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Construction of Minimum Euclidean Distance MIMO
Precoders and Their Lattice Classifications
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Visa Koivunen

Abstract—This correspondence deals with the construction of minimum
Euclidean distance precoders for multiple-input multiple-output (MIMO)
systems with up to four transmit antennas. By making use of a state-of-
the-art technique for optimization over the unitary group, we can numer-
ically optimize the MIMO precoders. The correspondence then proceeds
by identifying the obtained precoders as well-known lattices (square ,
Schläfli , , Gosset ). With three transmit antennas, the results
are slightly different compared with other numbers of transmit antennas
since the obtained precoder is not an instance of the densest 6-dimensional
lattice. The overall conclusions of the correspondence are that the found
precoders for MIMO transmission are highly structured and that, even
with small constellations, lattice theory can be used for the design of MIMO
precoders.

Index Terms—Lattice theory, MIMO, minimum Euclidean distance,
precoding.

I. INTRODUCTION

The problem of constructing efficient linear precoders for multiple-
input multiple-output (MIMO) channels has been extensively studied
for many different scenarios. Under the assumption of MMSE detec-
tion and with perfect channel state information at both the transmitter
and receiver, optimal precoder design is treated in depth in [1]. This cor-
respondence differs from [1] by assuming maximum-likelihood (ML)
detection at the receiver side. Under ML detection, the ultimate limit of
a MIMO system is determined by the mutual information between the
input and the output. In [2], it was shown that the capacity of a MIMO
system is achieved by a Gaussian constellation, together with water-
filling over the eigenmodes of the channel. However, for practical input
constellations, such as QAM, optimal mutual information precoder de-
sign is difficult since no closed form solutions for the differential entropy
of the channel output exist. A suboptimal technique is to convert the
MIMO vector channel into a set of parallell channels, where the optimal
power allocation in this case is found through the mercury/waterfilling
(MWF) principle [3]. For practical input constellations though, simple
power allocation over the eigenmodes is no longer optimal. This was
demonstrated in [4], where a nondiagonal precoder was found through
a numerical technique, that gave higher information rate than MWF.
However, the technique in [4] involves significant complexity and is
not guaranteed to converge to the global optimal solution.
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At high signal-to-noise-ratios (SNRs), the optimal mutual informa-
tion precoder converges to the optimal minimum distance precoder [5].
Under ML detection and uncoded transmission, the predominant pa-
rameter to be optimized at high SNR is the minimum square Euclidean
distance1 of the received signal constellation. Unfortunately, the min-
imum distance precoder optimization problem is known to be NP-hard
[5]. The first paper dealing with optimization of the minimum distance
within a MIMO context is [6]; the approach is to maximize the smallest
eigenvalue of the effective channel (channel times precoder). In [7], a
suboptimal precoder design based on linear programming is proposed,
that gives large minimum distances for any MIMO constellation. With
two transmit antennas and BPSK/QPSK constellations, optimal min-
imum distance precoders are given in [8]; the outcome is that only two
different precoder structures are optimal for all channels. That work
has later been extended to 16-QAM [9], where eight precoder struc-
tures were found. For three or more transmit antennas, only suboptimal
results exist so far [10], [11].

The main contributions of this correspondence can be summarized
as follows.

• We construct codebooks containing matrix structures from which
the precoders are selected. We consider MIMO systems with up
to 4 transmit antennas and QPSK inputs. With three transmit an-
tennas, our results improve upon [11], which confirms that [11] is
not optimal. For four transmit antennas, a codebook of 77 precoder
structures is found. Thirty-one of these are optimal for 99.9% of
4 � 4 complex Gaussian distributed channels. The fact that all
codebooks are finite makes the results practical.

• We investigate the efficiency of an iterative optimization proce-
dure to optimize the precoder for MIMO transmissions. The iter-
ative optimization uses the fact that the power allocation of the
precoder can be found via linear programming. The rotation ma-
trix of the precoder is obtained by making use of an advanced
technique for optimization over the unitary group [12], [13]. Our
finding is that the iterative optimization procedure is efficient as it
converges to what we believe is a global optimum.

