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Abstract—In many engineering applications we deal with con-
strained optimization problems with respect to complex-valued
matrices. This paper proposes a Riemannian geometry ap-
proach for optimization of a real-valued cost function of
complex-valued matrix argument W, under the constraint that
W is an unitary matrix. We derive steepest descent
(SD) algorithms on the Lie group of unitary matrices ( ).
The proposed algorithms move towards the optimum along the
geodesics, but other alternatives are also considered. We also
address the computational complexity and the numerical stability
issues considering both the geodesic and the nongeodesic SD
algorithms. Armijo step size [1] adaptation rule is used similarly
to [2], but with reduced complexity. The theoretical results are
validated by computer simulations. The proposed algorithms are
applied to blind source separation in MIMO systems by using the
joint diagonalization approach [3]. We show that the proposed
algorithms outperform other widely used algorithms.

Index Terms—Array processing, optimization, source separa-
tion, subspace estimation, unitary matrix constraint.

I. INTRODUCTION

C
ONSTRAINED optimization problems arise in many

signal processing applications. One common task is to

minimize a cost function with respect to a matrix, under the con-

straint that the matrix has orthonormal columns. Some typical

applications in communications and array signal processing are

subspace tracking [4]–[6], blind and constrained beamforming

[7]–[9], high-resolution direction finding (e.g., MUSIC and

ESPRIT), and generally all subspace-based methods. Another

straightforward application is the independent component anal-

ysis (ICA), [3], [10]–[19]. This type of optimization problem

has also been considered in the context of multiple-input mul-

tiple-output (MIMO) communication systems [6], [20]–[23].

Most of the existing optimization algorithms are derived for the

real-valued case and orthogonal matrices [10], [11], [13]–[15],

[17], [24]–[27]. Very often in communications and signal pro-

cessing applications we are dealing with complex matrices and

signals. Consequently, the optimization need to be performed

under unitary matrix constraint.

Commonly optimization algorithms employing orthog-

onal/unitary matrix constraint minimize a cost function on
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the space of matrices using a classical steepest descent

(SD) algorithm. Separate orthogonalization procedure must

be applied after each iteration [12], [20]–[22]. Approaches

stemming from the Lagrange multipliers method have also

been used to solve such problems [16]. In such approaches,

the error criterion contains an extra term that penalizes for

the deviations from orthogonality property. Self-stabilized

algorithms have been developed to provide more accurate, but

still approximate solutions [17]. Major improvements over the

classical methods are obtained by taking into account the geo-

metrical aspects of the optimization problem. Pioneering work

by Luenberger [28] and Gabay [29] convert the constrained

optimization problem into an unconstrained problem, on an

appropriate differentiable manifold. An extensive treatment of

optimization algorithms with orthogonality constraints is given

later by Edelman et al. [24] in a Riemannian geometry context.

A non-Riemannian approach has been proposed in [2], which

is a general framework for optimization under unitary matrix

constraint. A more-detailed literature review is presented in

Section II.

In this paper we derive two generic algorithms stemming

from differential geometry. They optimize a real-valued cost

function with respect to complex-valued matrix sat-

isfying , i.e., perform optimization sub-

ject to the unitary matrix constraint. SD algorithms operating

on the Lie group of unitary matrices are proposed. They

move towards the optimum along the locally shortest paths, i.e.,

geodesics. Geodesics on Riemannian manifolds correspond to

the straight lines in Euclidean space. Our motivation to opt for

the geodesic algorithms is that on the Lie group of unitary ma-

trices , the geodesics have simple expressions described by

the exponential map. We can fully exploit recent developments

in computing the matrix exponential needed in the multiplica-

tive update on . The generalized polar decomposition [30]

proves to be one of the most computationally efficient method if

implemented in a parallel architecture, or the Cayley transform

(CT) [31] otherwise. We also consider other parametrizations

proposed in the literature and show that all these parametriza-

tions are numerically equivalent up to a certain approximation

order. However, the algorithms differ in terms of computational

complexity, which is also addressed in this paper. The proposed

generic geodesic algorithms, unlike other parametrizations, can

be relatively easily adapted to different problems with varying

complexity and strictness of the unitarity property requirements.

This is due the fact that the computation of the matrix exponen-

tial function employed in the proposed algorithms is a well-re-

searched problem [32] with some recent progress relevant to

the unitary optimization [30]. Moreover, we show that the expo-
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nential map is well suited for adapting the step size for the SD

method on the unitary group.

This paper is organized as follows. In Section II, an overview

of the problem of optimization under unitary matrix constraint is

provided. A brief review of different approaches presented in the

literature is given as well. A simple geometric example is used

to illustrate the differences among various approaches. In Sec-

tion III, we derive the Riemannian gradient on the Lie group of

unitary matrices and the corresponding SD algorithms. Equiva-

lence relationships between the proposed algorithms and other

algorithms are established in Section IV. The computational

complexity and the numerical stability issues are studied in Sec-

tions V and VI, respectively. Simulation results are presented in

Section VII. The proposed algorithms are used to solve the uni-

tary matrix optimization problem encountered in the joint ap-

proximate diagonalization of eigenmatrices (JADE) algorithm

[3] which is applied for blind source separation in a MIMO

system. Finally, Section VIII concludes the paper.

II. OPTIMIZATION UNDER UNITARY MATRIX CONSTRAINT

In this section, a brief overview of optimization methods

under orthonormal or unitary matrix constraint is provided. Dif-

ferent approaches are reviewed and the key properties of each

approach are briefly studied. A simple example is presented to

illustrate how each algorithm searches for the optimum.

A. Overview

Most of classical optimization methods with unitary matrix

constraint operate on the Euclidean space by using a SD algo-

rithm. The unitary property of the matrix is lost in every itera-

tion, and it needs to be restored in each step. Moreover, the con-

vergence speed is reduced. Other algorithms use a Lagrangian

type of optimization, by adding an extra-penalty function which

penalizes for the deviation from unitarity [16]. These methods

suffer from slow convergence and find only an approximate

solution in terms of orthonormality. Self-stabilized algorithms

provide more accurate solutions [17], [33].

