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Abstract—Various applications, such as localisation of per-
sons and objects could benefit greatly from non-line-of-sight
(NLOS) identification and mitigation techniques. However, such
techniques have been primarily investigated for ultra-wide band
(UWB) signals, leaving the area of WiFi signals untouched. In this
study, we propose two accurate approaches using only received
signal strength (RSS) measurements from WiFi signals to identify
NLOS conditions and mitigate the effects. We first explore several
features from the RSS which are later demonstrated as very
effective in identifying and mitigating NLOS conditions. After
that, we develop and compare two major optimization problems
based on a machine learning technique and hypothesis testing
according to different user requirements and information avail-
able. Extensive experiments in various indoor environments have
shown that our techniques can not only accurately distinguish
between LOS/NLOS conditions, but also mitigate the impact of
NLOS conditions as well.

Keywords—NLOS identification and mitigation, machine learn-
ing, hypothesis testing, localisation.

I. INTRODUCTION

Line-of-sight/non-line-of-sight (LOS/NLOS) information
can greatly benefit many location-related applications. Typical
examples include the localisation of people and objects inside
buildings or in urban landscapes (like victim location detection
in emergencies, equipment tracking in hospitals, and other
location-based commerce). The accuracy of indoor localisation
techniques, especially RSS-based, is hampered by multi-path
effects especially in NLOS conditions when the received signal
is only composed of these reflected signals. Therefore, it is nec-
essary that NLOS identification and mitigation techniques are
introduced to improve the accuracy of RSS-based localisation.

NLOS identification and mitigation techniques so far have
been primarily investigated for ultra-wide band (UWB) signal-
s [1]–[5]. The ultra-wide bandwidth of UWB signals makes
it possible to identify and extract the LOS component from
the received signal, which makes the NLOS identification and
mitigation convenient. The identification techniques mainly
include hypothesis testing [1], [3] or machine learning algo-
rithms [5] based on features from the received UWB signals,
such as root-mean-square (RMS) delay spread, mean/excess
delay, and amplitude. The detailed comparison between differ-
ent variables and approaches can be found in [4]. However,
it is impossible to extract such detailed set of features from
WiFi signals due to its narrow bandwidth.

Another generic NLOS mitigation technique [6] tries to
recover the NLOS errors with convex programming. But it re-
quires more LOS samples than NLOS samples for localisation,
which is not the case in scenarios where we often have only

one LOS access point in view at majority of the time, e.g.,
corridors in buildings.

NLOS mitigation is also achieved in [7] and [2], [8] by
means of minimum residual and residual weighting algorithm-
s. [7] proposed the minimum residual and residual weighting
algorithms to mitigate the NLOS conditions by selecting a
subset from the available access point set that minimizes the
distance estimation residual. [2], [8] improves the algorithm
to reduce the computation complexity. However, the accuracy
of the aforementioned NLOS mitigation techniques is not
satisfactory in an environment with few LOS measurements
and many NLOS measurements.

In this paper, we propose and compare two NLOS identifi-
cation and mitigation techniques with only RSS measurements
from WiFi signals. Based on the observations of multiple RSS
measurements from experiments, we explore several variables
and adapt a least square support vector machine (LS-SVM) and
a Neyman-Pearson testing to identify LOS/NLOS conditions
and mitigate their impact on various applications. The main
contributions of this paper are as follows:

• We propose the concept and implementation of NLOS
identification and mitigation with only RSS measure-
ments, which greatly improves the potential of RSS-
based localisation and secure data transmission.

• We explore several novel features from the collected
RSS measurements, which are shown to be effective
in LOS/NLOS discrimination.

• We formulate two optimization problems to identify
the NLOS conditions, which could output accurate
NLOS identification results in different environments.

• We design and run extensive experiments to test the
accuracy of the proposed techniques.

The remainder of the paper is organized as follows. Sec-
tion II presents the problem formulation and system mod-
el. Section III proposes the feature selection and extraction
scheme. Section IV develops the machine learning algorithm
used to perform the identification and mitigation. Section V
describes the hypothesis testing strategy used in this study.
Section VI introduces the experiments and the performance of
the NLOS identification and mitigation algorithms. Section VII
describes the impacts of our algorithm on positioning system
and compares the performance with related approaches. Sec-
tion VIII concludes the whole paper.