• We discover that all full rank precoders that we have found are in-
stances of well known dense packing lattices. For example, with
four transmit antennas the obtained precoder is the�� Gosset lat-
tice, expressed through a specific basis of the lattice. When the
channel matrix changes, the precoder is still the Gosset lattice, but
expressed in another basis. This is important since it implies that
the precoder optimization can be simplified since one may specify
the lattice at start and then only optimize the basis. For channels
with one or more very weak eigenmodes, the precoder is not full
rank. The precoder is an instance of a well-known lattice in some
cases, but in other cases, it is not a lattice. In the latter case, its
structure still contains well-known sublattices.

A. System Model and Problem Formulation

We consider linearly precoded MIMO channels in additive white
Gaussian noise. Both the transmitter and the receiver are assumed to
have perfect knowledge of the communication channel. The received
signal vector is

��� � ������������� (1)

where ��� is an � � � complex-valued matrix that represents the
channel. The matrix ��� is an � � � precoding matrix which satis-
fies the power constraint

��������� �� � � (2)

1This is subsequently referred to as minimum distance only.
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where “Tr” denotes the trace operation and “�” means Hermitian trans-
pose. In this correspondence, we only consider � � � � �. The case
� � � is trivial since it implies that ��� is a scalar that equals unity.
The data vector ��� comprises � independent unit energy QPSK sym-
bols unless stated otherwise. The noise vector ��� comprises indepen-
dent zero-mean circulary symmetric complex Gaussian noise samples,
each one with the variance ��.

Let ����� �
�
������� denote the 2-norm of a column vector. Under ML

detection and at high SNR, the error probability is approximately given

by �� � � �

��
, where� is the complementary error function

and

��
���

�
� ��	
��� ���� ���� �����

������� 
���	 � ������� � (3)

The quantity ��
��� is referred to as the minimum distance. Expanding

(3) yields

��
��� � ��	

��� ���� ���� �����

���	 � ��������� �����

������ 
���	 � ����� � ��	
������

���
�
������

�

(4)

where ���
�
� ���

�
���
�
������ is the � �� Gram matrix and ���

�
� ���	 � ����.

Observe that if 	 
 � , then ��� is of reduced rank. However, the
case 	 
 � does not need separate attention since ��� can also be of
reduced rank if the channel ��� has vanishing eigenvalues.

The objective of the first part of the correspondence is to solve the op-
timization ��
��� ��

��� under the constraint (2) by means of numerical
methods. Then the correspondence proceeds by lattice identification of
the obtained precoders. Let��� � ��������� � denote the singular value de-
composition of the channel matrix ��� . Further, let ��� � 
�

�

�
� be the
eigenvalue decomposition of ���. It can be shown [7] that the ��� with
least energy that satisfies ��� � ���

�
���
�
������ is

��� � ��� ���

������
������

�
���




� (5)

where ���� denotes the �� � all-zero matrix and ���
 is the pseudo-in-
verse of ���, i.e., the strictly positive elements in ��� are inverted. For
convenience, we define ����

�
� ����


������
�������, which is essen-
tially the pseudo-inverse of ��� stacked with a� �	 all-zero columns
if 	 
 � . Let ��	 and �	 denote the diagonal elements of ���� and
���, respectively.

Altogether, the optimization problem can be expressed over 


 and
��� as

��




����

��	
���
���
�

�

�

�
�

���

���

������� ��
�

	�	

���
	�	 � � �	��	 	 �� ��� � � � �	� (6)

The solution to the precoder optimization problem (6) naturally de-
pends on the particular realization of ���. Observe that scaling ��� with
its largest value only scales the solution to (6), without affecting the
structure of the solution. In this correspondence, we will solve the pre-
coder optimization for all � � � diagonal matrices ��� with diagonal
elements

�	 �
�� � � �

��� � � � � �� � 
 ��� �� �� � � � � 	
�
� �

For � � �, we use � � 	
	��

, thus, we solve the optimization for
���� � ����� different ���. For � � �, the step size � is 1/20, which
yields ��� �  �!� different ���. Note that the case 	 
 � is included
into this optimization since it corresponds to �	 � � for � � 	 "
�� � � � � � .

Solving the optimization (6) for each ��� is a challenging task as it is
not an instance of convex optimization. In the following, we propose
an advanced iterative optimization approach for solving this problem.