A major drawback of the classical Euclidean SD and La-

grange type of algorithms [12], [16], [20]–[22] is that they do

not take into account the special structure of the parameter space

where the cost function needs to be optimized. The constrained

optimization problem may be formulated as an unconstrained

one in a different parameter space called manifold. Therefore,

the space of unitary matrices is considered to be a “constrained

surface.” Optimizing a cost function on a manifold is often con-

sidered [10], [14], [24], [25], [29], [34] as a problem of Rie-

mannian geometry [35]. Algorithms more general than the tra-

ditional Riemannian approach are considered in [2].

The second important aspect neglected in classical algorithms

is that the unitary matrices are algebraically closed under

the multiplication operation, not under addition. Therefore, they

form a group under the multiplication operation, which is the

Lie group of unitary matrices, [36]. Consequently,

by using an iterative algorithm based on an additive update the

unitarity property is lost after each iteration. Even though we

are moving along a straight line pointing in the right direction,

we depart from the constrained surface in each step. This hap-

pens because a Riemannian manifold is a “curved space.” The

locally length-minimizing curve between two points on the Rie-

mannian manifold is called a geodesic and it is not a straight

line like on the Euclidean space. Several authors [10], [11], [13],

[14], [24], [25], [28], [29], [34], [37], [38] have proposed that the

search for the optimum should proceed along the geodesics of

the constrained surface. Relevant work in Riemannian optimiza-

tion algorithms may be found in [24], [29], [34], and [38]–[41].

Algorithms considering the real-valued Stiefel and/or Grass-

mann manifolds have been proposed in [10], [11], [15], [17],

[24]–[26], and [42]. Edelman et al. [24] consider the problem of

optimization under orthonormal constraints. They propose SD,

conjugate gradient, and Newton algorithms along geodesics on

Stiefel and Grassman manifolds.

A general framework for optimization under unitary matrix

constraints is presented in [2]. It is not following the traditional

Riemannian optimization approach. A modified SD algorithm,

coupled with Armijo’s step size adaptation rule [1] and a

modified Newton algorithm are proposed for optimization on

both the complex Stiefel and the complex Grassmann mani-

fold. These algorithms do not employ a geodesic motion, but

geodesic motion could be used in the general framework. A

local parametrization based on an Euclidean projection of the

tangent space onto the manifold is used in [2]. Hence, the

computational cost may be reduced. Moreover, it is suggested

that the geodesic motion is not the only solution, since there

is no direct connection between the Riemannian geometry of

the Stiefel (or Grassmann) manifold (i.e., the “constrained

surface”) and an arbitrary cost function.

The SD algorithms proposed in this paper operate on the

Lie group of unitary matrices . We have derived the

Riemannian gradient needed in the optimization on . We

choose to follow a geodesic motion. This is justified by the

desirable property of that the right multiplication is an

isometry with respect to the canonical bi-invariant metric [35].

This allows us to translate the descent direction at any point

in the group to the identity element and exploit the fact that

the tangent space at identity is the Lie algebra of skew-Hermi-

tian matrices. This leads to lower computational complexity

because the argument of the matrix exponential operation is

skew-Hermitian. Novel methods for computing the matrix

exponential operation for skew-symmetric matrices recently

proposed in [30] and [32] may be exploited. Moreover, we

show that using an adaptive step size according to Armijo’s

rule [1] fits very well to the proposed algorithms.

B. Illustrative Example

We present a rather simple simulation example, in order to il-

lustrate how different algorithms operate under the unitary con-

straint. We consider the Lie group of unit-norm complex num-

bers , which are the 1 1 unitary matrices. The unitary

constraint is in this case the unit circle. We minimize the cost

function , subject to . Five different

algorithms are considered. The first one is the unconstrained SD

algorithm on the Euclidean space, with the corresponding up-

date , where is the step size. The
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Fig. 1. Minimization of a cost function on the unit circle U(1). Euclidean
versus Riemannian SD methods.

second one is the same SD with enforcing the unit norm con-

straint, , after each iteration. The third

method is similar to the bigradient method [16] derived from

the Lagrange multiplier method. An extra-penalty

weighted by a parameter is added to the original cost function

in order to penalize the deviation from the unit norm. In

this case, . The

fourth SD algorithm operates on the right parameter space de-

termined by the constraint. At each point the algorithm takes

a direction tangent to the unit circle and the resulting point is

projected back to the unit circle. The corresponding update is

, where

is the step size and is the operator which projects an arbi-

trary point to the closest point on the unit circle in terms of Eu-

clidean norm. The fifth algorithm is a multiplicative update SD

algorithm derived in this paper. The corresponding update is a

rotation, i.e., , where

and is the imaginary part of . The parameter rep-

resents the step size. The starting point is for

all the algorithms (see Fig. 1). The point , sets

the cost function to its minimum , but this is an

undesired minimum because it does not satisfy the constraint.

The desired optimum is , where the constraint is

satisfied and . We may notice in Fig. 1 that

the unconstrained SD (marked by ) takes the SD direction in

, and goes straight to the undesired minimum. By enforcing

the unit norm constraint, we project radially the current point

on the unit circle . The enforcing is necessary at every itera-

tion in order to avoid the undesired minimum. The extra-penalty

SD algorithm follows the unconstrained SD in the first it-

eration, since initially the extra-penalty term is equal to zero.

It converges somewhere between the desired and the undesired

minimum.

The SD algorithm [2] on the space determined by the con-

straint takes in this case the SD direction on , tangent

to the unit circle. The resulting point is projected to the closest

point on the unit circle in terms of Euclidean norm. The pro-

posed SD algorithm uses a multiplicative update which

is a phase rotation. The phase is proportional to the imaginary

part of the complex number associated with the point. For this

reason, the constraint is satisfied at every step in a natural way.

Although this low-dimensional example is rather trivial, it has

been included for illustrative purposes. In the case of multidi-

mensional unitary matrices, a similar behavior is encountered.

III. ALGORITHM DERIVATION

In this section, we derive two generic SD algorithms on the

Lie group of unitary matrices. Consider a real-valued cost func-

tion of a complex matrix , i.e., . Our

goal is to minimize (or maximize) the function

under the constraint that , i.e., is uni-

tary. We proceed as follows. First, in Section III-A we describe

the Lie group of unitary matrices, which is a real

differentiable manifold. Moreover, we describe the real differ-

entiation of functions defined in complex spaces in a way which

is suitable for the optimization. In Section III-B, we introduce

the Riemannian metric on the Lie group . The definition of

the gradient on the Riemannian space is intimately related to this

metric. The Riemannian gradient is derived in Section III-C, and

a basic generic optimization algorithm is given in Section III-D.

