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In this paper we introduce a Riemannian algorithm for minimizing (or maximizing) a

real-valued function J of complex-valued matrix argument W under the constraint that

W is an n� n unitary matrix. This type of constrained optimization problem arises in

many array and multi-channel signal processing applications.

We propose a conjugate gradient (CG) algorithm on the Lie group of unitary matrices

UðnÞ. The algorithm fully exploits the group properties in order to reduce the

computational cost. Two novel geodesic search methods exploiting the almost periodic

nature of the cost function along geodesics on UðnÞ are introduced. We demonstrate the

performance of the proposed CG algorithm in a blind signal separation application.

Computer simulations show that the proposed algorithm outperforms other existing

algorithms in terms of convergence speed and computational complexity.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Constrained optimization problems arise in many
signal processing applications. In particular, we are
addressing the problem of optimization under unitary
matrix constraint. Such problems may be found in
communications and array signal processing, for example,
blind and constrained beamforming, high-resolution
direction finding, and generally in all subspace-based
methods. Another important class of applications is
source separation and independent component analysis
(ICA). This type of optimization problems occur also in
multiple-input multiple-output (MIMO) communication
systems. See [2,1,23] for recent reviews.

Commonly, optimization under unitary matrix con-
straint is viewed as a constrained optimization problem
ll rights reserved.
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on the Euclidean space. Classical gradient algorithms are
combined with different techniques for imposing the
constraint, for example, orthogonalization, approaches
stemming from the Lagrange multipliers method, or some
stabilization procedures. If the unitary criterion is en-
forced by using such techniques, one may experience slow
convergence or departures from the unitary constraint as
shown in [2].

A constrained optimization problem may be converted
into an unconstrained one on a different parameter space
determined by the constrained set. The unitary matrix
constraint considered in this paper determines a para-
meter space which is the Lie group of n� n unitary
matrices UðnÞ. This parameter space is a Riemannian
manifold [6] and a matrix group [19] under the standard
matrix multiplication at the same time. By using modern
tools of Riemannian geometry, we take full benefit of the
nice geometrical properties of UðnÞ in order to solve the
optimization problem efficiently and satisfy the constraint
with high fidelity at the same time.

Pioneering work in Riemannian optimization may be
found in [21,14,28,3]. The optimization with orthogonality
constraints is considered in detail in [7]. Steepest descent
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(SD), conjugate gradient (CG), and Newton algorithms on
Stiefel and Grassmann manifolds are derived. A CG
algorithm on the Grassmann manifold has also been
proposed recently in [18]. A non-Riemannian approach,
which is a general framework for optimization, is
introduced in [22]. Modified SD and Newton algorithms
on Stiefel and Grassmann manifolds are derived. SD
algorithms operating on orthogonal group are considered
recently in [24,8,26] and on the unitary group in [1,2].
Riemannian SD algorithms on some specific subgroups of
the unitary Lie group UðnÞ, such as the unitary unimodular
matrix group SUð2Þ and the special unitary group SUð3Þ
have been recently considered by Fiori in [11,10], respec-
tively. Fixed point (or leap-frog) type of algorithms that do
not stem from a from first-order or second-order (CG or
Newton-like) cost function optimization have been re-
cently proposed for neural learning on UðnÞ [9]. A CG on
the special linear group is proposed in [30]. Algorithms in
the existing literature [21,14,28,29,7,22] are, however,
more general in the sense that they can be applied on
more general manifolds than UðnÞ. For this reason when
applied to UðnÞ, they do not take full benefit of the special
properties arising from the Lie group structure of the
manifold [2].

In this paper we derive a CG algorithm operating on
the Lie group of unitary matrices UðnÞ. The proposed CG
algorithm provides faster convergence compared to the
existing SD algorithms [2,22] at even lower complexity.
There are two main contributions in this paper. First, a
computationally efficient CG algorithm on the Lie group of
unitary matrices UðnÞ is proposed. The algorithm fully
exploits the Lie group properties such as simple expres-
sions for the geodesics and tangent vectors.

The second main contribution in this paper is that we
propose Riemannian optimization algorithms which ex-
ploit the almost periodic property [12] of the cost function
along geodesics on UðnÞ. Based on this property we derive
novel high accuracy line search methods [28] that facilitate
fast convergence and selection of suitable step size
parameter. Many of the existing geometric optimization
algorithms do not include practical line search methods
[7,24], or if they do, they are too complex when applied to
optimization on UðnÞ [22,8]. In some cases, the line search
methods are either valid only for specific cost functions
[28], or the resulting search is not highly accurate
[22,8,18,2,26]. Because the CG algorithm assumes exact
search along geodesics, the line search method is crucial
for the performance of the resulting algorithm. An
accurate line search method exploiting the periodicity of
a cost function which appears on the limited case of
special orthogonal group SOðnÞ for np3, is proposed in
[26] for non-negative ICA. The method can also be applied
for n43, but the accuracy decreases, since the periodicity
of the cost function is lost. Univariate descent (UVD)
methods on homogeneous manifolds have been recently
proposed by Celledoni and Fiori [5]. The main advantage is
that the multi-dimensional optimization is split into
several one-dimensional optimization problems which
are easier to solve.

The high-accuracy line search methods proposed in
this paper use a different approach. They perform
optimization of the cost function along geodesics by
exploiting the almost periodic behavior of the cost
function on UðnÞ, due to the exponential map. Their
complexity is lower compared to well-known efficient
methods [2] such as the Armijo method [27]. The
proposed line search methods are used together with
the proposed CG algorithm. To our best knowledge the
proposed CG algorithm is the first ready-to-implement CG
algorithm on the Lie group of unitary matrices UðnÞ. It is
also valid for the special orthogonal group SOðnÞ.

This paper is organized as follows. In Section 2 we
approach the problem of optimization under unitary
constraint by using tools from Riemannian geometry.
We show how the geometric properties may be exploited
in order to solve the optimization problem in an efficient
way. Two novel line search methods are introduced in
Section 3. The practical CG algorithm for optimization
under unitary matrix constraint is given in Section 4.
Simulation results and applications are presented in
Section 5. Finally, Section 6 concludes the paper.