II. ITERATIVE PRECODER OPTIMIZATION

Our optimization procedure alternates between optimization of ���
and 


. The steps are the following: 1) Given a unitary matrix 


, op-
timize (6) over ���; 2) with the obtained ���, optimize (6) over 


; and
3) iterate the first two steps, until the increase in the value of the objec-
tive function ��

��� becomes negligible.
Next, each of these optimization steps will be explained in detail.

A. Optimization over ���

For a fixed


, the objective function of (6) can be written as

������ � ��#��

���

��	
���
���
�
������ � ��#��


���
��	
����

$�������$��� (7)

where $���
�
� 




�
���, and thus the optimization (6) reduces to

��

���

��	
����

$�������$���

������� ��
�

	�	

���
	�	 � � �	��	 � �� ��� � � � �	� (8)

An equivalent reformulation of this is to minimize the constraint
%�
������ �� subject to the objective function ��

��� being larger than an
arbitrary constant. In other words,

��	
����� 
� ��� 	�	��

�

	�	

���
	�	

������� ��

$�������$��� 	 �� 
$���� (9)

Hence, the optimization is a linear problem over ��� and can be triv-
ially solved by means of standard techniques, such as the simplex al-
gorithm [14].

B. Optimizing for the Unitary Matrix �

For a fixed ���, the constraint in (6) is fulfilled and thus only the ob-
jective function in (6) has to be optimized over


. The problem of op-
timizing objective functions under a unitary matrix constraint has been
extensively treated in [12] and [13]. In our case, the unitary optimiza-
tion problem is

���� � ��#��

�

��	
�
�
�
���

�
�� ������� ����

� � �� � (10)

For a given � and symbol constellation, there is a finite number of
error vectors � 
 ��	� � � � � ���.

The optimization problem (10) is equivalent to maximizing the
minimum of a set of � continuously-differentiable objective functions
��
�� over the Lie group of unitary matrices �
��:

���� � ��#��

�

��	
�
���
����

��	 � � 
 �
�� (11)

where each of the objective functions is defined as ��
��
�
�

�
�
����

���, � � �� � � � � �. Since the number of error vectors �
is considerably large (order of thousands), the complexity of the
optimization problem needs to be reduced. Without loss of generality,
we assume that the set of vectors ���� are sorted in an ascending
order, according to the values of the objective function �	 they
produce, i.e., �	 � �� � � � � � ��. Maximizing the minimum
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value of the inner objective function ��, is equivalent to maximizing
�� � ���� �������

�

���
w.r.t � � ����. The optimization w.r.t.

the unitary matrix � is done by using the Riemannian Steepest As-
cent (SA) algorithm on the unitary group given in [12, Table I].2 After
each iteration of the SA algorithm, the vectors ���� are again sorted
in ascending order, and the new obtained objective function ����� is
maximized. The Euclidean gradient of ����� at a point �� � ����
is given by ������ � ���

�
����, and represents the steepest ascent

direction on the Euclidean space. The Riemannian gradient is a
skew-Hermitian matrix ���� � �������

�
�
������

�
��� , and represent the

steepest ascent direction on the constrained parameter space ����
at �� , translated to a group identity element. A rotational update is
performed, such that the unitary matrix constraint is maintained at
every iteration: ���� � �	
����������� , where �	
��� is the
standard matrix exponential,3 and � is a step size. Note that the update
is multiplicative since a product of unitary matrices is unitary.

The complexity of the unitary optimization itself is of order�����.
However, the complexity of sorting the error vectors ���� in ascending
order is ������. Since � � �, the complexity of the entire opti-
mization is therefore dominated by the sorting operation. It is possible
to reduce the number of error vectors ����, but this has not been done
since with a standard work-station, the entire optimization is a matter
of fractions of a second.

An initial, accurate size � is selected by using the polynomial-based
line search method given in [13, Table 1]. The scaling factor � � ��� 
�
prevents the objective function ����� to increase too quickly. Too
much increase in ����� may produce a decrease in the other objec-
tive functions �������

�

���
, even below the initial value of ��. This is

because their corresponding gradients ���� do not necessarily point in
directions that increase the minimum value of the objective functions.
In that case, instead of increasing the minimum value of �������

�

���
,

the value decreases. Therefore, small steps �� are preferred.4

III. OPTIMIZATION RESULTS

The above described optimization procedure produces a set of Gram
matrices ��� � ����, from which the precoder is obtained by (5).
Due to this bijection between ��� and ��� , we will sometimes refer to
this codebook as a “precoder codebook,” and call the elements in the
codebook as precoders.