II. PROBLEM FORMULATION AND SYSTEM MODEL

This section formulates the problems to be solved in this
study and presents the system model for the NLOS identi-



0 5 10 15 20 25 30
−100

−90

−80

−70

−60

−50

−40

−30

Distance (m)

R
ec

ei
ve

d 
si

gn
al

 s
tre

ng
th

 (d
B

m
)

LOS
NLOS

Fig. 1. RSS measurements in LOS and NLOS conditions and the corre-
sponding propagation models estimated using least squares

fication and mitigation algorithms. This study addresses two
problems: NLOS identification based on RSS measurements
such as Fig. 1, and NLOS mitigation primarily for RSS-based
localisation services.

Whether some obstacles block the LOS path of the wireless
signals makes a significant difference on the determination of
the location, which is the major reason for the inaccuracy
of localisation approaches based on the indoor propagation
models. In general, for a given distance the RSS in LOS
conditions can be over a hundred times stronger than the RSS
in NLOS conditions (as shown in Fig. 1). The general form
of indoor propagation models can be presented as

d = f(r, ε, e), (1)

where r is the signal path loss, ε is the path loss factor, and
e is the environment factor dependent on the walls, floors,
windows, etc. For instance, the standard log-normal indoor
propagation model is

P (d)[dBm] = P (d0) + 10γlog
d

d0
+WAF +Xσ, (2)

in which P (d) is the received signal strength in a location d
meters away from the anchor, d0 is the reference distance,
γ is the distance power loss coefficient, WAF is the wall
attenuation factor, and Xσ is a Gaussian distributed random
variable with variance σ2.

The machine learning approach first performs an extensive
indoor measurement campaign to collect training data. From
the collected RSS measurements we extract some features that
could help distinguish between the LOS and NLOS signals or
give distance predictions. Afterwards, we select different sets
of features to train a least square support vector machine (LS-
SVM) to identify LOS/NLOS conditions before we put the
algorithm into practice. Note that the parameters we obtained
from the measurement campaign could also be used to make
accurate predictions in other buildings, which we are going to
discuss in Section VI.

The hypothesis testing approach works in a different way.
Suppose we can determine a priori, denoted with α, from the
collected RSS measurements to distinguish between LOS and

NLOS conditions, then the two competing hypotheses are

Hl :α ≤ αt, LOS conditions,

Hn :α > αt, NLOS conditions. (3)

A proper function α and threshold αt which we will develop
in Section V could identify the NLOS conditions.

In addition to the NLOS identification problem, our s-
tudy also addresses the problem of mitigating the influence
of NLOS conditions and accurately estimating the distances
between transmitters and receivers. With features from the
RSS measurements, we build a regression model in machine
learning approach to directly predict these distances. However,
in hypothesis testing approach we cannot explicitly predict the
transmitter-receiver distance but instead we develop different
models for LOS and NLOS conditions which could give more
accurate distance estimations.

III. NLOS FEATURE EXTRACTION

In this section, through observation of the RSS samples
from LOS and NLOS conditions, we extract typical features
from the collected RSS measurements to identify NLOS condi-
tions, including the mean, the standard deviation, the Kurtosis,
the Rician K factor, and the χ2 goodness of fit test parameters.
Both the machine learning approach and hypothesis testing ap-
proach are developed based on these features. The distributions
of these variables are derived for hypothesis testing either from
theories or empirical data observation.

A. The Mean and the Standard Deviation (μ, σs)

The mean μ and standard deviation σs alone cannot distin-
guish between LOS/NLOS conditions. However, together with
features discussed below, the mean and standard deviation can
help in NLOS identification. We assume, as indicated by our
data, that Gaussian conditions hold for N samples with mean
μl and variance σ2

l /N in LOS conditions and with mean μn

and variance σ2
n/N in NLOS conditions. Then the probability

that a set of RSS samples are from LOS/NLOS conditions can
be determined as

p(M = m|H) =

√
N

σh

√
2π

exp

[
−1

2

(
m− μh

σh/
√
N

)]
(4)

in which μh and σh are μl and σl in LOS conditions, and μn

and σn in NLOS conditions.

B. Kurtosis (K)

The Kurtosis measures the peakedness of the probability
distribution, which is defined as K = μ4/σ

4
s − 3 in which

σs is the standard deviation of the sample and μk is the kth
moment about the mean.