Finally, a Riemannian SD algorithm with an adaptive step size

is given in Section III-E.

A. Differentiation of Functions Defined in Complex Spaces

A Lie group is defined to be a differentiable manifold with a

smooth, i.e., differentiable group structure [36]. The Lie group

of unitary matrices is a real differentiable manifold be-

cause it is endowed with a real differentiable structure. There-

fore, we deal with a real-valued cost function essentially defined

in a real parameter space. However, since the algebraic proper-

ties of the group are defined in terms of the complex field, it is

convenient to operate directly with complex representation of

the matrices instead of using separately their real and the imagi-

nary parts, i.e., without using reals for representing the complex

space [43], [44]. Now the real differentiation can be described

by a pair of complex-valued operators defined in terms of real

differentials with respect to real and imaginary parts [43], [45]

and

(1)

with and . If a function is holo-

morphic (analytical), the first differential operator in (1) coin-

cides with the complex differential and the second one is iden-

tically zero (Cauchy-Riemann equations). It should be noted

that a real-valued function is holomorphic only if it is a con-

stant. Therefore, the complex analyticity is irrelevant to opti-

mization problems. The above representation is more compact,

allows differentiation of complex argument functions without
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using reals for the representation, and it is appropriate for many

applications [45].

B. Riemannian Structure on

A differentiable function represents a

curve on the smooth manifold (see Fig. 2). Let

and let be the set of functions on that are differentiable

at . The tangent vector to the curve at is a function

given by

(2)

A tangent vector at is the tangent vector at of

some curve with . All the tangent vectors at a

point form the tangent space . The tangent

space is a real vector space attached to every point in the differ-

ential manifold. It should be noted that the value is

independent of the choice of local coordinates (chart) and inde-

pendent of the curve as long as and

[35]. Since the curve , we have .

Differentiating both sides with respect to , the tangent space

at may be identified with the -dimensional real

vector space (i.e., it is a vector space isomorphic to)

(3)

From (3), it follows that the tangent space of at the group

identity is the real Lie algebra of skew-Hermitian matrices

. We empha-

size that is not a complex vector space (Lie algebra),

because the skew-Hermitian matrices are not closed under

multiplication with complex scalars. For example, if is a

skew-Hermitian matrix, then is Hermitian. Let and be

two tangent vectors, i.e., . The inner product

in is given by

(4)

This inner product induces a bi-invariant Riemannian metric

on the Lie group [35]. We may define the normal space at

considering that is embedded in the ambient space

, equipped with the Euclidean metric. The normal space

is the orthogonal complement of the tangent space

with respect to the metric of the ambient space [24],

i.e., for any and , we have

. It follows that the normal

space at is given as

(5)

C. The SD Direction on the Riemannian Space

We consider a differentiable cost function .

Intuitively, the SD direction is defined as “the direction

where the cost function decreases the fastest per unit length.”

Having the Riemannian metric, we are now able to derive the

Riemannian gradient we are interested in. A tangent vector

Fig. 2. Illustrative example representing the tangent space T U(n) at point
W, and a tangent vector X 2 T U(n).

satisfying for all

the condition

(6)

is the gradient on evaluated at . The direction

defined in (1) represents the steepest ascent

direction of the cost function of complex argument on the

Euclidean space at a given [45]. The left-hand side (LHS) in

(6) represents an inner product in the ambient space, whereas the

right-hand side (RHS) represents a Riemannian inner product at

. Equation (6) may be written as

(7)

Equation (7) shows that the difference , is

orthogonal to all . Therefore, it lies in the normal

space (5), i.e.,

(8)

where the matrix is a Hermitian matrix determined by im-

posing the condition that . From (3) it follows

that:

(9)

From (8) and (9), we get the expression for the Hermitian matrix

. The gradient of the cost func-

tion on the Lie group of unitary matrices at may be written

by using (8) as follows:

(10)

D. Moving Towards the SD Direction in

Here, we introduce a generic Riemannian SD algorithm along

geodesics on the Lie group of unitary matrices . A geodesic

curve on a Riemannian manifold is defined as a curve for

which the second derivative is zero or it lies in the normal

space for all (i.e., the acceleration vector stays normal to the

direction of motion as long as the curve is traced with constant

speed). Locally the geodesics minimize the path length with re-

spect to the Riemannian metric ([35, p. 67]). A geodesic ema-

nating from the identity with a velocity is characterized by

the exponential map:

(11)
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Fig. 3. The geodesic emanating from identity in the direction of �G ending at P = exp(��G ).

The exponential of complex matrices is given by the con-

vergent power series . The opti-

mization of is carried out along geodesics on the con-

straint surface. For the optimization we need the equation of the

geodesic emanating from . This may be found by

taking into account the fact that the right translation in is

an isometry with respect to the metric given by (4) and an isom-

etry maps geodesics to geodesics [10], [35]. Therefore,

. It follows that the geodesic emanating from is

, i.e.,

(12)

Consequently, we need to translate the gradient of the cost func-

tion at (10) to identity, i.e., into the Lie algebra . Since

the differential of the right translation is a vector space isomor-

phism, this is performed simply by postmultiplying

by , i.e.,

(13)

We have to keep in mind that this is not the Riemannian gradient

of the cost function evaluated at identity. The tangent vector

is the Riemannian gradient of the cost function evaluated

at and translated to identity. Note that the argument of the

matrix exponential operation is skew-Hermitian. We exploit this

very important property later in this paper in order to reduce the

computational complexity.

The cost function may be minimized iteratively by

using a geodesic motion. Typically we start at .

We choose the direction in to be the negative direction

of the gradient, i.e., (13). Moving from

to , is equivalent to moving

from to , as it is shown in Fig. 3. The geodesic motion

in corresponds to the multiplication by a rotation matrix

. The parameter controls the magni-

tude of the tangent vector and consequently the algorithm con-

vergence speed. The update corresponding to the SD algorithm

along geodesics on is given by

(14)

TABLE I
THE BASIC RIEMANNIAN SD ALGORITHM ON U(n)

The algorithm is summarized in Table I. Practical algorithms

require the computation of the exponential map, which is ad-

dressed in Section V.