The convergence properties of the iterative optimization method de-
scribed in Section II depend heavily on the step size ��. Simulation re-
sults show that� 	 
��� produces the best codebook. A larger� gives
more rapid convergence, but then the optimization often converges to
a local optimum. We have found that the starting point does not have a
significant effect for the�� that is used. For each��� in the grid, we have
chosen as starting point the precoder for the previously considered ���,
which is close in Euclidean distance to the current ���, but also, 10 ran-
domly chosen starting points. Then we take as output the best of the 11
solutions, but most often they are all the same. As an overall conclusion
of the iterative optimization, we find the method to be efficient, but we
anyway reckon that it should be carried out offline since several hun-
dreds of iterations are needed, where the main complexity arises from
sorting the error vectors for each iteration. If suboptimal solutions are
tolerated, using a larger � results in much faster convergence, so that
the optimization can be carried out online.

It may appear problematic to even carry out the optimization offline
since the size of the precoder codebook may be prohibitive. However,

2The Riemannian optimization codes are available at http://signal.hut.fi/
~tabrudan/unitary_optimization/index.html

3The matrix �������� � is a unitary matrix.
4The reason why steepest ascent is used is that the conjugate gradient in [12]

would be “too fast” for this purpose.

it turns out that for ���s that are “close,” the corresponding Gram ma-
trices��� � ��� �			�	�	�	� are scaled versions of each other. Thus, the size
of the codebook becomes small, and the need of online optimization
is circumvented. The same is not true for the mutual information pre-
coders from [4]. In that case, no precoder codebook can be tabulated
since each channel ��� has a unique Gram matrix. This is a strong moti-
vation to consider minimum distance precoders.

We next describe the outcome of the optimization procedure for the
considered setups. We have chosen not to list the obtained��� matrices
in this correspondence, but they can be found at www.eit.lth.se/goto/
kapetanovicprecoders. From now on, with two different Gram matrices
it is meant that they differ only up to scaling, since scaling is of no
interest to (6).

A. � � � With QPSK Inputs

This optimization problem has been solved in [8]. In [8] it is analyt-
ically proved that the optimal precoders��� produce two different Gram
matrices���. One of the two Gram matrices has rank 1, while the other
has full rank. Which one to use depends on the particular realization of
���.

B. � � � With 16-QAM Inputs

For 16-QAM inputs, the work in [9] suggests that there should be
eight different Gram matrices. One of these is however not optimal;
by running the iterative optimization procedure, we obtain a Gram ma-
trix that has a significantly larger minimum distance than one of the
eight found in [9]. In terms of symbol error rate (SER), the precoder
resulting from the newly found Gram matrix has only minor impact.
For channels 			 with 
 � � � �, where the channel coefficients
are independent zero-mean, unit-variance, complex Gaussian random
variables, the channels where the newly found precoder is optimal are
scarce so that the effect of the new precoder does almost not show up
in simulations. Thus, our improvement of [9] is mainly of theoretical
interest, but shows that the iterative optimization is highly efficient, as
it can find precoders that the technique in [9] cannot.

C. � � � With QPSK Inputs

By studying the resulting ��� matrices for each ���, we identified 14
different��� matrices for � � �, as opposed to the 8 proposed in [11].
The 14 different Gram matrices can be characterized into three dif-
ferent classes: I) There are five with full rank; II) eight with rank 2; and
III) one with rank 1. The rank deficient precoders are used when some
channel eigenvalues are small, so only transmission over the stronger
eigenmode occurs.

Unlike Section III-B, the newly found precoder codebook performs
slightly better than the codebook proposed in [11]. When it comes to
the SER, there is not much gain compared to the precoders from [11];
however, plotting the probability density function (pdf) of��

��� for the
14 precoders and the precoders from [11], an improvement in ��

��� is
observed. The gain in ��

��� is shown in Fig. 1.