In LOS conditions, the received signal contains a major
component which is much stronger than the rest. As a result,
the RSS in LOS conditions remains comparatively stable
even when other components suffer from changing fading
effects. However, the received signal from NLOS conditions is
composed of signal components which are all highly variable.
Therefore, the RSS measurements in LOS conditions are more
centralized than the samples in NLOS conditions. Generally
speaking, the RSS distribution in LOS conditions has a higher



Kurtosis than the RSS distribution in NLOS conditions. Exist-
ing empirical research [2] has proved that the Kurtosis of UWB
signals can be well modeled by a log-normal distribution. Our
data also indicates that the log-normal model is a suitable
choice for the Kurtosis data.

p(K = κ|H) =
1

κ
√
2πσκ

exp

[
− (ln(κ)− μκ)

2

2σ2
κ

]
(5)

where μκ and σκ are the mean and standard deviation of ln(κ).

C. Skewness (S)

The skewness measures the asymmetry of the probability
distribution. The skewness of Rayleigh distribution is a con-
stant (aprox. 0.63) which is generally larger than the skewness
of Rician distribution. In other words, the LOS measurements
should be more symmetrical than the NLOS samples.

The skewness is defined as the third standardized moment
S = μ3/σ

3
s where σs is the standard deviation of the sample

and μ3 is the third moment about the mean.

D. The Rician K factor (Kr)

LOS environments have a major dominant signal, which
makes the RSS measurements follow the Rician distribution
whereas NLOS environments tend to follow a Rayleigh distri-
bution. Existing theoretical and empirical studies have shown
that there is a link between the Rician K factor and the presence
of LOS conditions [9]. The Rician K factor is defined as the
ratio between the power in the direct path and the power in
other scattered paths K = ν2/(2σ2). Therefore, in NLOS
conditions where no direct path exists, the Rician K factor
should be zero.

To estimate the Rician distribution and the Rician K
factors from the RSS measurements, we use the fixed point
technique [10] which converges quickly. We define the ratio
of the mean and standard deviation of RSS measurements at
one location as γ = μ

σs
where σs is the standard deviation

of samples and the ratio of Rician distribution parameters as
θ = ν

σ . The fix point θ is given as follows.

θ =
√
ξ(θ) (1 + γ2)− 2, (6)

where the correction factor ξ(θ) is defined as

ξ(θ) = 2 + θ2 − π

2

[
1F1

(
−1

2
, 1,−θ2

2

)]2
, (7)

in which 1F1 is the confluent hypergeometric function.

Then we can derive the fix point θ by iterations of
Equations (6) and (7), where Newton’s method could speed the
convergence. Since the convergence speed of Newton’s method
depends largely on the initial value, we can take θ0 = (γ − Lθ)
as the start point of iterations, where Lθ is the lower bound
of θ determined by

Lθ =

√
2

ξ(0)
− 1. (8)

Since the fixed point formula has a unique solution for
every γ, Newton’s method could converge at θ = θ∗. Then the

Rician distribution parameters σ and ν can be determined as
follows.

σ =
σs√
ξ(θ∗)

, (9)

ν =
√
μ2 + (ξ(θ∗)− 2)σ2. (10)

Then the Rician K factor can also be determined. The
data indicates that the distribution of Rician K factors could
be approximated as normal distributions. Then the probability
that a set of RSS measurements is taken from LOS/NLOS
conditions is

p(K = k|H) =
1

σk

√
2π

exp

[
−1

2

(
μ− μk

σk

)]
(11)

E. The χ2 goodness of fit (χ2)

Compared with other scattered signals, the LOS signal
reacts minimally, which leads to the different shapes in the em-
pirical distributions in LOS and NLOS conditions. As a result,
the goodness of fit parameters to their underlying distributions
are different in LOS and NLOS conditions. The disadvantage
of this variable is that its performance largely depends on the
number of samples. A larger number of measurements results
in better performance.

The χ2 goodness of fit test parameter is defined as

χ2 =

N∑
i=1

(Oi − Ei)
2

Ei
, (12)

where Oi and Ei are the observed and expected frequency of
the ith sample, respectively.

From the definition, the χ2 parameter indicates the distance
between the RSS measurements and the underlying distribu-
tion. A large χ2 value implies a poor fit between the observed
and expected distribution. We also assume that the χ2 follows
Gaussian distribution.

