation morphisms ‘in parallel’:

f � e =
(
X + Y

[e,inr]−−−→ HX + Y
id+f−−→ HX +HY + A

[H inl,H inr]+id−−−−−−−−→ H(X + Y) + A
)

Definition 3.3 For an endofunctor H, a complete Elgot H-algebra is a triple
〈A, a : HA → A, (-)†〉, where (-)† assigns to every flat equation morphism
e : X → HX+A a solution e† : X → A such that the following two conditions
hold:

• (Functoriality) For two equation morphisms e : X → HX +A and f : Y →
HY + A understood as H(-) + A coalgebras, let h : X → Y be a coalgebra

6

Piróg, Gibbons

homomorphism, that is f · h = (Hh+ idA) · e. Then, e† = f † · h.

• (Compositionality) For two equation morphisms e : X → HX + Y and
f : Y → HY + A it holds that (f † / e)† = (f � e)† · inl.

Definition 3.4 For two complete Elgot H-algebras 〈A, a, (-)†〉 and 〈B, b, (-)‡〉,
a morphism h : A→ B is said to preserve solutions if for every flat equation
morphism e : X → HX +A it holds that (h / e)‡ = h · e†. Complete Elgot H-
algebras and solution-preserving morphisms form a category, which we denote
as H-Elgot.

Theorem 3.5 (Adámek, Milius, Velebil [7]) The obvious forgetful func-
tor UElg : H-Elgot → B is strictly H∞-monadic (or simply ‘monadic’ in
Mac Lane’s terminology [29, Ch. 6]), and hence H-Elgot ∼= H∞-Malg.

Construction 3.6 Recall that 〈S, µS〉 is a right M-module. For a complete
Elgot algebra 〈A, a : SA → A, (-)†〉 we define an algebra 〈MA, a′ : SMA →
MA, (-)‡〉 as follows:

a′ =
(
SMA

µS−→ SA
a−→ A

ηM−−→MA
)

Let e : X → SX + MA be a flat equation morphism. We define an auxiliary
morphism |e| and a solution e‡:

|e| =
(
SX + A

Se+id−−−→ S(SX +MA) + A
flat+id−−−→ S(SX + A) + A

)
e‡ =

(
X

e−→ SX +MA
inl+id−−−→ SX + A+MA

|e|†+id−−−−→ A+MA
[ηM ,id]−−−−→MA

)
where flatA,B is given as:

S(A+MB)
S(ηM+id)−−−−−→ S(MA+MB)

S[M inl,M inr]−−−−−−−→ SM(A+B)
µS−→ S(A+B)

Lemma 3.7 The triple 〈MA, a′, (-)‡〉 from Construction 3.6 is a complete El-
got algebra. Moreover, the assignment 〈A, a, (-)†〉 7→ 〈MA, a′, (-)‡〉 on objects
and f 7→ Mf on morphisms is an endofunctor on S-Elgot with a monadic
structure given by the monadic structure of M .

Theorem 3.8 The composition MS∞ is a monad.

Proof. The assignment from Lemma 3.7 is a monad, so it is a lifting of M
to S-Elgot with respect to UElg. Thus, by Theorem 3.5, it is a lifting of M
to S∞-Malg. This induces a distributive law between monads λ : S∞M →
MS∞, which gives a monadic structure to MS∞. 2

Example 3.9 Let B be Set, D be the monad of discrete probability distri-
butions, O = {a, b, . . .} be a set, and ΣX = O × X be an endofunctor. An
element of the carrier of the monad of the monad D(ΣD)∞X is a countably

7

Piróg, Gibbons

∗

· · · a

x · · ·

1
2

1
2

1
3

2
3

x 7→

∗

b c

· · · · · ·

1
4

3
4

1 1

=

∗

· · · a

· · ·b c

· · · · · ·

1
2

1
2

1
12

1
4

2
3

1 1

Fig. 1. Example of a substitution in the D(O ×D(-))∞ monad.

branching, possibly infinite decision tree in which the nodes (except for the
root) are labelled with elements of the set O, edges with probabilities, and
leaves with elements of X. Such a structure can be understood as a deno-
tation of a possibly non-terminating, probabilistic process that produces a
stream of elements of O as its output.