D. � � � With QPSK Inputs

In the case of � � �, our iterative optimization produces a code-
book of 77 ��� matrices. With 
 � � � � and complex Gaussian
distributed channels, for more than 99.9% of all the channel outcomes,
only 31 different Gram matrices from the codebook are optimal for
these; hence, the other 46 occur very seldom. Further, in terms of min-
imum distance, the 31 Gram matrices perform well as there is not much
loss compared with using the complete codebook. Out of the 31 Gram
matrices, eight have full rank, nineteen have rank 3, three have rank 2,
and one has rank 1.
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Fig. 1. Probability density functions of � for QPSK. The comparison is
between the 14 new precoders for � � � and [11], and the 31 new precoders
for � � � and [10], respectively. As seen, there is a significant improvement
in � for � � �, which carries over to SER as illustrated in Fig. 2.

Fig. 2. SER comparison for� � � and QPSK. The comparison is between the
77 found precoders, the 31 most occuring precoders out of the 77, the precoders
in [10] and uncoded transmission. As seen, there is no loss in using only the 31
most frequently occuring precoders, and the gain in SER is significant compared
to the precoders in [10].

Fig. 1 shows the probability density function of ��
��� for the 31 pre-

coders as well as for the precoders in [10]. There is a significant gain in
minimum distance for the 31 precoders, which predicts a gain in SER.
An SER simulation over an independent and identically distributed
complex Gaussian channel is provided in Fig. 2. We plot the perfor-
mance of the 77 precoders, a codebook containing only the 31 most fre-
quently occuring precoders, uncoded transmission, and the suboptimal
precoding method from [10]. As can be seen, there is about 2 dB gain
of the proposed codebook compared with the competing scheme from
[10]. At SER ����, there is a 4-dB gain over uncoded systems. There
is no performance loss by using the 31 precoders instead of the 77.

IV. CONNECTION WITH LATTICES

An interesting fact about the���matrices obtained from our optimiza-
tion is the structure of the elements. Namely, with proper scaling for
each���, the elements��� � �������� are either such that ��� and ���
are rational numbers, or such that ��� � ���

��
�

and ��� � ���
��
�

,
where ��, ��, ��, and �� are rational numbers. A similar ordered struc-
ture has also been observed for the��� matrices in [8] and [9]. This sug-
gests a hidden underlying structure of the precoding problem. It will
be demonstrated that there is indeed a profound relationship between
the obtained ��� matrices and standard lattices. For this reason, we now
introduce a brief account on lattice theory.

A. Lattices

All matrices and vectors in this subsection are assumed to be real-
valued. This covers complex-valued matrices and vectors too, since any
complex-valued matrix��� and vector ��� are isomorphic to a real-valued
matrix ���� and vector ���� through the transformations

���� �
������ ������

������� ������
� ���� �

������

������

where �� � denote the real and imaginary parts of a matrix/vector, re-
spectively. Note that the dimension of the real-valued space is �	 .

Let


 � 	���� 
 
 
 ���� � be an 	 �	 matrix with columns ���� 
 
 
 ���� and
��� � 	��� 
 
 
 � �� �

� an	�� vector where the superscript “T” denotes
the transpose operator. A lattice ���� is the set of points

���� � �
�
�
� � �� � � � � � � 		 (12)

where is the set of integers (i.e., ��� is an integer vector). The matrix



 is called a generator matrix for the lattice ���� and the columns of 



form a basis for the lattice ����. The lattice minimum distance of ���� is
defined as5



�
��������� � 
��

��� �	���




����� � �����


� � 
��
����	�



�
�
�
� � 
��
����	�

���
�
���������

(13)

where ����� ����, and ��� � ���� � ���� are integer vectors, � the zero vector,
and ������ � 




�



 is the Gram matrix of 


. Given a Gram matrix ������,

all lattices with Gram matrix ������ differ only by a rotation. Hence, up
to rotation, there is a unique lattice structure whose Gram matrix is
������. Performing a decomposition of the form ������ � 




�



 on ������, one

obtains a generator matrix 


 representing this lattice structure.
A number of lattices are especially interesting and have been given

formal symbols in the literature [15]. In particular, the densest lattices

in the sense that they maximize the quotient
	 
� �


��
����
are of interest.