2. Optimization on the unitary group UðnÞ

In this section we show how the problem of optimiza-
tion under unitary matrix constraint can be solved
efficiently and in an elegant manner by using tools of
Riemannian geometry. In Section 2.1 we review some
important properties of the unitary group UðnÞ which are
needed later in our derivation. Few important properties
of UðnÞ that are very beneficial in optimization are pointed
out in Section 2.2. The difference in behavior of the SD and
CG algorithm on Riemannian manifolds in explained in
Section 2.3. A generic CG algorithm on UðnÞ is proposed in
Section 2.4.

2.1. Some key geometrical features of UðnÞ

This subsection describes briefly some Riemannian
geometry concepts related to the Lie group of unitary
matrices UðnÞ and show how they can be exploited in
optimization algorithms. Consider a real-valued function
J of an n� n complex matrix W, i.e., J : Cn�n

! R. Our
goal is to minimize (or maximize) the function J ¼JðWÞ
under the constraint that WWH

¼WHW ¼ I, i.e., W is
unitary. This constrained optimization problem on Cn�n

may be converted into an unconstrained one on the space
determined by the unitary constraint, i.e., the Lie group of
unitary matrices. We view our cost function J as a
function defined on UðnÞ. The space UðnÞ is a real

differentiable manifold [6]. Moreover, the unitary ma-
trices are closed under the standard matrix multiplication,
i.e., they form a Lie group [19]. The additional properties
arising from the Lie group structure may be exploited to
reduce the complexity of the optimization algorithms.

2.1.1. Tangent vectors and tangent spaces

The tangent space TWUðnÞ is an n2-dimensional real
vector space attached to every point W 2 UðnÞ. At the
group identity I, the tangent space is the real Lie algebra of
skew-Hermitian matrices uðnÞ9TIUðnÞ ¼ fS 2 C

n�n
jS ¼
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�SH
g. Since the differential of the right translation is an

isomorphism, the tangent space at W 2 UðnÞ may be
identified with the matrix space TWUðnÞ9fX 2
Cn�n
jXHWþWHX ¼ 0g:

2.1.2. Riemannian metric and gradient on UðnÞ

After UðnÞ is equipped with a Riemannian structure
(metric), the Riemannian gradient on UðnÞ can be defined.
The inner product given by

hX;YiW ¼
1
2RftracefXYH

gg; X;Y 2 TWUðnÞ (1)

induces a bi-invariant metric on UðnÞ. This metric is the
metric induced from the embedding Euclidean space. The
Riemannian gradient gives the steepest ascent (SA)
direction on UðnÞ of the function J at some point
W 2 UðnÞ:

~rJðWÞ9CW �WCH
WW, (2)

where CW ¼ dJ=dW�
ðWÞ is the gradient of J on the

Euclidean space at a given W, defined in terms of real
derivatives with respect to real and imaginary parts of W
[20].

2.1.3. Geodesics and parallel transport on UðnÞ

Geodesics on a Riemannian manifold are curves with
zero acceleration (the second covariant derivative), as
determined by the Levi–Civita connection [6]. Locally,
geodesics are also the length minimizing curves. Their
expression is given by the Lie group exponential map [16,
Chapter II, Section 1]. For UðnÞ this coincides with the
matrix exponential, for which stable and efficient numer-
ical methods exist (see [2] for details). The geodesic
emanating from W in the direction ~S ¼ SW is given by

GWðtÞ ¼ expðtSÞW; S 2 uðnÞ; t 2 R. (3)

The parallelism on a differentiable manifold is defined
with respect to an affine connection [25,6,16]. Usually the
Levi–Civita connection [28,29] is used on Riemannian
manifolds (also called Riemannian connection). Now,
the parallel transport of a tangent vector ~X ¼ XW 2 TW;

X 2 uðnÞ, w.r.t. the Riemannian connection along the
geodesic (3) is given by [16]

t ~XðtÞ ¼ expðtS=2ÞXk expð�tS=2ÞGWðtÞ, (4)

where t denotes the parallel transport. In the important
special case of transporting the velocity vector of the
geodesic, i.e., ~X ¼ ~S, Eq. (4) simply reduces to the right
multiplication by WHGWðtÞ

t ~SðtÞ ¼ SGWðtÞ ¼ ~SWHGWðtÞ. (5)

2.2. Almost periodic cost function along geodesics

In this subsection we present an important property
of the unitary group, i.e., the behavior of a smooth cost
function along geodesics on UðnÞ. A smooth cost function
J : UðnÞ ! R takes predictable values along geodesics on
UðnÞ. This is a consequence of the fact that geodesics (3)
are given by matrix exponential of skew-Hermitian
matrices S 2 uðnÞ. Such matrices have purely imaginary
eigenvalues of form |oi; i ¼ 1; . . . ;n. Therefore, the eigen-
values of the matrix exponential expðtSÞ are complex
exponentials of form e|oi t . Consequently, the composed
cost function ĴðtÞ ¼JðGWðtÞÞ is an almost periodic

function [12], and therefore it may be expressed as a
sum of periodic functions of t. ĴðtÞ is a periodic function
only if the frequencies oi; i ¼ 1; . . . ;n are in harmonic
relation. This happens for SOð2Þ and SOð3Þ as noticed
in [26,10], but not for UðnÞ with n41, in general. The
derivatives of the cost function are also almost periodic
functions [12]. The almost periodic functions is a well-
studied class of functions. There are many definition in the
literature for these type of functions, but we use the one in
[12,13]. A real number T is called �-almost period (or just
almost period) of the function F : R! R if

jFðt þ TÞ �FðtÞjp�; 8t 2 R. (6)

The function F is called almost periodic if for any �40,
the set of �-almost periods is relatively dense in R [12].

The almost periodic property of the cost function ĴðtÞ
and its derivatives appears in the case of exponential map.
This is not the case for other common parametrizations
such as the Cayley transform or the Euclidean projection
operator [2]. Moreover, this special property appears only
on certain manifolds such as the unitary group UðnÞ and
the special orthogonal group SOðnÞ, and it does not appear
on Euclidean spaces or on general Riemannian manifolds.
The almost-periodic behavior of the cost function along
geodesics may be used to perform geodesic search on
UðnÞ. This will be shown later in Section 3 where two
novel line search methods for selecting a suitable step size
parameter are introduced.