From the technical perspective, it is important that the root has no label –
we take a probabilistic step before generating a label and a probabilistic step
before reaching a leaf. This way, when we substitute a tree for a variable,
we take two probabilistic steps before generating a label or reaching a leaf.
The monadic structure of D(ΣD)∞X takes care of flattening these to one
probabilistic step by multiplying out the adjacent distributions; see Figure 1
for an example.

Example 3.10 In a cartesian closed category, we can define a version of the
state monad that keeps track of all (possibly infinitely many) intermediate
states. It is similar but not identical to ‘states’ given in [39] (compare also
Ahman and Uustalu’s update monads [8]). Fix an object of states A and
consider the reader monad RX = XA. The writer WX = X × A is an R-
module. The action can be given as 〈evA

X, outr〉 :WRX = XA×A→ X×A =
WX, where ev is the evaluation morphism of the exponential object, outr is
the right projection, and 〈-, -〉 is the product mediator. Intuitively, for an
initial state, the monad RW∞ = ((- × A)∞)A produces a (possibly infinite)
stream of intermediate states W∞. If the stream is finite, it is terminated
with a final value of the computation. The monad RW∞ is an instance of the
resumption monad that in general is not given by a final coalgebra.

Now, assume that M is completely iterative with respect to a module M .
Note that an ‘ordinary’ monad is always a cim with respect to the module C0

(the constant functor returning the initial object), so this assumption does not

8

Piróg, Gibbons

narrow down the choice of M . We prove MS∞ to be a cim with respect to the
module MS∞ + MSS∞. This means that each coinductive step can unfold
the structure ‘horizontally’ (by unfolding more structure of M), ‘vertically’
(unfolding the free structure), or both.

Definition 3.11 For a monad T , a distributive law of a T -module T over
a monad M is a distributive law between monads λ : TM → MT together
with a natural transformation λ : TM →MT such that the obvious analogues
of the diagrams for distributive laws between monads commute (except for the
diagram for ηT , since in general T is not a monad). Moreover, if T is idealised
with T , we say that the tuple 〈λ, λ〉 preserves modules if MσT · λ = λ · σTM :
TM →MT .

Lemma 3.12 Let T be an idealised monad and let 〈λ, λ〉 be a module-
preserving distributive law of T over M . Then the induced monad MT is
idealised with MT .

One can show that λ : S∞M →MS∞ from the proof of Theorem 3.8 can
be extended to a module-preserving distributive law of SS∞ over M . Hence,
Lemma 3.12 together with Example 2.4 lead us to the following corollary:

Corollary 3.13 The monad MS∞ is idealised with respect to MS∞+MSS∞.

We describe a solution in MS∞ as a two-step process. Intuitively, given
an equation morphism e : X → MS∞(X + A), we first unfold ‘horizontally’
via the completely iterative structure of M . We are left with what can be
seen as an equation morphism in a monad induced by the distributive law λ
in the Kleisli category of M . This morphism (the ‘vertical’ unfolding) has a
unique solution, too, which is the desired solution in MS∞. First, we need
the following technical lemma:

Lemma 3.14 Let M be a cim. Let e : X →M(X+A+B) factor as follows:

X 99KM(X + A+B) +MA+B
[σ, M(inl·inr), η·inr]−−−−−−−−−−−→M(X + A+B)

The morphism e has a unique solution e† : X →M(A+B).

The monad NS∞ has the following property, which is stronger than being
a cim:

Lemma 3.15 Let e : X → MS∞(X + A) be a morphism that factors as
follows:

X 99KM(SS∞(X + A) + A)
M [σ∞, η∞·inr]−−−−−−−−→MS∞(X + A)

Then, e has a unique solution e‡ in MS∞.