IV. MACHINE LEARNING APPROACH

Since our algorithm is designed for the potential use
in mobile devices, the quality of generalization and ease
of training possess the highest priority in the selection of
machine learning algorithms. Therefore, we use the Support
Vector Machine (SVM) whose capabilities in these two aspects
are far beyond those of other machine learning approaches.
SVM is a supervised machine learning algorithm which can
be used as a classifier to separate data sets with different
features or as a regressor to estimate the unknown dependent
variable (like distances from transmitters to receivers) from
some independent variables.

A. Classification

Given a set of training data {xk, yk}Nk=1 where xk ∈ R
n

and yk ∈ {−1, 1} are the input variables and labels, respective-
ly, linear machine learning algorithms are designed to separate
the data set in the following form.

y(x) = sign
[
wTψ(x) + w0

]
, (13)

in which ψ(·) is the predetermined feature mapping function,
sign is the signum function which extracts the sign of a real



number, and w and w0 are parameters learned from the training
data. According to our initial experiments, the LOS/NLOS
RSS measurements are not linearly separable, therefore we use
a Gaussian radial basis function (RBF) to get a better result
than a linear feature mapping.

To make this algorithm feasible in practical implementa-
tions, it is necessary to reduce the computation complexity.
Therefore, to avoid the quadratic programming problem of
standard SVM, the LS-SVM [11] is used in this study which
simplifies the optimization problem as follows.

argmin
w,w0,e

||w||2
2 + c 12

∑N
k=1 e

2
k

s.t. yk
[
wTψ(xk) + w0

]
= 1− ek, ∀k, (14)

where c is the weighted factor and ek is the penalty of
misclassification. This optimization problem can be solved
with its Lagrangian dual and Karush-Kuhn-Tucker (KKT)
conditions. It can be shown that the optimization problem (14)
is a linear programming problem [11].

In the NLOS identification problem, the input of the
classifier are different sets of features discussed in Section III
and the output is the classification result (b = 1 in LOS
conditions and b = −1 in NLOS conditions). We are interested
in which subset of the features gives the best identification
result and how many RSS samples should be combined to
make a decision with acceptable accuracy.

B. Regression

The NLOS mitigation is achieved in machine learning
approach with regression technique. Again, the input of the
regressor in the NLOS mitigation problem are the features
extracted from the RSS samples and also the distances derived
from the propagation model in (2). The output of the regressor
is the estimated distance between the anchor and the location
where the samples are collected. We are also interested in
which subset of all features presents the least errors.

The SVM regressor is very similar to the classifier on the
optimization problem. The regressor is just a function from
R

n to R, which is in the same form as the classifier without
the sign function.

y(x) = wTψ(x) + w0, (15)

The distances between the support vectors and the separat-
ing hyperplane are maximized by objective function (16).

argmin
w,w0,e

||w||2
2 + c 12

∑N
k=1 e

2
k

s.t. yk = wTψ(xk) + w0 + ek, ∀k. (16)

Similar to the classification optimization problem (14), the
regression optimization problem (16) can also be solved by
standard optimization tools.

V. HYPOTHESIS TESTING APPROACH

The reason why we develop an identification approach
based on the hypothesis testing is that the hypothesis testing
does not require any training phase at the cost of degraded per-
formance and flexibility compared with the machine learning
approach.

A. NLOS Identification

We use the Neyman-Pearson test to determine the NLOS
conditions with aforementioned distributions. Denote the four
variables (i.e., M , K, K, and χ2) in the last section with
Vi, i = 1, 2, 3, 4, if we choose Nv (1 ≤ Nv ≤ 4) variables
to make the decision, the joint distribution could be denoted
with p(V1, · · · , VNv

|H). We can define a priori α as

α =
p(V1, · · · , VNv

|Hl)

p(V1, · · · , VNv
|Hn)

, (17)

Then the competing hypotheses are the same as Equation (3)
with the threshold αt = 1.

Since the joint distribution requires the convolution of the
PDFs of the aforementioned four random variables, the compu-
tation complexity could be extraordinarily high. Therefore, in
order to put the algorithm into practice in future, a suboptimal
solution is to assume all four distributions are independent.
Then α could be simplified to

α =

Nv∏
i=1

p(Vi|Hl)

p(Vi|Hn)
. (18)

in which p(Vi|Hl and p(Vi|Hn) are the distributions of feature
Vi in LOS and NLOS conditions, respectively.