2.3. SD vs. CG on Riemannian manifolds

The CG algorithm provides typically faster convergence
compared to the SD algorithm not only on the Euclidean
space, but also on Riemannian manifolds. This is due to
the fact that Riemannian SD algorithm has the same
drawback as its Euclidean counterpart, i.e., it takes 901
turns at each iteration [28]. This is illustrated in Fig. 1
(top), where the contours of a cost function are plotted on
the manifold surface. The steps are taken along geodesics,
i.e., the trajectory of the SD algorithm comprises of
geodesic segments connecting successive points
Wk;Wkþ1;Wkþ2 on the manifold. The zig-zag type of
trajectory decreases the convergence speed, e.g., if the cost
function has the shape of a ‘‘long narrow valley’’. The CG
algorithm may significantly reduce this drawback Fig. 1
(bottom). It exploits the information provided by the
current search direction � ~Hk at Wk and the SD direction
� ~Gkþ1 at the next point Wkþ1. The new search direction is
chosen to be a combination of these two, as shown in
Fig. 1 (bottom). The difference compared to the Euclidean
space is that the current search direction � ~Hk and the
gradient ~Gkþ1 at the next point lie in different tangent
spaces, TWk

and TWkþ1
, respectively.

For this reason they are not directly compatible. In
order to combine them properly, the parallel transport of
the current search direction � ~Hk from Wk to Wkþ1 along
the corresponding geodesic is utilized. The new search
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Fig. 1. SD (top) vs. CG (bottom) on Riemannian manifolds. SD algorithm

takes 901 turns at every iteration, i.e., h� ~Gkþ1 ;�t ~GkiWkþ1
¼ 0, where t

denotes the parallelism w.r.t. the geodesic connecting Wk and Wkþ1. CG

takes a search direction � ~Hkþ1 at Wkþ1 which is a combination of the

new SD direction � ~Gkþ1 at Wkþ1 and the current search direction � ~Hk

translated to Wkþ1 along the geodesic connecting Wk and Wkþ1. The new

Riemannian steepest descent direction � ~Gkþ1 at Wkþ1 will be orthogonal

to the current search direction �Hk at Wk translated to Wkþ1, i.e.,

h� ~Gkþ1 ;�t ~HkiWkþ1
¼ 0.
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direction at Wkþ1 (see Fig. 1 (bottom)) is

� ~Hkþ1 ¼ �
~Gkþ1 � gkt ~Hk, (7)

where t ~Hk is the parallel transport (5) of the vector ~Hk

into TWkþ1
. The weighting factor gk is determined such that

the directions t ~Hk and ~Hkþ1 are Hessian-conjugate [28,7],
i.e.,

gk ¼ �
Hess Jðt ~Hk; ~Gkþ1Þ

HessJðt ~Hk; t ~HkÞ
. (8)

2.4. CG algorithm on UðnÞ

In the exact conjugacy formula (8), only the special
case of vector transportation (5) is needed. However, the
factor gk contains the computationally expensive Hessian,
and therefore, as usual, it is approximated. Using the
crucial assumption that Wkþ1 is a minimum point along
the geodesic GWðtÞ and the first-order Taylor series
approximation of the first differential form of JðWkþ1Þ,
the Polak–Ribièrre approximation formula for the factor
gk is obtained [28,7] as

gk ¼
h ~Gkþ1 � t ~Gk; ~Gkþ1iWkþ1

h ~Gk; ~GkiWk

. (9)
The parallel transport for ~Gk could be obtained from (4),
but we choose to approximate it by using the right
multiplication by WH

k Wkþ1 leading to the approximate
Polak–Ribièrre formula:

gk ¼
hGkþ1 � Gk;Gkþ1iI

hGk;GkiI
(10)

If ~Hk ¼
~Gk, then by (5) formulae (9) and (10) become

equal. In our simulations (9) and (10) have given identical
results, and therefore we propose the computationally
simpler formula (10).

Finally, the CG step is taken along the geodesic
emanating from Wk in the direction � ~Hk ¼ �HkWk, i.e.,

Wkþ1 ¼ expð�mkHkÞWk. (11)

A line search needs to be performed in order to find the
step size mk which corresponds to a local minimum along
the geodesic.

3. Line search on UðnÞ. Step size selection

Step size selection plays a crucial role in the overall
performance of the CG algorithm. In general, selecting an
appropriate step size may be computationally expensive
even for the Euclidean gradient algorithms. This is due to
the fact that most of the line search methods [27] require
multiple cost function evaluations. On Riemannian mani-
folds, every cost function evaluation requires expensive
computations of the local parametrization (in our case,
the exponential map). In [18], a CG on the Grassmann
manifold is proposed. The line search method is exact only
for the convex quadratic cost functions on the Euclidean
space. The difficulty of finding a closed-form solutions for
a suitable step size is discussed in [18]. A closed-form
solution of the step size is provided in [5] for optimizing a
specific cost function on the Stiefel manifold for the
problem of principal component analysis (PCA). A one-
dimensional Newton method which uses the first-order
Fourier expansion to approximate the cost function along
geodesics on SOðnÞ is proposed in [26]. It requires
computing the first and the second-order derivatives of
the cost function along geodesics. The method exploits the
periodicity of the cost function along geodesics on SOð2Þ
and SOð3Þ. For n43 the accuracy of the approximation
decreases, since the periodicity of the cost functions is
lost. The method avoids computing the matrix exponen-
tial by using the closed-form Rodrigues formula, valid for
SOð2Þ and SOð3Þ only. In case of Uð2Þ and Uð3Þ and in
general for n41, the Rodrigues formula cannot be applied.

In this section, we propose two novel methods for
performing high-accuracy one-dimensional search along
geodesics on UðnÞ. They rely on the fact that smooth
functions as well as their derivatives are almost periodic

[12] along geodesics on UðnÞ. The first method is based on
a polynomial approximation of the first-order derivative
of the cost function along geodesics. The second one is
based on an approximation using discrete Fourier trans-
form (DFT). We choose to approximate the derivative of
the cost function along geodesics and find the correspond-
ing zeros, instead of approximating the cost function itself
and finding the local minima as in [26]. Moreover,



ARTICLE IN PRESS

T. Abrudan et al. / Signal Processing 89 (2009) 1704–17141708
compared to [26] the proposed method does not require
the second-order derivative.