9

Piróg, Gibbons

Proof. Consider the Kleisli category of M , denoted as K`(M). For a mor-

phism f : A→ MB in K`(M), we define a B-morphism f̂ = µSB · Sf : SA→
SB. We define an endofunctor G on K`(M) given as GA = SA on objects

and G(f : A → MB) = ηMB · Sf̂ : SA → MSB on morphisms. The distribu-
tive law λ induces a monad 〈〈S∞〉〉 on K`(M) given by 〈〈S∞〉〉A = S∞A and
〈〈S∞〉〉(f : A → MB) = λB · S∞f : S∞A → MS∞B. One can show that
〈〈S∞〉〉 is the free cim generated by G in K`(M). The morphism e is a guarded
equation morphism in 〈〈S∞〉〉, so it has a unique solution e‡ : X →M〈〈S∞〉〉A.
One can verify that it is the desired morphism and that it is unique. 2

Now, we can prove the main theorem:

Theorem 3.16 The monad MS∞ is completely iterative with respect to the
module MS∞ +MSS∞.

Proof. In this proof, for brevity, we denote S∞ as T and its module SS∞ as T .
Let e : X →MT (X +A) be a guarded equation morphism. This means that

it factors as X 99KMT (X +A) +MT (X +A) +A
[σM ,MσT ,η·inr]−−−−−−−−−→MT (X +A).

Since T is an ideal monad, there exist isomorphisms T (X +A) ∼= T (X +A) +
X+A ∼= X+T (X+A)+A. Thus, e factors as X 99KM(X+T (X+A)+A)+

MT (X +A) +A
[σM ,M(inl·inr),η·inr]−−−−−−−−−−−→M(X + T (X +A) +A), and it is a guarded

equation morphism in the monad M in the sense of Lemma 3.14. Therefore,
there exists a unique solution e† : X → M(T (X + A) + A). The morphism
M [σT , ηT · inr] · e† : X →MT (X +A) is a guarded equation morphism in the
sense of Lemma 3.15, so it has a unique solution (M [σT , ηT · inr] · e†)‡ : X →
MTA. One can verify that it is a unique solution of e in MT . 2

Example 3.17 Consider the monad D(ΣD)∞ from Example 3.9. It is a cim,
which gives us a semantics for probabilistic processes with sequential com-
position. An equation morphism e : X → D(ΣD)∞(X + A) can be un-
derstood as a transition system, where X is the state space. The solution
e† : X → D(ΣD)∞A is a denotational semantics: for an initial state, it gives
us the decision tree, while all the intermediate states are forgotten (they are
internal to the computation). The solution diagram amounts to adequacy.

For an example of horizontal and vertical complete iterativity, consider the
monad D′X = D(1 + X) for the terminal object 1, which denotes failure. It
is a cim with respect to the module that consists of those values of D′ that
fail with the probability at least 0.5. Each transition of a process denoted by
D′(ΣD′)∞ can either produce an output from the set O or perform a silent
step, but with the probability of failure at least 0.5.

10

Piróg, Gibbons

4 Universal property and coproduct

A particularly interesting instance of MS∞ is M(ΣM)∞. In this section, we
investigate its universal property: for a cim N , a monad morphism M → N ,
and an ideal natural transformation Σ → N , there exists a unique coherent
monad morphism M(ΣM)∞ → N . Informally, morphisms that ‘interpret’
every level of the structure of a resumption in another cim uniquely extend to
an interpretation of the whole structure. First, we define three ‘injections’:

liftl =
(

Σ∞
ι(emb·ΣηM)−−−−−−−→ (ΣM)∞

ηM (ΣM)∞−−−−−−→M(ΣM)∞
)

liftr =
(
M

Mη∞−−−→M(ΣM)∞
)

liftf =
(

Σ
emb−−→ Σ∞

liftl−→M(ΣM)∞
)

It is easy to see that liftl and liftr are monad morphisms (liftl is a composition
of two monad morphisms). They are also solution-preserving, the former via
MΣM(ΣM)∞, the latter via M(ΣM)∞.