B. NLOS mitigation

The NLOS mitigation approach is relatively simple with
hypothesis testing. For LOS and NLOS conditions the pa-
rameters in Equation 2 (especially γ and σ) can vary great-
ly thus producing significant errors in distance estimation
should distinct models not be used. Therefore, rather than a
single propagation model for both conditions as 2, we add
the LOS/NLOS conditions as a separate input to the indoor
propagation model which then becomes

d = f(r, ε, e, y), (19)

where y is the indication of the LOS/NLOS conditions.

VI. EVALUATION

This section evaluates the proposed algorithms through
extensive data collection at different times and places. To
make the evaluation reliable, RSS samples are collected during
different periods of the day in two different experimental sites.

A. Experimental Settings

Collecting RSS measurements to allow for the identifica-
tion of LOS/NLOS conditions is the primary objective of the
experiments. To achieve this goal with machine learning algo-
rithms, we first collect a large number of RSS measurements in
an indoor environment to build a database of training samples
for the LS-SVM. The antenna of each phone is kept in the
same orientation in the data collection during both the training
and testing phases to avoid variations caused by antenna
orientation. Since the numbers of LOS and NLOS samples
differ in various scenarios, we collect half of the samples in
LOS conditions and the other half in NLOS conditions. To
make this approach more practical for future implementation
in localisation, we build the experiments on Huawei U8160
mobile phones running Android 2.3.3. Measurements from
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Fig. 2. The two experimental sites and locations of anchors.

over 10 agents are fused in the experiments to account for
hardware variations between these mobile phones.

As shown in Fig. 2, the anchors are marked in the ex-
perimental sites and the agents moved along the corridors
in the experiments. To collect the RSS samples in different
situations, the distance between the anchor and the agent varies
significantly from roughly 0.8 m to 20 m.

B. Database

It is necessary to take into consideration different indoor
environments in the implementation of the algorithm. As we
know, the accuracy of NLOS identification techniques can
be easily decreased by external interference such as people
walking around and other signal noise. Although people walk-
ing around may not block the LOS signal, they can block
and absorb other components of the received WiFi signal
which leads to the variation of the measurement distribution.
Moreover, from the long-term perspective of practical use, it
is impossible to avoid interference from people because it is
them who hold their mobile phones and use these services.

To consider the interference from people separately we
have two categories of RSS samples in the database. The
first group of samples is collected during nights and weekends
when there are few people walking around the anchors and the
agents to absorb and block the WiFi signal (called static envi-
ronment hereafter). The other group of samples are collected
during busy office hours when there are many people working
in their offices and walking around the corridors, which
causes severe interference to the RSS measurements and the
final measurement distributions (called dynamic environment
hereafter). Each of the two groups contains approximately
1500 sets, each of which is composed of 1000 RSS samples
(3,360,000 RSS samples in total). We divide each sample set
into subsets according to the sample size discussed in the next
subsection and extract features from each subset. As stated,
half of the sample sets in each group are taken from LOS
conditions and the other half from NLOS conditions. The two
groups of data are analyzed and discussed in the following
subsection.

TABLE I. MISSED DETECTION PROBABILITY (pm ), FALSE ALARM

PROBABILITY(pf ), AND OVERALL MISCLASSIFICATION PROBABILITY (pe)
OF MACHINE LEARNING ALGORITHM. FEATURES ARE EXTRACTED FROM

EVERY 1000 RSS SAMPLES IN STATIC ENVIRONMENT.

Identification features pm pf pe

{μ} 0.683 0.0358 0.1041
{μ, Kr} 0.0304 0.0284 0.0588

{μ, Kr , χ2} 0.0324 0.0324 0.0648

{μ, σs, Kr , χ2} 0.0324 0.0331 0.0655
{μ, σs, Dn, Dp, Pm} 0.0412 0.0331 0.0743

TABLE II. MISSED DETECTION PROBABILITY (pm ), FALSE ALARM

PROBABILITY(pf ), AND OVERALL MISCLASSIFICATION PROBABILITY (pe)
OF MACHINE LEARNING ALGORITHM. FEATURES ARE EXTRACTED FROM

EVERY 1000 RSS SAMPLES IN DYNAMIC ENVIRONMENT.