The main goal is to find a step size mk40 along the
geodesic curve

W ðmÞ ¼ expð�mHkÞWk9RðmÞWk; RðmÞ � UðnÞ, (12)

which minimizes the composed function

ĴðmÞ9JðW ðmÞÞ. (13)

The direction �Hk 2 uðnÞ in (12) may correspond to an SD,
CG, or any other gradient-type of method. Consider two
successive points on UðnÞ such that Wk ¼W ð0Þ and
Wkþ1 ¼W ðmkÞ. Finding the step size m ¼ mk that mini-
mizes ĴðmÞ may be done by computing the first-order
derivative dĴ=dm and setting it to 0. By using the chain
rule for the composed function JðW ðmÞÞ, we get

dĴ

dm
ðmÞ ¼ �2R trace

@J

@W � ðRðmÞWkÞW
H
k RH
ðmÞHH

k

� �� �
.

(14)

Almost periodicity may be exploited in many ways in
order to find the zeros of the first-order derivative
corresponding to the desired values of the step size. We
present two different approaches. The first approach finds
only the first zero of the derivative by using a polynomial
approximation of the derivative. The second one finds
several zeros of the derivative and is based on a Fourier
series approximation. Other approaches may also be
possible, and they are being investigated.

3.1. Line search on UðnÞ by using polynomial approximation

approach

The goal of the polynomial approximation approach is
to find the first local minimum of the cost function along a
given geodesic. This corresponds to finding the first zero-
crossing value of the first-order derivative of the cost
function, which is also almost periodic. In this purpose we
use a low-order polynomial approximation of the deriva-
tive and find its smallest positive root. The approximation
range of the derivative is determined from its spectral
content. The method provides computational benefits
since only one evaluation of the matrix exponential is
needed. The method is explained in detail below.

The direction � ~Hk is a descent direction at Wk,
otherwise it will be reset to the negative gradient.
Therefore, the first-order derivative dĴ=dm is always
negative at the origin (at m ¼ 0) and the cost function
ĴðmÞ is monotonically decreasing up to the first zero-
crossing of dĴ=dm. This value corresponds to a local
minimum of ĴðmÞ along geodesic (12) (or seldom to a
saddle point). Due to differentiation, the spectrum of
dĴ=dm is the high-pass filtered spectrum of ĴðmÞ. The
frequency components are determined by the purely
imaginary eigenvalues of �Hk as shown in Section 2.2.
Therefore, the cost function as well as its derivative
possess discrete frequency spectra. For our task at hand,
we are not interested in the complete spectrum of dĴ=dm,
but the main interest lies in the smallest zero-crossing
value of the derivative. This is determined by the highest
frequency component in the spectrum of dĴ=dm in the
following way. In the interval of m which is equal to
one period corresponding to the highest frequency in the
spectrum, the function dĴ=dm has at most one complete
cycle on that frequency, and less than one on other
frequencies. The highest frequency component of dĴ=dm
is qjomaxj, where omax is the eigenvalue of Hk having the
highest magnitude, and q is the order of the cost function.
The order q corresponds to the highest degree that t

appears on in the Taylor series expansion of JðWþ tZÞ
about t0 ¼ 0, and it is assumed to be finite (most of the
practical cost functions). Otherwise, a truncated Taylor
series may be used. The period corresponding to the
highest frequency component is

Tm ¼
2p

qjomaxj
. (15)

The highest frequency component is amplified the most
due to differentiation (high-pass filtering). The other
components have less than one cycle within that interval
as well as usually smaller amplitudes. Therefore, the first-
order derivative dĴ=dm crosses zero at most twice within
the interval ½0; TmÞ. The presence of the zeros of the
derivative are detected as sign changes of the derivative
within ½0; TmÞ. Since dĴ=dm varies very slowly within the
interval ½0; TmÞ due to the almost periodic property of
the derivative, a low-order polynomial approximation of
the derivative is sufficient to determine the corresponding
zero-crossing value. The approximation requires evaluat-
ing the cost function at least at P points, where P is the
order of the polynomial, resulting into at most P zero-
crossings for the approximation of the derivative. In order
to reduce complexity, the derivative is evaluated at equi-
spaced points f0; Tm=P;2Tm=P; . . . ; Tmg: Consequently, only
one computation of the matrix exponential RðmÞ ¼
expð�mHkÞ is needed at m ¼ Tm=P, and the next ðP � 1Þ
values are the powers of RðmÞ. The polynomial coeffi-
cients may be found by solving a set of linear equations.
The idea of expressing the first-order derivative of the cost
function by using a low-order polynomial and sampling it
at equi-spaced points has also been exploited recently in
[5]. The differences compared to the proposed polynomial
approach are the following. First, the approach in [5] is
used to optimize a specific quadratic cost function, on the
Stiefel manifold, in the context of PCA. This enables
description of the cost function as a fourth-order complex
polynomial whose variable is the step size parameter.
Second, the cost function and its derivatives are coarsely
sampled followed by a fine sampling around the region of
interest. In this way, a good approximation of the desired
step size is obtained with low complexity for the
particular cost function.

In Fig. 2 we take as an example the JADE cost function
used to perform the joint diagonalization for blind
separation in [4]. A practical application of the proposed
algorithm to blind separation by optimizing the JADE
criterion will be given later in Section 5.2. The cost
function ĴðmÞ is represented by black continuous curve in
Fig. 2. Its first-order derivative dĴ=dm is represented by
the gray continuous curve in Fig. 2. The interval Tm where
the derivative needs to be approximated is also shown in
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Fig. 2. Performing the line search for the JADE [4] cost function. The

almost periodic behavior of the function ĴðmÞ and its first-order

derivative dĴ=dm (14) along geodesic W ðmÞ (12). The first zero-crossing

of dĴ=dm corresponds to the first local minimum of ĴðmÞ, i.e., the

desired step size mk . This first zero-crossing value is obtained by using a

fourth-order polynomial approximation of dĴ=dm at equi-spaced points

within the interval Tm .