Definition 4.1 By Σ/Cim we denote the following category: objects are ideal

natural transformations (Σ
f−→ T), where T is a cim; morphisms are (not

necessarily solution-preserving) monad morphisms k : T → N such that the
following diagram commutes:

Σ

T

N

f

g

k

We define a forgetful functor U : Σ/Cim → Mnd as U(Σ
f−→ M) = M on

objects and Uk = k on morphisms.

Definition 4.2 A monad M is called Σ-resumable if (ΣM)∞ exists. By
Σ-Res we denote the full subcategory of Mnd with Σ-resumable cims as ob-
jects. We denote the inclusion functor by I : Σ-Res→Mnd.

We establish the universal property in terms of an I-relative adjunction.
For a discussion on relative adjoints, see, for example, Altenkirch et al. [9].

Theorem 4.3 The functor U has an I-relative left adjoint F : Σ-Res →
Σ/Cim given by FM = (Σ

liftf−−→ M(ΣM)∞) on objects and Fm = m ∗
[((Σm(ΣM)∞ + id) · ξ)] = m ∗ ι(emb · Σm) on morphisms.

Proof. One can show that the morphism Fm is a monad morphism, so F is
indeed a functor. Let M be a Σ-resumable monad, N be a cim, and g : Σ→ N

11

Piróg, Gibbons

be an ideal natural transformation. We define the isomorphism

b-c : Σ/Cim[FM, (Σ
g−→ N)] ∼= Mnd[IM,U(Σ

g−→ N)] : d-e

by

k : (Σ
liftf−−→M(ΣM)∞)→ (Σ

f−→ N) m : M → U(Σ
f−→ N)

bkc : M → U(Σ
f−→ N) dme : (Σ

liftf−−→M(ΣM)∞)→ (Σ
f−→ N)

bkc = k ·Mη(ΣM)∞ dme = µN · (m ∗ ι(µN · (f ∗m)))

For dme to be a well-defined morphism in Σ/Cim, we note that dme · liftf = f .
Using the properties of M(ΣM)∞ and free cims, one can verify that b-c is
natural in M and g, and that b-c and d-e are mutual inverses. 2

An alternative reading of Theorem 4.3 is that (Σ
liftf−−→ M(ΣM)∞) is the

free object in Σ/Cim generated by a Σ-resumable cim M . This means that for
a cim N , an ideal natural transformation g : Σ→ N , and a monad morphism
m : M → N , there exists a unique monad morphism j : M(ΣM)∞ → N such
that the following diagram commutes (one can easily see that liftr is the unit
of the relative adjunction):

Σ M(ΣM)∞ M

N

liftf liftr

g mj

Note that if M = Id, the diagram above instantiates to the fact that Σ∞ is
indeed the free cim generated by Σ. More precisely, the identity monad Id is
initial in Mnd (the unique monad morphism ! : Id → N is given by the unit
of N), so the right-hand side of the diagram above becomes trivial, and what
is left is exactly the diagram from Theorem 2.6.

Also, for a solution-preserving monad morphism n : Σ∞ → N , the com-
position n · emb : Σ → N is an ideal natural transformation. For a solution-
preserving monad morphism m : M → N, there exists a unique monad mor-
phism j : M(ΣM)∞ → N such that m = j · liftr and n · emb = j · liftf =
j · liftl ·emb. This means that ι(n ·emb) = ι(j · liftl ·emb), hence, by Lemma 2.7,
we get n = j · liftl. Therefore, the morphism j uniquely makes the following
diagram commute:

Σ∞ M(ΣM)∞ M

N

liftl liftr

n mj
(1)