E. A Self-Tuning Riemannian SD Algorithm on

An optimal value of the step size is difficult to determine

in practice. Moreover, it is cost function dependent and the ap-

propriate step size may change at each iteration. The SD algo-

rithm with a fixed small step size converges in general close to

a local minimum. It trades off between high convergence speed,

which requires large step size, and low steady-state error, which

requires a small step size. An adaptive step size is often a desir-

able choice.

In [27], a projection algorithm is considered together with

three other optimization alternatives along geodesics in the real

case, i.e., on the orthogonal group. The first geodesic algorithm

in [27] uses a fixed step size, which leads to the “real-valued

counterpart” of the algorithm in Table I. The second one is

a geodesic search for computing the step size in the update

equation. If the geodesic search is performed in a continuous

domain [39], [40], it is computationally very expensive since

it involves differential equations. A discretized version of the

geodesic search may be employed. Two such methods are re-

viewed in [27]. The third alternative is a stochastic type of algo-

rithm which adds perturbation to the search direction.

We opt for a fourth alternative based on the Armijo step size

[1]. It allows reducing the computational complexity and gives

the optimal local performance. This type of algorithm takes an

initial step along the geodesic. Then, two other possibilities are

checked by evaluating the cost function for the case of doubling

or halving the step size. The doubling or halving step continues
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TABLE II
THE SELF-TUNING RIEMANNIAN SD ALGORITHM ON U(n)

as long as the step size is out of a range whose limits are set by

two inequalities. It is known that in a stationary scenario (i.e.,

the matrices involved in the cost function are time invariant)

the SD algorithm together with the Armijo step size rule [1] al-

most always converges to a local minimum if not initialized at

a stationary point. The convergence properties of the geodesic

SD algorithm using the Armijo rule have been established in

[29], [46] for general Riemannian manifolds, provided that the

cost function is continuously differentiable and has bounded

level sets. The first condition is an underlying assumption in

this paper and the second one is ensured by the compactness

of .

In [2], a SD algorithm is coupled with the Armijo rule for op-

timizing the step size. Geodesic motion is not used. Neverthe-

less, in the general framework proposed in [2] it could be used.

We show that by using the Armijo rule together with the generic

SD algorithm along geodesics, the computational complexity is

reduced by exploiting the properties of the exponential map, as

it will be shown later.

The generic SD algorithm with adaptive step size selection is

summarized in Table II. The choice for computing the matrix

exponential is explained in Section V.

Algorithm Description: The algorithm consists of the fol-

lowing steps.

• Step 1—Initialization: A typical initial value is .

If the gradient , then the identity element is a

stationary point. In that case a different initial value

may be chosen.

• Steps 2–3—Gradient computation: The Euclidean gradient

and Riemannian gradient are computed.

• Step 4—Setting the threshold for the final error: Evaluate

the squared norm of the Riemannian gradient in

order to check if we are sufficiently close to the minimum

of the cost function. The residual error may be set to a

value closest to the smallest value available in the limited-

precision environment, or the highest value which can be

tolerated in task at hand.

• Step 5—Rotation matrix computation: This step requires

the computation of the rotation matrix .

The rotation matrix may be com-

puted just by squaring , because

. Therefore, when doubling the step size,

instead of computing a new matrix exponential only

a matrix squaring operation is needed. It is important

to mention that the squaring operation is a very stable

operation [32] being also used in software packages for

computing the matrix exponential.

• Steps 6 and 7—Step size evaluation: In every iteration we

check if the step size is in the appropriate range determined

by the two inequalities. The step size evolves in a dyadic

basis. If it is too small it will be doubled and if it is too high

it will be halved.

• Step 8—Update: The new update is obtained in a multi-

plicative manner and a new iteration is started with step 2

if the residual error is not sufficiently small.

Remark: The SD algorithm in Table II may be easily con-

verted into a steepest ascent algorithm. The only difference is

that the step size would be negative and the inequalities in

steps 6 and 7 need to be reversed.

IV. RELATIONS AMONG DIFFERENT LOCAL

PARAMETRIZATIONS ON THE UNITARY GROUP

The proposed SD algorithms search for the minimum by
moving along geodesics, i.e., the local parametrization is the
exponential map. Other local parametrizations used to describe
a small neighborhood of a point in the group have been pro-
posed in [2] and [11]. In this section, we establish equivalence
relationships among some different local parametrizations of
the unitary group . The first one is the exponential map
used in the proposed SD algorithms, the second one is the
Cayley transform [31], the third one is the Euclidean projection
operator [2], and the fourth one is a parametrization based
on the QR-decomposition. The four parametrizations lead to
different update rules for the basic SD algorithm on . The
update expressions may be described in terms of Taylor series
expansion, and we prove the equivalence among all of them up
to a certain approximation order.

A. The Exponential Map

The rotation matrix used in the update expression (14)
of the proposed algorithm can be expressed as a Taylor series
expansion of the matrix exponential, i.e.,

. The update is
equivalent to

(15)

B. The Cayley Transform

If the rotation matrix in the update is computed by using
the CT [31] instead of the matrix exponential, then

. The corresponding Taylor series is
. For the update equation is

(16)
Obviously, (16) is equivalent to (15) up to the second order.
Notice also that for the CT equals the first order
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diagonal Padé approximation of (i.e., ,
see [32]).

C. The Euclidean Projection Map

Another possibility is to use an Euclidean projection map as
a local parametrization as in [2]. This map projects an arbi-
trary matrix onto at a point which is the
closest point to in terms of Euclidean norm, i.e.,

. The unitary matrix
minimizing the above norm can be obtained from the polar de-
composition of as in [47]

(17)

where and are the left and the right singular vectors of
, respectively. Equivalently

(18)

Equation (18) is also known as “the symmetric orthogonaliza-
tion” procedure [12]. In [2], the local parametrizations are more
general in the sense that they are chosen for the Stiefel and
Grassmann manifolds. The projection operation is computed via
SVD as in (17). For the SD algorithm on the Stiefel manifold [2],
the update is of form , where is the
SD direction on the manifold and is the step size. According to
(18) the update is equivalent to

. By expanding the above expression
in a Taylor series we get

(19)
Considering that and , for
the three update expressions (15), (16), and (19) become equiv-
alent up to the second order.