Table 1
Proposed geodesic search algorithm on UðnÞ based on polynomial

approximation.

1 Given Wk 2 UðnÞ; �Hk 2 uðnÞ, compute the eigenvalue of Hk of highest

magnitude jomaxj

2 Determine the order q of the cost function JðWÞ in the coefficients of

W, which is the highest degree that t appears in the Taylor expansion

of JðWþ tZÞ; t 2 R; Z 2 Cn�n

3 Determine the value: Tm ¼ 2p=ðqjomaxjÞ

4 Choose the order of the approximating polynomial: P ¼ 3; 4; or 5

5 Evaluate RðmÞ ¼ expð�mHkÞ at equi-spaced points mi 2

f0; Tm=P;2Tm=P; . . . ; Tmg as follows:

R09Rð0Þ ¼ I

R19R Tm
P

� �
¼ exp � Tm

P Hk

� �

R29R 2
Tm
P

� �
¼ R1R1; . . . ;

RP9RðTmÞ ¼ RP�1R1

6 By using the computed values of Ri , evaluate the first-order derivative

of ĴðmÞ at mi , for i ¼ 0; . . . ; P:

Ĵ0ðmiÞ ¼ �2R trace @J
@W � ðRiWkÞ WH

k RH
i HH

k

n on o
7 Compute the polynomial coefficients a0 ; . . . ; aP: a0 ¼ Ĵ0ð0Þ and

a1

..

.

aP

2
664

3
775 ¼

m1 m2

1 . . . mP

1

..

. ..
.

. . . ..
.

mP m2

P . . . mP

P

2
6664

3
7775

�1
Ĵ0ðm1Þ � a0

..

.

Ĵ0ðmP Þ � a0

2
6664

3
7775

8 Find the smallest real positive root rmin of a0 þ a1mþ � � � þ apmP ¼ 0. If

it exists, then set the step size to mk ¼ rmin. Otherwise set mk ¼ 0.
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Fig. 2. In Fig. 2, a fourth-order polynomial approximation
at equi-spaced points within the interval ½0; TmÞ is used.
The approximation is represented by thick dashed line.
The steps of the proposed geodesic search algorithm
based on polynomial approximation are given in Table 1.
3.2. Line search on UðnÞ by using a DFT-based approach

The goal of our second line search method is to find
multiple local minima of the cost function along a given
geodesic and select the best one. The main benefit of this
method is that it allows large steps along geodesics.
The proposed method requires also only one evaluation of
the matrix exponential, but more matrix multiplication
operations. The basic idea is to approximate the almost
periodic function dĴ=dm (14), by a periodic one, using the
classical DFT approach. The method is explained next.

First, the length of the DFT interval TDFT needs to be set.
The longer DFT interval is considered, the better approx-
imation is obtained. In practice we have to limit the length
of the DFT interval to few periods Tm (15) corresponding to
the highest frequency component (minimum one, max-
imum depending on how many minima are targeted).
Once the DFT interval length is set, the derivative dĴ=dm
needs to be sampled at NDFT equi-distant points. Accord-
ing to the Nyquist sampling criterion, KX2 samples must
be taken within an interval of length Tm. Therefore, if NT

periods Tm are considered, the DFT length NDFTX2NT . Due
to the fact that Tm does not necessarily correspond to any
almost period [12] of the derivative, its values at the edges
of the DFT interval may differ. In order to avoid
approximation mismatches at the edges of the DFT
interval, a window function may be applied [15]. The
chosen window function must be strictly positive in order
to preserve the position of the zeros of the first-order
derivative that we are interested in. In our approach we
choose a Hann window hðiÞ [15] and discard the zero-
values at the edges. This type of window minimizes the
mismatches at the edges of the window. Therefore,
instead of approximating the first-order derivative (14),
it is more desirable to approximate the windowed
derivative DðmiÞ ¼ hðiÞdĴ=dmðmiÞ; i ¼ 0; . . . ;NDFT � 1 as

DðmÞ �
XðNDFTþ1Þ=2

k¼�ðNDFT�1Þ=2

ck exp |
2pk

TDFT
m

� �
, (16)

where NDFT is chosen to be an odd number. Again, in order
to avoid computing the matrix exponential, the derivative
dĴ=dm is evaluated at points mi 2 f0; TDFT=NDFT; . . . ;
ðNDFT � 1ÞTDFT=NDFTg. After determining the Fourier coeffi-
cients ck, the polynomial corresponding to the Fourier
series approximation (16) is set to zero. The roots of the
polynomial (16) which are close to the unit circle need to
be determined, i.e., rl ¼ e|ol ; lp2NT . A tolerance d from
the unit circle may be chosen experimentally (e.g., do1%).
The values of m corresponding to those roots need to be
found. Given a descent direction �Hk, the smallest step
size value ml corresponds to a minimum (or seldom to a
saddle point). If no saddle points occur within the DFT
window, all the step size values ml with l odd, correspond
to local minima and the even ones correspond to maxima.
Within the interval TDFT there are at most NT minima, and
it is the possible to choose the best one. Therefore, the
global minimum within the DFT window can be chosen in
order to reduce the cost function as much as possible at
every iteration. Finding the best minimum would require
evaluation the cost function, therefore computing the
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Fig. 3. Performing the line search for the JADE [4] cost function. The

almost periodic behavior of the function ĴðmÞ and its first-order

derivative dĴ=dm (14) along geodesic W ðmÞ (12) may be noticed. The

odd zero-crossing values of dĴ=dm correspond to local minima of ĴðmÞ,
i.e., to desired values of the step size mk . They are obtained by DFT-based

approximation of dĴ=dm at equi-spaced points within the interval TDFT.

Table 2
Proposed geodesic search algorithm on UðnÞ based on DFT approxima-

tion.