12

Piróg, Gibbons

The morphism j = UdmeM,n·emb does not necessarily preserve solutions,
even though liftl, liftr, m, and n do. Informally, the action of j on the right
component of M(ΣM)∞’s module M(ΣM)∞ + MΣM(ΣM)∞ is not guaran-
teed to take the leading M into N . Nevertheless, we can amend the situation
if we know that N is a cim with respect to a two-sided module:

Definition 4.4 A two-sided module of a monad N is its right module 〈N,µR〉
together with a natural transformation µL : NN → N such that the obvious
diagrams mirroring those of Definition 2.1 commute and µR ·µLN = µL ·NµR :
NNN → N . Similarly, we adjust the definition of homomorphisms between
modules and idealised monads. We denote the category of monads that are
completely iterative with respect to two-sided ideals and solution-preserving
monad morphisms as TCim.

In the context of the properties studied in this paper, we can switch from
Cim to TCim at no cost:

Theorem 4.5 The category TCim is a full reflective subcategory of Cim. In
other words, the obvious embedding functor UTC : TCim → Cim has a left
adjoint FTC.

In practise, this means that for a monad N completely iterative with re-
spect to a right ideal N , there exists a two-sided ideal Ñ (given by NN)

and a module homomorphism N → Ñ (that is, every equation morphism

guarded via N is also guarded via Ñ), such that N is completely iterative

with respect to Ñ . In such a case, since j from the diagram (1) is equal to
µN · (m ∗ ι(µN · ((n · emb) ∗ m))) and the right-hand side argument of the
left-most ∗ preserves solutions (Theorem 2.6), the morphism j is solution-
preserving too, which can be verified by a simple diagram chase. In general,
the module of Σ∞ is two-sided, but the module of M(ΣM)∞ is not. Thus,
taking the reflection of the diagram (1) in TCim, we obtain the following
corollary, which is a ‘completely iterative’ counterpart of Hyland, Plotkin and
Power’s result that M(ΣM)∗ is a coproduct of Σ∗ and M in Mnd [26]:

Corollary 4.6 For an endofunctor Σ and a monad M completely itera-
tive with respect to a two-sided ideal, the FTC-image of M(ΣM)∞ (that is,
M(ΣM)∞ idealised with M(ΣM)∞(M(ΣM)∞ + MΣM(ΣM)∞)) is the co-
product of Σ∞ and M in TCim.

5 Discussion

5.1 Complete iterativity

The results presented in this paper are in general contributions to the study of
completely iterative monads [4]. We give new examples of cims and describe
coproducts with free cims. Note that if M is ideal, then so is MS∞, which

13

Piróg, Gibbons

means that our constructions scale to the category of ideal cims, if one prefers
to work in such a setting.

Our results suggest a form of ‘least- vs greatest fixed points’ duality be-
tween ordinary monads and cims: free objects are given by F ∗A = µX.FX+A
and F∞A = νX.FX + A respectively, and coproducts with free objects by
M(ΣM)∗ and M(ΣM)∞. There are other constructions on monads that in-
volve initial algebras, for example the coproduct of two ideal monads, as shown
by Ghani and Uustalu [20]. We conjecture that a similar construction with ν
in place of µ yields the coproduct in the category of ideal cims.

Adámek et al. [5,6] consider also a finitary case: they define an itera-
tive monad (without ‘completely’) as a finitary monad on a locally finitely
presentable category, such that all guarded equation morphisms with finitely
presentable object of variables have unique solutions. Similarly, there exists a
finitary version of complete Elgot algebras (namely, Elgot algebras) together
with an analogue of Theorem 3.5. This suggests that the presented construc-
tions should scale to the finitary case, but we have not yet worked out the
details.

Elgot’s original results were set in the context of algebraic theories rather
than general category theory. As a future direction of research, it would be
interesting to look at structures based on resumptions from the point of view
of algebraic specification (operations and equations), especially those that
could be used in semantics and programming, like the logging monad from
Example 3.10.