D. The Projection Based on the QR-Decomposition

A computationally inexpensive way to approximate the op-
timal projection of an arbitrary matrix onto (18) is the
QR-decomposition. We show that this is not the optimal pro-
jection in terms of minimum Euclidean distance, but is accu-
rate enough to be used in practical applications. We establish
a connection between the QR-based projection and the optimal
projection. Let us consider the QR-decomposition of the arbi-
trary nonsingular matrix given by
where is an upper triangular matrix and is a unitary ma-
trix. The unitary matrix is an approximation of the optimal
projection of onto , i.e., . The connec-
tion between this projection and the optimal projection can be
established by using the polar decomposition of the upper-trian-
gular matrix . We obtain ,
where and . There-
fore, the matrix is an approximation of the optimal pro-
jection and it includes an additional rotation from

. The update of the SD algorithm is equal to the unitary
factor from the QR-decomposition. In other words, if we have

, then

(20)

The equivalence up to the first order between the update (20) and
the other update expressions (15), (16), and (19) is obtained by
expanding the columns of the matrix from the Gram-
Schmidt process separately in a Taylor series (proof available
on request)

(21)

The equivalence may extend to higher orders, but this remains
to be studied.

V. COMPUTATIONAL COMPLEXITY

In this section, we evaluate the computational complexity of
the SD algorithms on by considering separately the the

geodesic and the nongeodesic SD algorithms. The proposed
geodesic SD algorithms use the rotational update of form

, and the rotation matrix is computed
via matrix exponential. We review the variety of algorithms
available in the literature for calculating the matrix exponential
in the proposed algorithms. Details are given for the matrix
exponential algorithms with the most appealing properties. The
nongeodesic SD algorithms are based on an update expression
of form , and the computational
complexity of different cases is described. The cost of adapting
to the step size using the Armijo rule is also evaluated. The SD
method on involves overall complexity of flops1

per iteration. Algorithms like conjugate gradient or Newton
algorithm are expected to provide a faster convergence, but also
their complexity is expected to be higher. Moreover, a Newton
algorithm is more likely to converge to stationary points other
than local minima.

A. Geodesic SD Algorithms on

In general, the geodesic motion on manifolds is computation-
ally expensive. In the case of , the complexity is reduced
even though it requires the computation of the matrix exponen-
tial. We are interested in the special case of matrix exponential
of form , where and is a skew-Hermi-
tian matrix. Obviously, finding the exponential of a skew-Her-
mitian matrix has lower complexity than of general matrix. The
matrix exponential operation maps the skew-Hermitian matrices
from the Lie algebra into unitary matrices which reside on
the Lie group . Several alternatives for approximating the
matrix exponential have been proposed in [30], [32], [48], and
[49]. In general the term “approximation” may refer to two dif-
ferent things. The first kind of approximation maps the elements
of the Lie algebra exactly into the Lie group, and the approxi-
mation takes place only in terms of deviation “within the con-
strained surface.” Among the most efficient methods from this
category are: the diagonal Padé approximation [32], General-
ized Polar Decomposition [30], [48], technique of coordinates
of the second kind [49]. The second category includes methods
for which the resulting elements do not reside on the group any-
more, i.e., . The most popular methods belonging to

1One “flop” is defined as a complex addition or a complex multiplication. An
operation of form ab+ c; a; b; c 2 is equivalent to two flops. A simple mul-
tiplication of two n� n matrices requires 2n flops. This is a quick evaluation
of the computational complexity, not necessarily proportional to the computa-
tional speed.
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this category is the truncated Taylor series and the nondiagonal
Padé approximation. They do not preserve the algebraic proper-
ties, but they still provide reasonable performance in some ap-
plications [50]. Their accuracy may be improved by using them
together with the scaling and squaring procedure.

1) Padé Approximation of the Matrix Exponential: This is
[32, Method 2], and together with scaling and squaring [32,
Method 3] is considered to be one of the most efficient methods
for approximating a matrix exponential. For normal matrices
(i.e., matrices which satisfy ), the Padé
approximation prevents the round-off error accumulation. The
skew-Hermitian matrices are normal matrices, therefore, they
enjoy this benefit. Because we deal with a SD algorithm on

we are also concerned about preserving the Lie algebraic
properties. The diagonal Padé approximation preserves the
unitarity property accurately. The Padé approximation together
with scaling and squaring supposes the choice of the Padé
approximation order and the scaling and squaring exponent
to get the best approximant given the approximation accuracy.
See [32] for information of choosing the pair optimally.
The complexity of this approximation is
flops. The drawback of Padé method when used together with
the scaling and squaring procedure is that if the norm of the
argument is large the computational efficiency decreases due to
the repeated squaring.

2) Approximation of the Matrix Exponential via Generalized

Polar Decomposition (GPD): The GPD method, recently pro-
posed in [30] is consistent with the Lie group structure as it maps
the elements of the Lie algebra exactly into the corresponding
Lie group. The method lends itself to implementation in parallel
architectures and it requires about flops [30] regardless of
the approximation order. It may not be the most efficient imple-
mentation in terms of flop count, but the algorithm has potential
for highly parallel implementation. GPD algorithms based on
splitting techniques have also been proposed in [48]. The cor-
responding approximation is less complex than the one in [30]
for the second and the third order. The second-order approxima-
tion requires only flops. This is the same amount of
computation needed to perform the CT. Other efficient approx-
imations in a Lie-algebraic setting have been considered in [49]
by using the technique of coordinates of the second kind (CSK).
A second-order CSK approximant requires flops.

B. Nongeodesic SD Algorithms on

This category includes local parametrizations derived from a
projection operator which is used to map arbitrary matrices into

. The optimal projection and an approximation of it are
considered.

1) Optimal Projection: The projection that minimizes the
Euclidean distance between the arbitrary matrix and a matrix

may be computed in different ways. By using the
SVD the computation of the projection requires flops and
by using the procedure (18) it requires about flops.

2) Approximation of the Optimal Projection: This method
is the most inexpensive approximation of the optimal projec-
tion, being based on the QR-decomposition of the matrix .
It requires only the unitary matrix which is an orthonormal

TABLE III
THE COMPLEXITY (IN FLOPS) OF COMPUTING THE LOCAL PARAMETRIZATION

IN U(n)

basis in the range space of . This can be done by using House-
holder reflections, Givens rotations or the Gram-Schmidt proce-
dure [32]. The most computationally efficient and numerically
stable approach is the modified Gram-Schmidt procedure which
requires only flops.