1 Given Wk 2 UðnÞ;�Hk 2 uðnÞ, compute the eigenvalue of Hk of highest

magnitude jomaxj

2 Determine the order q of the cost function JðWÞ in the coefficients of

W, which is the highest degree that t appears in the Taylor expansion

of JðWþ tZÞ; t 2 R; Z 2 Cn�n

3 Determine the value: Tm ¼ 2p=ðqjomaxjÞ

4 Choose the sampling factor K ¼ 3;4; or 5. Select the number of

periods Tm for the approximation, NT ¼ 1;2; . . .

5 Determine the length of the DFT interval TDFT ¼ NT Tm and the DFT

length NDFT ¼ 2bKNT=2c þ 1, where b�c denotes the integer part

6 Evaluate the rotation RðmÞ ¼ expð�mHkÞ at equi-spaced points

mi 2 f0; TDFT=NDFT ; . . . ; ðNDFT � 1ÞTDFT=NDFTg as follows:

R09Rð0Þ ¼ I

R19RðTDFT=NDFTÞ ¼ exp � TDFT
NDFT

Hk

� �
R29Rð2TDFT=NDFTÞ ¼ R1R1 ; . . . ;

RNDFT�19RððNDFT � 1ÞTDFT=NDFTÞ ¼ RNDFT�2R1

7 By using Ri computed in step 6, evaluate the first-order derivative of

ĴðmÞ at mi ,

for i ¼ 0; . . . ;NDFT � 1:

Ĵ0ðmiÞ ¼ �2R trace @J
@W � ðRiWkÞ WH

k RH
i HH

k

n on o
8 Compute the Hann window:

hðiÞ ¼ 0:5� 0:5 cos 2pðiþ1Þ
NDFTþ1 ; i ¼ 0; . . . ;NDFT � 1

9 Compute the windowed derivative: DðmiÞ ¼ hðiÞĴ0ðmiÞ,

i ¼ 0; . . . ;NDFT � 1

10 For k ¼ �ðNDFT � 1Þ=2; . . . ;þðNDFT � 1Þ=2 compute the Fourier

coefficients:

ck ¼
PNDFT�1

i¼0

DðmiÞ exp �| 2pi
NDFT

k
� �

11 Find the roots rl of the approximating Fourier polynomial

PðmÞ ¼
PðNDFTþ1Þ=2

k¼�ðNDFT�1Þ=2ck exp þ| 2pk
TDFT

m
� �

�DðmÞ

that are close to the unit circle with the radius tolerance d. If there are

no roots of form rl � e|ol then set the step size to mk ¼ 0 and STOP

12 If there are roots of form rl � e|ol compute the corresponding zero-

crossing values of PðmÞ:
ml ¼ ½olTDFT=ð2pÞ�modulo TDFT

Order ml in ascending order and pick the odd values m2lþ1; l ¼ 0;1; . . .

13 By using Ri computed in step 6, find the value of m which minimizes

the function ĴðmÞ at

mi : mi% ¼ arg minmi
JðRiWkÞ, i ¼ 0; . . . ;NDFT � 1

Set the step size to mk ¼ arg minm2lþ1
jmi% � m2lþ1j.
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matrix exponential for all ml with odd l, which is rather
expensive.
A reasonable solution is in this case to use the information
on the sampled values of the cost function. Therefore, the
step size is set to the root which is closest to the value that
achieves a minimum of the sampled cost function. In
Fig. 3, we consider the JADE cost function [4], analogously
to the example in Fig. 2. The steps of the proposed
geodesic search algorithm based on discrete Fourier series
(DFT) approximation are given in Table 2.

3.3. Computational aspects

Both the polynomial approach and the DFT-based
approach require several evaluations of the cost function
ĴðmÞ and its first-order derivative dĴ=dm (14) within the
corresponding approximation interval. However, they
require only one computation of the matrix exponential.
The desirable property of the matrix exponential that
expð�mmHkÞ ¼ ½expð�mHkÞ�

m is used to evaluate the
rotation matrices at equi-spaced points. We also empha-
size the fact that for both methods, when evaluating the
approximation interval Tm by using (15), only the largest
eigenvalue omax of Hk needs to be computed and not the
full eigen-decomposition (nor the corresponding eigen-
vector) which is of complexity of OðnÞ [28]. The major
benefit of the DFT method is that multiple minima are
found and the best minimum can be selected at every
iteration (which is not necessarily the first local mini-
mum). In conclusion, in terms of complexity both
proposed geodesic search methods are more efficient
than the Armijo method [27] which requires multiple
evaluations of the matrix exponential at every iteration
[2]. Unlike the method in [26], the proposed method does
not require computing any second-order derivatives,
which in some cases may involve large matrix dimen-
sions, or they may be non-trivial to calculate (e.g. the JADE
criterion (19)).

4. The practical CG algorithm on UðnÞ

In this section we propose a practical CG algorithm
operating on the Lie group of unitary matrices UðnÞ. By
combining the generic CG algorithm proposed in Section
2.4 which uses the approximated Polak–Ribièrre formula
with one of the novel geodesic search algorithms
described in Sections 3.1 and 3.2, we obtain a low
complexity CG algorithm on the unitary group UðnÞ.
The proposed CG-PR algorithm on UðnÞ is summarized in
Table 3.

Remark 1. The line search algorithms in Tables 1 and 2
and the CG algorithm in Table 3 are designed for
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Table 3
Conjugate gradient algorithm on UðnÞ using the Polak-Ribièrre formu-

la—CG-PR

1 Initialization: k ¼ 0, Wk ¼ I
2 Compute the Euclidean gradient at Wk . Compute the Riemannian

gradient and the search direction at Wk , translated to the group

identity:

if ðk modulo n2Þ ¼¼ 0

Ck ¼
@J
@W� ðWkÞ

Gk ¼ CkWH
k �WkC

H
k

Hk :¼ Gk

3 Evaluate hGk ;GkiI ¼ ð1=2ÞtracefGH
k Gkg. If it is sufficiently small, then

STOP

4 Given a point Wk 2 UðnÞ and the tangent direction �Hk 2 uðnÞ

determine the step size mk along the geodesic emanating from Wk in

the direction of �HkWk , by using the algorithm in Table 1 or the

algorithm in Table 2

5 Update: Wkþ1 ¼ expð�mkHkÞWk

6 Compute the Euclidean gradient at Wkþ1. Compute the Riemannian

gradient and the search direction at Wkþ1, translated to the group

identity:

Ckþ1 ¼
@J
@W� ðWkþ1Þ

Gkþ1 ¼ Ckþ1WH
kþ1 �Wkþ1C

H
kþ1

gk ¼
hGkþ1�Gk ;Gkþ1iI
hGk ;GkiI

Hkþ1 ¼ Gkþ1 þ gkHk

7 If hHkþ1 ;Gkþ1iI ¼
1
2 RftracefHH

kþ1Gkþ1ggo0, then Hkþ1 :¼ Gkþ1

8 k :¼ kþ 1 and go to step 2
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minimizing a function defined on UðnÞ. They may be easily
converted into algorithms for maximizing a function on
UðnÞ. The rotation matrix R1 in step 5 (Table 1) needs to
be replaced by R1 ¼ exp½ðþTm=pÞHk� and the sign of
the derivative Ĵ0ðmiÞ in step 6 needs to be changed,

i.e., Ĵ0ðmiÞ ¼ þ2R trace ð@J=@W �
ÞðRiWkÞW

H
k RH

i HH
k

n on o
.

In Table 2, the same sign changes are needed in steps 6
and 7. Additionally, in step 13, the value mi% ¼ arg

maxmi
JðRiWkÞ. Similarly, for the CG algorithm in

Table 3, the update in step 5 would be Wkþ1 ¼

expðþmkHkÞWk.

Remark 2. In step 7, if the CG search direction in not a
descent/ascent direction when minimizing/maximizing a
function on UðnÞ, it will be reset to the SD/SA direction.
This step remains the same both when minimization or
maximization is performed since the inner product
hHkþ1;Gkþ1iI needs to be positive.
1 See Remark 1 in Section 4.
5. Simulation examples

In this section we apply the proposed Riemannian CG
algorithm to two different optimization problems on UðnÞ.
The first one is the maximization of the Brockett function
on UðnÞ, which is a classical example of optimization
under orthogonal matrix constraint [3,29]. The second one
is the minimization of the JADE cost function [4] which
is a practical application of the proposed CG algorithm
to blind source separation (BSS). Other possible signal
processing applications are considered in [1,2,23].
5.1. Diagonalization of a Hermitian matrix. Maximizing the

Brockett criterion on UðnÞ

In this subsection we maximize the Brockett criterion
[3,29], given as

JBðWÞ ¼ trfWHRWNg subject to W 2 UðnÞ. (17)

The matrix R is a Hermitian matrix and N is a diagonal
matrix with the diagonal elements 1; . . . ;n. By maximiz-
ing1 (17), the matrix W will converge to the eigenvectors
of R and the matrix D ¼WHRW will converge to a
diagonal matrix containing the eigenvalues of R sorted
in the ascending order along the diagonal. This type of
optimization problem arises in many signal processing
applications such as BSS, subspace estimation, high
resolution direction finding, as well as in communications
applications [1]. This example is chosen for illustrative
purposes. The order of the Brockett function is q ¼ 2. The
Euclidean gradient is given by GW ¼ RWN. The perfor-
mance is studied in terms of convergence speed consider-
ing a diagonality criterion, D, and in terms of deviation
from the unitary constraint using a unitarity criterion O,
defined as

D ¼ 10 lg
offfWHRWg

diagfWHRWg
; O ¼ 10 lg kWWH

� Ik2
F , (18)

where offf�g operator computes the sum of the squared
magnitudes of the off-diagonal elements of a matrix,
and diagf�g does the same operation, but for the diagonal
ones [17]. The diagonality criterion D (18) measures the
departure of the matrix WHRW from the diagonal
property in logarithmic scale and it is minimized when
the Brockett criterion (17) is maximized. The results are
averaged over 100 random realizations of the 6� 6
Hermitian matrix R.

In Fig. 4, we compare two different optimization
algorithms. The first algorithm is the geodesic SA on
UðnÞ obtained from the algorithm in CG-PR Table 3 by
setting gk to 0 at every iteration k. The second algorithm is
the CG-PR algorithm in Table 3 (see Remark 1, Section 4).
For both algorithms (SA and CG-PR) five different line
search methods for selecting the step size parameter are
compared. The first one is the Armijo method [27] used as
in [2,22]. The second is an exhaustive search along
geodesics W ðmÞ (12) by using a linear grid m 2 ½0;10� for
the parameter mk. A sufficiently large upper limit of the
interval has been set experimentally in order to ensure
that the interval contains at least one local maximum at
every iteration. The lower limit has been set to ensure a
reasonable resolution (10�4

Þ. The grid search method is
very accurate, but extremely expensive and it has been
included just for comparison purposes. The third line
search method is the polynomial approximation approach
proposed in Table 1. The fourth one is the DFT approxima-
tion approach in Table 2. The fifth one is the line search
method proposed for SOðnÞ in [26]. It is based on a Newton
step which approximates the cost function geodesics by
using a first-order Fourier expansion. For the proposed
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Fig. 4. A comparison between the steepest ascent (SA) algorithm on UðnÞ and the proposed conjugate gradient algorithm on UðnÞ in Table 3, using

Polak–Ribièrre formula (CG-PR). Five line search methods for selecting the step size parameter are considered: the Armijo method [27], the grid search,

the line search method in Table 1 which is based on polynomial approximation the line search method in Table 2 which is based on DFT approximation,

and the line search method proposed for SOðnÞ in [26]. The performance measure is the diagonality criterion D vs. the iteration step.
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line search methods a polynomial order P ¼ 5 has been
used (see Table 1). The parameters used in the DFT
approach are the sampling factor K ¼ 3 and NT ¼ 10
periods Tm (see Table 2).

It may be noticed in Fig. 4 that the CG-PR algorithm
outperforms significantly the SA algorithm for all line
search methods considered here, except the proposed
DFT-based approach. The polynomial approximation ap-
proach proposed in Table 1 performs equally well as the
method in [26], and the grid search method when used
with the SA. The proposed DFT-based line search approach
in Table 2 outperforms significantly the method in [26]
when used with the SA algorithm, and achieves a
convergence speed comparable to the one of the CG-PR
algorithm. The convergence of SA algorithm with Armijo
line search method [27] is better than the proposed
polynomial approach and worse than the DFT approach.
When used with the CG-PR, all methods achieve similar
convergence speed, but their complexities differs. In terms
of satisfying the unitary constraint, all algorithms provide
good performance. The unitarity criterion O (18) is close
to the machine precision as also shown in [2].