5.2 Semantics and programming

As suggested by the present authors in a previous paper [39], models in the
style of Moggi [34] of effects generating observable behaviour (such as I/O)
require a form of complete iterativity, given that programs need not termi-
nate. Thus, by understanding the category of cims, one hopes for a better
understanding of such effects. For example, if one pursues modularity, the
coproduct in Mnd of two cims is not in general completely iterative. So, a
much better notion of the ‘smallest’ amalgam of such effects would be their
coproduct in TCim. This has a practical aspect: the Haskell programming
language is equipped with a single ‘all-inclusive’ IO monad, incorporating ef-
fects as diverse as textual interaction, file handling, system calls, the foreign
function interface, random number generation, and concurrency; one would
hope for more fine-grained components that indicate the actual impure effects
in use (see Peyton Jones [27] for discussion).

Resumptions-like structures are used as denotations of processes, that is
programs that exhibit observable behaviour in the course of execution (see
Abramsky [1]). A monadic structure captures the notion of composition, which

14

Piróg, Gibbons

allows the resumption monad to serve as the basis of a programming calculus
in the style of Moggi [34]. For example, Goncharov and Schröder [21] give
a simple semantics for asynchronous side-effecting concurrent processes using
the monad MM∞. We hope that the richer structure of MS∞ can be used
to describe more advanced behaviours and synchronisation of processes along
the lines of Abramsky’s interaction categories [2].

In pure functional programming, monads are often used as an embedded
domain-specific language (EDSL) for representing computational effects, built
from atomic actions using functoriality and monadic structure. Very often
such monadic values describe not necessarily terminating (thus, in a sense,
coinductive) programs with non-trivial, parallel resource management, like
lazy I/O; see, for example, Kiselyov’s iteratees [28]. Such programs are often
represented by data structures similar to monadic resumptions, which are
in a close relationship with the outer, ‘imperative’ monad, such as Haskell’s
IO. The relationship between the two can be formalised by the operations
discussed in this paper: IO actions can be lifted to the level of resumptions
(liftr), while the whole EDSL program can be executed, that is flattened back
into IO, which can be modelled by the universal property.

5.3 Related work

The notion of complete iterativity was introduced by Elgot [16], and later
studied by Aczel et al. [4,30]. The properties of the monad Σ∞ were stud-
ied also by Moss [35] and Ghani et al. [19]. Milius and Moss used Elgot
algebras [7] to describe solutions to recursive program schemes [31]. The com-
position M(ΣM)∞ has been previously known to be a monad and a cim in the
vertical manner (that is, with respect to the module MΣM(ΣM)∞) [21,39]. In
contrast to those results, our proofs do not depend on the resumption monad
being given by a final coalgebra.

Resumptions were used in semantics of concurrency in many different
shapes and under different names. A domain-theoretic approach to resump-
tions was taken by Milner [32], Plotkin [40], and Papaspyrou [37]. Interaction
trees, that is final coalgebras of functors of the shape P((-) × O)I on Set,
where P is the powerset functor, were extensively used in Abramsky’s inter-
action categories [2] (the existence of such final coalgebras was assured by
employing Aczel’s non-well-founded set theory [3]).

In programming, different forms of resumptions have been independently
rediscovered dozens of times, and used for flexible structuring of programs,
though usually without much formal treatment. In the Lisp community, re-
sumptions were dubbed ‘engines’ (Haynes and Friedman [25], Dybvig and
Hieb [15]) or ‘trampolined’ programs (Ganz, Friedman, and Wand [18]), while
in the Haskell libraries they can be found under the name ‘free monad trans-

15

Piróg, Gibbons

former’ (since liftr from Section 4 is a monad morphism natural in M , the
functor M 7→ M(ΣM)∞ is a monad transformer in the sense of Moggi [33]).
Different programming patterns that involve resumptions were discussed by
Claessen [14], Kiselyov [28], Harrison [23], and the present authors [38]. Inter-
leaving of data and effects in the algebraic context was also studied by Filinski
and Støvring [17], and Atkey et al. [10].