In Table III, we summarize the complexity2 of computing
the local parametrizations for the geodesic and the nongeodesic
methods, respectively. The geodesic methods include: the diag-
onal Padé approximation with scaling and squaring

of type (1, 0) [32] (CT), the Generalized Polar Decom-
position with reduction to tridiagonal form (GPD-IZ) [30] and
without reduction to the tridiagonal form (GPD-ZMK) [48]. All
methods have an approximation order of two. The nongeodesic
methods include the optimal projection (OP) and its approxima-
tion (AOP).

C. The Cost of Using an Adaptive Step Size

In this subsection, we analyze the computational complexity
of adapting the step size with Armijo rule. The total computa-
tional cost is given by the complexity of computing the local
parametrization and the additional complexity of selecting the
step size. Therefore, the step size adaptation is a critical aspect
to be considered. We consider again the geodesic SD algorithms
and the nongeodesic SD algorithms, respectively. We show that
the geodesic methods may reduce the complexity of the step size
adaptation.

1) The Geodesic SD Algorithms: Since the step size evolves
in a dyadic basis, the geodesic methods are very suitable for the
Armijo step. This is due to the fact that doubling the step size
does not require any expensive computation, just squaring the
rotation matrix as in the scaling and squaring procedure. For
normal matrices, the computation of the matrix exponential via
matrix squaring prevents the round-off error accumulation [32].
An Armijo type of geodesic SD algorithm enjoys this benefit,
since the argument of the matrix exponential is skew-Hermitian.
Moreover, when the step size is halved, the corresponding rota-
tion matrix may be available from the scaling and squaring pro-
cedure which is often combined with other methods for approx-
imating the matrix exponential. This allows reducing the com-
plexity because the expensive operation may often be avoided.

2) The Nongeodesic SD Algorithms: The nongeodesic
methods compute the update by projecting a matrix into .
Unfortunately, the Armijo step size adaptation is relatively
expensive in this case. The main reason is that the update

and the one corresponding to the
double step size do not have a
straightforward relationship as squaring the rotation matrix for
the geodesic methods. Thus, the projection operation needs to
be computed multiple times. Moreover, even keeping the step
size constant involves the computation of the projection twice

2Only dominant terms are reported, i.e., O(n ).
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TABLE IV
THE COMPLEXITY OF ADAPTING THE STEP SIZE

since both inequalities 6 and 7 in Table II need to be tested even
if they fail. In this case both projections and

need to be evaluated.
We compare the proposed geodesic SD algorithms to the

nongeodesic SD algorithms by considering the complexity of
adapting to the step size. We also take into account the cost
of computing the rotation matrix for the geodesic SD algorithms
and the cost of computing the projection operation for the
nongeodesic algorithms. These costs are given in Table III for
different local parametrizations. We denote by and the
number of times we double, respectively, the number of times
we halve the step size during one iteration . The complexity
of adapting the step size is summarized in Table IV.

We may conclude that the local parametrization may be
chosen based on the requirements of the application. Often,
preserving the algebraic structure is important. On the other
hand, the implementation complexity may be a limiting factor.
Most of the parametrizations presented here are equivalent up
to the second order. Therefore, the difference in convergence
speed is not expected to be significant. The cost function to
be minimized plays a role in this difference as also stated in
[2]. An SD algorithm with adaptive step size is more suitable
in practice. Consequently, the geodesic algorithms are a good
choice. In this case, the matrix exponential is employed and it
may be computed either by using the CT [31] or the GPD-ZMK
method [48]. They require equal number of flops, therefore
the choice remains upon the numerical stability. Even though
the GPD-IZ method recently proposed in [30] is sensibly less
efficient in terms of flop count, it may be faster in practice if
implemented in parallel architectures. Moreover, it provides
good numerical stability as it will be seen in the simulations.
As a final conclusion, we would opt for the GPD-IZ method
[30] if the algorithm is implemented in a parallel fashion and
for the CT if the parallel computation is not an option.

VI. NUMERICAL STABILITY

In this section, we focus on the numerical stability of the pro-
posed SD algorithms on . Taking into account the recur-
sive nature of the algorithms, we analyze the deviation of each
new update from the unitary constraint, i.e., the depar-
ture from . The nongeodesic SD algorithms do not experi-
ence this problem due to nature of local parametrization. In that
case, the error does not accumulate because the projection op-
erator maps the update into the manifold at every new iteration.
Therefore, we consider only the geodesic SD algorithms.

The methods proposed here for approximating the matrix ex-
ponential map the elements of the Lie algebra exactly into the
Lie group, therefore they do not cause deviation from the uni-
tary constraint. However, the rotation matrix may be affected
by round-off errors, and the error may accumulate in the update
(14) due to the repeated matrix multiplications.

We provide a closed-form expression for the expected value
of the deviation form the unitary constraint after a certain
number of iterations. The theoretical value derived here pre-
dicts the error accumulation with high accuracy, as it will be
shown in the simulations. We show that the error accumulation
is negligible in practice.

We assume that at each iteration , the rotation matrix
is affected additively by the quantization error , i.e.,

where is the true rotation
matrix. The real and imaginary parts of the entries of the matrix

are mutually independent and independent of the entry in-
dices. They are assumed to be uniformly distributed within the
quantization interval of width . The deviation of the quantized
update from the unitary constraint is measured by

(22)

The closed-form expression of the expected value of the devia-
tion at iteration is given by (derivation available on request)

(23)

The theoretical value (23) depends on the matrix dimension
and the width of the quantization interval . Often, the conver-
gence is reached in just few iterations, as in the practical ex-
ample presented in Section VII. Therefore, the error accumula-
tion problem is avoided. We show that even if the convergence is
achieved after a large number of iterations, the expected value
of the deviation from the unitary constraint is negligible. This
is due to the fact that the dominant term in (23) is driven by
the factor . The error is increasing very slowly and the
increasing rate decays rapidly with , as it will be shown in Sec-
tion VII.

VII. SIMULATION RESULTS AND APPLICATIONS

In this section, we test how the proposed method performs
in signal processing applications. An example of separating in-
dependent signals in a MIMO system is given. Applications to
array signal processing, ICA, BSS, for MIMO systems may be
found in [5]–[8], [10], [14]–[17], [19]–[23], [51]. A recent re-
view of the applications of differential geometry to signal pro-
cessing may be found in [52].