5.2. Joint approximate diagonalization of a set of Hermitian

matrices. Minimizing the JADE criterion on UðmÞ

In this subsection we apply the proposed CG-PR
algorithm together with the two novel line search
methods to a practical application of BSS of communica-
tion signals. A number of m ¼ 16 independent signals
are separated from their r ¼ 18 mixtures based on the
statistical properties of the original signals. Four
signals from each of the following constellations are
transmitted: BPSK, QPSK, 16-QAM, and 64-QAM. A total of
5000 snapshots are collected and 1000 independent
realizations of the r �m mixture matrix are considered.
The signal-to-noise-ratio is SNR ¼ 20 dB. The blind recov-
ery of the desired signals may be done in two stages by
using the JADE approach [4]. It can be done up to a phase
and a permutation ambiguity, which is inherent to all
blind methods. The first stage is the pre-whitening of the
received signals based on the subspace decomposition of
the received correlation matrix, and it could also be
formulated as a maximization of the Brockett function
(17) as shown in Section 5.1. The second stage is a unitary
rotation operation which needs to be applied to the
whitened signals. It is formulated as an optimization
under unitary constraint and solved by using the approach
proposed in Table 3. The function to be minimized is the
joint diagonalization criterion [4]

JJADEðWÞ ¼
Xm

i¼1

offfWHM̂iWg subject to W 2 UðmÞ. (19)

The eigenmatrices M̂i are estimated from the fourth-order
cumulants. The criterion penalizes the departure of all
eigenmatrices from the diagonal property [17]. The order
of the function (19) is q ¼ 4, and the Euclidean gradient of
the JADE cost function is given in [2].

In Fig. 5(a) we show four of the 18 received signals, i.e.,
noisy mixtures of the transmitted signal. Four of the 16
separated signals are shown in Fig. 5(b). In the first
simulation we study the performance of the proposed
Riemannian algorithms in terms of convergence speed
considering the JADE criterion (19). This JADE criterion (19)
is a measure of how well the eigenmatrices M̂i are jointly
diagonalized. The whitening stage is the same for both the
classical JADE and the Riemannian algorithms. The unitary
rotation stage differs. The classical JADE algorithm in [4]
performs the approximate joint diagonalization task
by using Givens rotations. Three different Riemannian
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proposed in Table 2 with the novel line search method in Table 1. Since the method is blind there is inherent phase ambiguity, as well as permutation

ambiguity.
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(DFT method), CG-PR algorithm on UðmÞ in Table 3 + line search method
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line search method in Table 2 (DFT method). The performance measures

are the JADE criterion (19) vs. the iteration step. All three Riemannian

algorithms outperform the classical Givens rotation approach used in [4].

CG-PR converges faster than SD for both proposed line search methods.
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optimization algorithms are considered. The first one is
the SD on UðmÞ obtained from the CG algorithm in Table 3
by setting gk to zero at every iteration k. The line search
method in Table 2, which is based on DFT approximation
approach is used. The second one is the CG-PR algorithm
in Table 3 with the line search method proposed in Table 1
(polynomial approximation approach). The third algo-
rithm is the CG-PR algorithm in Table 3 with the line
search method proposed in Table 2 (DFT approximation
approach).

In Fig. 6 it may noticed that all three Riemannian
algorithms outperform the classical Givens rotations
approach used in [4]. Again CG algorithm convergences
faster compared to the SD algorithm, with both proposed
line search methods (Tables 1 and 2). The parameters used
in this simulation for line search methods in Tables 1 and 2
are the same as in the previous simulation (Section 5.1).
All three Riemannian algorithms have complexity of
Oðm3Þ per iteration and only few iterations are required
to achieve convergence. Moreover, the number of itera-
tions needed to achieve convergence stays almost con-
stant when increasing m. The Givens rotation approach in
[4] has a total complexity of Oðm4Þ, since it updates not
only the unitary rotation matrix, but also the full set of
eigen-matrices Mi. Therefore, the total complexity of the
proposed algorithm is lower, especially when the number
of signals m is very large. The proposed algorithms
converge faster at similar computational cost per itera-
tion. Therefore, they are suitable for blind separation
applications, especially when the number of signals to be
separated is very large m410. The performance gap
between the proposed algorithm and the conventional
Givens rotations approach [4] increases in favor of the
proposed algorithm as the dimensionality of the problem
grows.
6. Conclusions

In this paper, a Riemannian CG algorithm for optimiza-
tion under unitary matrix constraint is proposed. The
algorithm operates on the Lie group of n� n unitary
matrices. In order to reduce the complexity, it exploits the
geometrical properties of UðnÞ such as simple formulas for
the geodesics and the tangent vectors. The almost-
periodic behavior of smooth functions and their deriva-
tives along geodesics on UðnÞ is shown. Two novel line
search methods exploiting this property are introduced.
The first one used a low-order polynomial approximation
for finding the first local minimum along geodesics on
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UðnÞ. The second one uses a DFT-based approximation for
finding multiple minima along geodesics and selects the
best one unlike the Fourier method in [26], which finds
only one minimum. Our method models better the
spectral content of the almost periodic derivative of the
cost function. The two proposed line search methods
outperform the Armijo method [27] in terms of computa-
tional complexity and provide better performance. The
proposed Riemannian CG algorithm not only achieves
faster convergence speed compared to the SD algorithms
proposed in [2,22], but also has lower computational
complexity. The proposed Riemannian CG algorithm also
outperforms the widely used Givens rotations approach
used for jointly diagonalizing Hermitian matrices, i.e., in
the classical JADE algorithm [4]. It may be applied, for
example, to smart antenna algorithms, wireless commu-
nications, biomedical measurements, signal separation,
subspace estimation, and tracking tasks where unitary
matrices play an important role in general.
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