In 2, 4, 6, and 8 dimensions, the densest lattices are the Hexagonal ��,
Schläfli ��, ��, and the Gosset �� lattices, respectively. Apart from
these, we also encounter the 2-dimensional square lattice �� and the
6-dimensional �� lattice.

B. Lattice Identification of Precoders

Transforming the complex-valued Gram matrices obtained from
our optimization to real-valued space, we are interested in identifying
whether they correspond to well known lattices. Thus, the following
discussion is for real-valued matrices. If ��� is of full rank 	 , then it
corresponds to a certain lattice structure in 	 dimensions, and with a
Cholesky decomposition we obtain a generator matrix for the lattice
structure that gives rise to ���. However, given 


, it is nontrivial to
verify whether it generates a well-known lattice structure up to a
rotation. Nevertheless, there are algorithms that can identify whether
a given ��� corresponds to a given lattice structure [16].

If��� is of rank� , where� � 	 , it does not necessarily correspond
to a lattice structure. The 	 columns in the � �	 matrix 


, arising
from any decomposition of the form ��� � 




�



, are then linearly de-

pendent, but there exists a set of � linearly independent columns in


,
�� �� � ����� � 
 
 
 � ���� � � � �� � 
 
 
 � �
 �� 		. If the re-
maining columns in 


 are not a rational linear combination of �� ��

(i.e., a multiplier of some column in �� �� is an irrational number),
then 


 will not generate a periodic set of points and is therefore not a
lattice structure. On the other hand, if every column in 


 is a rational
combination of�� �� , then


 generates a�-dimensional lattice struc-
ture. In the case when 


 does not generate a lattice structure in � di-
mensions, the different subsets of columns in 


 might still generate
well-known lattice structures in different dimensions. For example, if



 is a 4 � 6 matrix, it might be the case that two columns in 


 are
orthogonal, which means that they generate the �� lattice in four di-
mensions, while the other four columns in 


 might generate the ��

lattice in four dimensions. If so, then each four-dimensional point gen-
erated by 


 is obtained as a sum between a point from the �� lattice
and a point from the �� lattice. Hence, even though the set of points
generated by 


 are not a lattice structure, they are generated as a sum
between two well-known lattice structures. In general, if it is possible

5Note that � is the minimum distance of the precoded MIMO system
while � refers to the minimum distance of a lattice.
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TABLE I
DIFFERENT SUBTABLES PRESENTING THE OUTCOME OF OUR OPTIMIZATION PROCEDURE.

EACH SUBTABLE CORRESPONDS TO A CERTAIN SETUP OF OPTIMIZATION PARAMETERS

to partition the columns of ��� in a way so that each subset of columns
generates a certain lattice structure �� , � � � � � ��, we denote the
set of points generated by ��� as �� ��� � � � ����. Thus, in the 4 �
6 example, we denote the set of points as �� ���.

We summarize our findings in Table I, which is composed of
subtables describing the different optimization outcomes. Each table
presents, for a specific� and signaling constellation, how many Gram
matrices/precoders of a certain rank that were found (now represented
in real-valued space), along with the classification of the set of points
they generate at the receiver.

V. CONCLUSION

In this correspondence, we have proposed MIMO precoders for a
minimum Euclidean distance cost function. MIMO channels with up
to 4 transmit antennas have been considered. We have used an itera-
tive optimization technique, which exploits the fact that the power al-
location of the precoder can be optimized by means of linear program-
ming. A state-of-the-art technique to optimize the rotation matrix over
the unitary group was used as the second component of the iterative
optimization method. Altogether, we find the iterative optimization to
be an excellent tool for offline precoder optimization. A small, finite
codebook of Gram matrices is found, and therefore there is no need to
use the optimization technique online. Instead, for each channel real-
ization, one finds the best Gram matrix in the codebook, from which
the precoder is constructed. Since the obtained precoders improve upon
previous close-to-optimal constructions in the literature, it is believed
that for some channels they might even be optimal.

We discovered that the obtained precoders are all instances of well
known lattices. For full rank precoders, the optimized precoders can be
identified as the Schläfli,��, and the Gosset lattice for two, three, and
four transmit antennas, respectively. It should especially be noted that
with two and four transmit antennas, these lattices are the densest lat-
tices. The optimal precoder for three transmit antennas�� is, however,
not the densest lattice in six dimensions.
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