A. Blind Source Separation for MIMO Systems

Separating signals blindly in a MIMO communication sys-
tems may be done by exploiting the statistical information of
the transmitted signals. The JADE algorithm [3] is a reliable
alternative for solving this problem. The JADE algorithm con-
sists of two stages. First, a prewhitening of the received signal is
performed. The second stage is a unitary rotation. This second
stage is formulated as an optimization problem under unitary
matrix constraint, since no closed form solution can be given ex-
cept for simple cases such as 2-by-2 unitary matrices. This may
be efficiently solved by using the proposed SD on the unitary
group. It should be noted that the first stage can also be formu-
lated as a unitary optimization problem [50], and the algorithms
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proposed in this paper could be used to solve it. However, here
we only focus on the second stage.

The JADE approach has been recently considered on the
oblique [53] and Stiefel [19] manifolds. The SD algorithm
in [19] has complexity of per iteration as the original
JADE [3], but in general it converges in fewer iterations. This is
true especially for large matrix dimensions, where JADE seems
to converge slowly due to its pairwise processing approach.
Therefore, the overall complexity of algorithm in [19] is lower
than in the original JADE. It operates on the Stiefel manifold of

unitary matrices, but still without taking into account the
additional Lie group structure of the manifold. Our proposed
algorithm is designed specifically for the case of unitary
matrices, and for this reason the complexity per iteration is
lower compared to the SD in [19]. The convergence speed is
identical as it will be shown later. The algorithms in [2] and
[19] are more general than the proposed one, in the sense that
the parametrization is chosen for the Stiefel and the Grassmann
manifolds. The reduction in complexity for the proposed algo-
rithm is achieved by exploiting the additional group structure
of . The SD along geodesics is more suitable for Armijo
step size.

A number of independent zero-mean signals are sent by
using transmit antennas and they are received by receive
antennas. The frequency flat MIMO channel matrix is in
this case an mixing matrix . We use the clas-
sical signal model used in source separation. The ma-
trix corresponding to the received signal may be written as

where is an matrix corresponds to
the transmitted signals and is the additive white noise.
In the prewhitening stage the received signal is decorrelated
based on the eigendecomposition of the correlation matrix. The

prewhitened received signal is given by ,
where and contain the eigenvectors and the eigen-
values corresponding to the signal subspace, respectively.

In the second stage, the goal is to determine a unitary matrix
such that the estimated signals are the transmitted

signals up to a phase and a permutation ambiguity, which are in-
herent to any blind methods. The unitary matrix may be obtained
by exploiting the information provided by the fourth-order cu-
mulants of the whitened signals. The JADE algorithm mini-
mizes the following criterion:

(24)

with respect to , under the unitarity constraint on , i.e., we
deal with a minimization problem on . The eigenmatrices

which are estimated from the fourth-order cumulants need
to be diagonalized. The operator computes the sum of the
squared magnitudes of the off-diagonal elements of a matrix,
therefore, the criterion penalizes the departure of all eigenma-
trices from the diagonal property. The Euclidean gradient of the
JADE cost function is

, where denotes the elementwise matrix multi-
plication.

The performance is studied in terms of convergence speed
considering the JADE criterion and the Amari distance (perfor-
mance index) [12]. This JADE criterion (24) is a measure of

Fig. 4. The constellation patterns corresponding to (a) four of the six received
signals and (b) the four recovered signals by using JADE with the algorithm
proposed in Table I. There is an inherent phase ambiguity which may be noticed
as a rotation of the constellation, as well as a permutation ambiguity.

how well the eigenmatrices are jointly diagonalized. This
characterizes the goodness of the optimization solution, i.e., the
unitary rotation stage of the BSS. The Amari distance is a
good performance measure for the entire blind source separa-
tion problem since it is invariant to permutation and scaling. In
terms of deviation from the unitary constraint the performance
is measured by using a unitarity criterion (22), in a logarithmic
scale.

A number of signals are transmitted, three QPSK sig-
nals and one BPSK signal. The signal-to-noise ratio (SNR) is

dB and the channel taps are independent random
coefficients with power distributed according to a Rayleigh dis-
tribution. The results are averaged over 100 random realizations
of the (4 6) MIMO matrix and (4 1000) signal matrix.

In the first simulation, we compare three optimization algo-
rithms: the classical Euclidean SD algorithm which enforces
the unitarity of after every iteration, the Euclidean SD
with extra-penalty similar to [16] stemming from the Lagrange
multipliers method and the proposed Riemannian SD algorithm
from Table II. The update rule for the classical SD algorithm
is . The unitarity property is enforced
by symmetric orthogonalization after every iteration [12], i.e.,

. The extra-penalty SD

method uses an additional term
added to the original cost function (24) similarly to the bi-
gradient method in [16]. The corresponding update rule is

. A
weighting factor is used to weight the importance of
the unitarity constraint. The third method is the SD algorithm
summarized in Table II. Armijo [1] step size selection rule is
used for all four methods. Fig. 4 shows received signal mix-
tures, and separated signals by using JADE with the proposed
algorithm. The performance of the three algorithms in terms
of convergence speed and accuracy of satisfying the unitary
constraint are presented in Fig. 5. The JADE criterion (24)
versus the number of iterations is shown in subplot a) of Fig. 5.
Subplot b) of Fig. 5 shows the evolution of the Amari distance
with the number of iterations. We may notice that the accuracy
of the optimization solution described by the value of the JADE
cost function is very related to the accuracy of solving the entire
source separation, i.e., the Amari distance. The Riemannian SD
algorithm (Table I) converges faster compared to the classical



1144 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

Fig. 5. A comparison between the conventional optimization methods oper-
ating on the Euclidean space (the classical SD algorithm with enforcing uni-
tarity, the extra-penalty SD method) and the Riemannian SD algorithm from
Table II. The horizontal thick dotted line in subplots (a) and (b) represents the
solution of the original JADE algorithm [3]. The performance measures are the
JADE criterionJ (W )(24), Amari distance d and the unitarity criterion
� (22) versus the iteration step. The Riemannian SD algorithm outperforms the
conventional methods.

methods, i.e., the Euclidean SD with enforcing unitarity and
the extra-penalty method. The Euclidean SD and extra-penalty
method do not operate in an appropriate parameter space, and
the convergence speed is decreased. All SD algorithms satisfy
perfectly the unitary constraint, except for the extra-penalty
method which achieves also the lowest convergence speed. This
is due to the fact that an optimum scalar weighting parameter
may not exist. The unitary matrix constraint is equivalent to
smooth real Lagrangian constrains, therefore more parameters
could be used. However, computing these parameters may
computationally expensive and/or non-trivial even in the case
of , like the example presented in Section II-B. The
accuracy of the solution in terms of unitary constraint is shown
in subplot c) of Fig. 5 considering the criterion (22) versus
the number of iterations.