In type theory, similar constructions were used to model interactive
programs (Hancock and Setzer [22]), general recursion via guarded core-
cursion (Capretta [12]), or semantics of imperative languages (Nakata and
Uustalu [36]).

Acknowledgements

We would like to thank Stefan Milius for his remarks on an early draft of
this paper, and the anonymous reviewers for their detailed comments and
helpful suggestions. The work reported here was partially supported by UK
EPSRC-funded project Reusability and Dependent Types (EP/G034516/1).

References

[1] Samson Abramsky. Retracing some paths in process algebra. In Ugo Montanari and Vladimiro
Sassone, editors, International Conference on Concurrency Theory (CONCUR), volume 1119
of Lecture Notes in Computer Science (LNCS), pages 1–17. Springer, 1996.

[2] Samson Abramsky, Simon Gay, and Rajagopal Nagarajan. Interaction categories and the
foundations of typed concurrent programming. In Proceedings of the 1994 Marktoberdorf
Summer School on Deductive Program Design, pages 35–113. Springer-Verlag, 1996.

[3] Peter Aczel. Non-well-founded Sets. Number 14 in Lecture Notes. Center for the Study of
Language and Information, Stanford University, 1988.

[4] Peter Aczel, Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theoretical Computer Science, 300(1-3):1–45, 2003.

[5] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. On rational monads and free iterative theories.
Electronic Notes in Theoretical Computer Science (ENTCS), 69:23–46, 2002.

[6] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Free iterative theories: A coalgebraic view.
Mathematical Structures in Computer Science, 13(2):259–320, 2003.

[7] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Elgot algebras. Logical Methods in Computer
Science, 2(5), 2006.

[8] Danel Ahman and Tarmo Uustalu. Update monads: Cointerpreting directed containers. In
Book of abstracts of the 19th Meeting of “Types for Proofs and Programs”, TYPES 2013
(Toulouse, April 2013), pages 16–17, 2013.

[9] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.
In FOSSACS, volume 6014 of Lecture Notes in Computer Science (LNCS), pages 297–311.
Springer, 2010.

[10] Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann. Fibrational induction meets
effects. In FOSSACS, volume 7213 of Lecture Notes in Computer Science (LNCS), pages
42–57. Springer, 2012.

16

Piróg, Gibbons

[11] Jon Beck. Distributive laws. In Seminar on Triples and Categorical Homology Theory,
volume 80 of Lecture Notes in Mathematics, pages 119–140. Springer Berlin / Heidelberg,
1969. 10.1007/BFb0083084.

[12] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer
Science, 1(2), 2005.

[13] Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denotational
semantics. In Category Theory and Computer Science, Amsterdam, The Netherlands, 1993.

[14] Koen Claessen. A poor man’s concurrency monad. Journal of Functional Programming,
9(3):313–323, 1999.

[15] R. Kent Dybvig and Robert Hieb. Engines from continuations. Computer Languages,
14(2):109–123, 1989.

[16] Calvin C. Elgot, Stephen L. Bloom, and Ralph Tindell. On the algebraic structure of rooted
trees. J. Comput. Syst. Sci., 16:362–399, 1978.

[17] Andrzej Filinski and Kristian Støvring. Inductive reasoning about effectful data types. In
International Conference on Functional Programming (ICFP), pages 97–110. ACM, 2007.

[18] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In International
Conference on Functional Programming (ICFP), pages 18–27. ACM, 1999.

[19] Neil Ghani, Christoph Lüth, Federico De Marchi, and John Power. Algebras, coalgebras,
monads and comonads. Electronic Notes in Theoretical Computer Science (ENTCS),
44(1):128–145, 2001.