We will next analyze how the choice of the local parametriza-
tion affects the performance of the SD algorithms. The results
are compared in terms of convergence speed and the accuracy of
satisfying the unitary constraint. Two classes of Riemannian SD
algorithms are considered. The first one includes the geodesic
SD algorithms and the second one include the nongeodesic SD
algorithms. For the geodesic SD algorithms the exponential
map is computed by three different methods: the Matlab’s
expm function which uses the diagonal Padé approximation
with scaling and squaring [32], the General-
ized Polar Decomposition of order four by Iselres and Zanna

Fig. 6. The JADE criterion J (W )(24), the Amari distance and the
unitarity criterion � (22) versus the iteration step. A comparison between
different local parametrizations on U(n): the geodesic algorithms (continuous
line) versus the nongeodesic algorithms (dashed line). For the geodesic
algorithms the exponential map is computed by using three different methods:
Matlab’s diagonal Padé approximation with scaling and squaring (DPA+SS),
GPD-IZ [30], CT. For the nongeodesic algorithms the projection operation is
computed with two different methods: the OP via Matlab’s svd function and
the approximation of it (AOP) via QR decomposition. The horizontal thick
dotted line in subplots (a) and (b) represents the solution of the original JADE
algorithm [3].

(GPD-IZ) [30] and the CT. The nongeodesic SD algorithms are
based on a projection type of local parametrization. The OP is
computed via SVD [2] by using the Matlab svd function and
the approximation of the optimal projection (AOP) based on
the QR algorithm is computed via modified Gram-Schmidt pro-
cedure [54]. In terms of convergence speed, both the geodesic
and the nongeodesic SD algorithms such as [2] and [19] have
similar performance, regardless of the local parametrization,
as shown in subplots a) and b) of Fig. 6. Also in terms of
unitarity criterion, all algorithms provide good performance.
The solution of the original JADE algorithm (represented by
the horizontal thick dotted line in Fig. 6) is achieved in less
than 10 iteration for all SD algorithms, regardless of the local
parametrization.

In conclusion, the choice of the local parametrization in
made according to the computational complexity and numer-
ical stability. An Armijo step size rule is very suitable to the
geodesic algorithms, i.e., using the exponential map as a local
parametrization. If implemented in parallel architecture the
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Fig. 7. The deviation from the unitary constraint for different values of the
quantization errors � on the rotation matrices ~P after one million iterations.
The theoretical value E[� ] in (23) is represented by continuous black line.
The unitarity criterion � (22) obtained by repeatedly multiplying unitary ma-
trices is represented by dashed gray line. The value � obtained by using the
proposed SD algorithm in Table II is represented by dot-dashed thick black line.
The theoretical expected value of the deviation from the unitary constraint pre-
dicts accurately the value obtained in simulations. The proposed algorithm pro-
duces an error lower that the theoretical bound due to the fact that the error does
not accumulate after the convergence has been reached.

GPD-IZ method [30] for computing the matrix exponential
is a reliable choice from the point of view of efficiency and
computational speed. Otherwise, the CT provides a reasonable
performance at a low computational cost. Finally, the proposed
algorithm has lower computational complexity per iteration
compared to the nongeodesic SD in [2], [19] at the same
convergence speed. This reduction is achieved by exploiting
the Lie group structure of the Stiefel manifold of unitary
matrices.

The last simulation shows how the round-off errors caused
by finite numerical precision affect the proposed iterative algo-
rithm. In Fig. 7, different values of the quantization error are
considered for the rotation matrices , which are obtained by
using the method [32]. Similar results are obtained
by using the other approximation methods of the matrix expo-
nential presented in Section V-A. The theoretical value of the
unitarity criterion in (23) is represented by continuous
lines. The value (22) obtained by repeatedly multiplying
unitary matrices is represented by dashed lines and the value
obtained by using the proposed algorithm in Table II is repre-
sented by dot-dashed thick lines. The theoretical value (23) pre-
dicts accurately the value (22) obtained by repeated multiplica-
tions of unitary matrices. The proposed algorithm exhibits an
error below the theoretical value due to the fact that the conver-
gence is reached in few steps. Even if the convergence would
be reached after a much larger number of iterations, the error
accumulation is negligible for reasonable values of the quanti-
zation errors , as shown in Fig. 7. In practice, a much
smaller number of iterations need to be performed.

VIII. CONCLUSION

In this paper, Riemannian optimization algorithms on the Lie

group of unitary matrices have been introduced.

Expression for Riemannian gradient needed in the optimization

has been derived. The proposed algorithms move towards the

optimum along geodesics and the local parametrization is the

exponential map. We exploit the recent developments in com-

puting the matrix exponential needed in the multiplicative up-

date on . This operation may be efficiently computed in a

parallel fashion by using the GPD-IZ method [30] or in a serial

fashion by using the CT. We also address the numerical issues

and show that the geodesic algorithms together with the Armijo

rule [1] are more efficient in practical implementations. Non-

geodesic algorithms have been considered as well, and equiva-

lence up to a certain approximation order has been established.

The proposed geodesic algorithms are suitable for practical

applications where a closed form solution does not exist, or to

refine estimates obtained by classical means. Such an example

is the joint diagonalization problem presented in the paper. We

have shown that the unitary matrix optimization problem en-

countered in the JADE approach for blind source separation

[3] may be efficiently solved by using the proposed algorithms.

Other possible applications include: smart antenna algorithms,

wireless communications, biomedical measurements and signal

separation, where unitary matrices play an important role in

general. The algorithms introduced in this paper provide sig-

nificant advantages over classical Euclidean gradient with en-

forcing unitary constraint and Lagrangian type of methods in

terms convergence speed and accuracy of the solution. The uni-

tary constraint is automatically maintained at each iteration, and

consequently, undesired suboptimal solutions may be avoided.

Moreover, for the specific case of , the proposed algorithm

has lower computational complexity than the nongeodesic SD

algorithms in [2].
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