[20] Neil Ghani and Tarmo Uustalu. Coproducts of ideal monads. Theoretical Informatics and
Applications, 38(4):321–342, 2004.

[21] Sergey Goncharov and Lutz Schröder. A coinductive calculus for asynchronous side-effecting
processes. In Symposium on Fundamentals of Computation Theory (FCT), volume 6914 of
Lecture Notes in Computer Science (LNCS), pages 276–287. Springer, 2011.

[22] Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In Computer
Science Logic (CSL), volume 1862 of Lecture Notes in Computer Science (LNCS), pages 317–
331. Springer, 2000.

[23] William L. Harrison. The essence of multitasking. In Algebraic Methodology and Software
Technology (AMAST), volume 4019 of Lecture Notes in Computer Science (LNCS), pages
158–172. Springer, 2006.

[24] Ichiro Hasuo and Bart Jacobs. Traces for coalgebraic components. Mathematical Structures
in Computer Science, 21(2):267–320, 2011.

[25] Christopher T. Haynes and Daniel P. Friedman. Engines build process abstractions. In LISP
and Functional Programming, pages 18–24, 1984.

[26] Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.
Theoretical Computer Science, 357(1-3):70–99, 2006.

[27] Simon Peyton Jones. Tackling the awkward squad: Monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. In Engineering theories of software
construction, pages 47–96. IOS Press, 2002.

[28] Oleg Kiselyov. Iteratees. In FLOPS, volume 7294 of Lecture Notes in Computer Science
(LNCS), pages 166–181. Springer, 2012.

[29] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics. Springer, 1998.

[30] Stefan Milius. Completely iterative algebras and completely iterative monads. Information
and Computation, 196:1–41, 2005.

[31] Stefan Milius and Lawrence S. Moss. The category-theoretic solution of recursive program
schemes. Theoretical Computer Science, 366(1-2):3–59, 2006.

17

Piróg, Gibbons

[32] Robin Milner. Processes: A mathematical model of computing agents. In Logic Colloquium
’73, Studies in logic and the foundations of mathematics, pages 157–173. North-Holland Pub.
Co., 1975.

[33] Eugenio Moggi. An Abstract View of Programming Languages. Technical report, Edinburgh
University, 1989.

[34] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991.

[35] Lawrence S. Moss. Parametric corecursion. Theoretical Computer Science, 260(1-2):139–163,
2001.

[36] Keiko Nakata and Tarmo Uustalu. Resumptions, weak bisimilarity and big-step semantics for
While with interactive I/O: An exercise in mixed induction-coinduction. In SOS, volume 32
of Electronic Proceedings in Theoretical Computer Science (EPTCS), pages 57–75, 2010.

[37] Nikolaos S. Papaspyrou. A resumption monad transformer and its applications in the semantics
of concurrency. In Proceedings of the 3rd Panhellenic Logic Symposium, Anogia, 2001.

[38] Maciej Piróg and Jeremy Gibbons. Tracing monadic computations and representing effects.
volume 76 of Electronic Proceedings in Theoretical Computer Science (EPTCS), pages 90–111,
2012.

[39] Maciej Piróg and Jeremy Gibbons. Monads for behaviour. Electronic Notes in Theoretical
Computer Science (ENTCS), 298:309–324, 2013. Mathematical Foundations of Programming
Semantics (MFPS).

[40] Gordon D. Plotkin. A powerdomain construction. SIAM: SIAM Journal on Computing,
5(3):452–487, 1976.

[41] Tarmo Uustalu. Generalizing substitution. RAIRO—Theoretical Informatics and Applications,
37:315–336, 10 2003.

18

	Introduction
	Resumptions
	Coinduction
	Contributions

	Idealised and completely iterative monads
	Monadic structure and complete iterativity
	Universal property and coproduct
	Discussion
	Complete iterativity
	Semantics and programming
	Related work

	References