Identification features pm pf pe

{μ} 0.1620 0.0947 0.2567
{μ, S} 0.1316 0.0647 0.1963

{μ, σs, S} 0.0853 0.0572 0.1425
{μ, Kr , K, S} 0.0883 0.0529 0.1412

{μ, Kr , χ2, K, S} 0.0893 0.0508 0.1401

C. NLOS Identification

After the database has been built, we train the LS-SVM
with the training data sets and then evaluate the performance of
the identification algorithms using over 1500 extra test items.
Tables I and II show the performance of the machine learning
based NLOS identification algorithm in static and dynamic
environments. The performance of the algorithm is measured
in terms of missed detection probability pm (deciding LOS
when the RSS samples are from NLOS conditions), false alarm
probability pf (deciding NLOS when the RSS samples are
from LOS conditions), and overall misclassification probability
pe = pm + pf .

We observe that the identification results of RSS samples in
the static environment (Table I) are far better than those in the
dynamic environment (Table II). The best feature set in Table I
can achieve a misclassification probability as low as 0.0648
while the most powerful feature set in Table II still maintains
an error probability of 0.1401. For each feature set size, only
the feature set with the lowest misclassification probability is
presented in the table.



TABLE III. MISSED DETECTION PROBABILITY (pm ), FALSE ALARM

PROBABILITY(pf ), AND OVERALL MISCLASSIFICATION PROBABILITY (pe)
OF HYPOTHESIS TESTING ALGORITHM. FEATURES ARE EXTRACTED FROM

EVERY 1000 RSS SAMPLES IN STATIC ENVIRONMENT.

Identification features pm pf pe

{μ} 0.1108 0.0577 0.1685
{μ, Kr} 0.0684 0.0993 0.1676

{μ, Kr , K} 0.0518 0.1050 0.1568

{μ, Kr , K, χ2} 0.0041 0.3464 0.3505
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Fig. 3. Overall misclassification probability in static environment for different
sample size. Features of different sizes are consistent with Table I.

From Table I, except for the mean of RSS samples, the
Rician K factor Kr is contained in most feature sets, which
indicates that the Rician K factor is a good indicator of the
LOS/NLOS conditions in static environment. Although the
Kurtosis K is a crucial feature in NLOS identification in UWB
localisation, it is not included in any feature set here.

Different from Table I, the Rician K factor is not an essen-
tial feature in Table II any more. Instead, except for the mean,
the skewness appears in each data set and thus becomes the
most crucial feature. More importantly, the Kurtosis becomes
a strong indicator for the NLOS identification.

The goodness of fit parameters between the RSS samples
and their estimated distribution in LOS and NLOS conditions
are also important for the NLOS identification in both static
and dynamic environments.

Table III shows the performance of hypothesis testing based
NLOS identification algorithm in static environments. It is
observed that the best feature set (μ, Kr, K) gives a misclas-
sification rate of 0.1568. The reason for the difference in the
performance of the two algorithms is that the hypothesis testing
approach simplifies the relationship between different features
as independent to reduce the computational complexity, which
results in the loss of feature correlation information. Due to
the limitation of space, we do not present the identification
performance of hypothesis testing approach for dynamic en-
vironment in detail, where the best misclassification rate is
0.1917.

Figs. 3 and 4 compare the accuracy of identification using
different sample sizes in static and dynamic environments,
respectively. From the results we can see that the identification
accuracy increases with sample size, which indicates that the
number of samples collected at each location also has an
impact on the identification results.

The reason for the impact of sample size on the identifica-
tion accuracy is that a larger number of samples can reduce the
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Fig. 4. Overall misclassification probability with external interference for
different sample size. Features of different sizes are consistent with Table II.

influence of noisy RSS samples, which leads to a more precise
fit of the samples to a distribution. As stated, our features
from the measurements largely correlate with the estimated
distribution. A better fit to the distribution makes the features
more accurate and gives a better result.

Based on the number RSS samples required from the exper-
iments, the number of packets exchanged during the receiving
of a normal text email including the overhead (e.g. beacons,
handshake, handoff) would be sufficient for this technique
to provide an acceptable NLOS identification accuracy. An
email with picture attachments contains hundreds of MAC
layer packets which can make the NLOS identification very
accurate without any change to the existing protocol stacks or
other infrastructures.

We also observe from Figs. 3 and 4 that human interference
plays an important role in the identification accuracy. In
static environments, features from 50 samples can give a
misclassification rate as low as 0.1248 which is better than
the misclassification rate from 1000 samples in a dynamic
environment. Therefore, among the factors that impact on the
identification accuracy, influence from human interference is
more important than the sample size.

D. NLOS Mitigation

In this subsection, we will discuss the accuracy improve-
ment of distance estimation with NLOS mitigation techniques.
All RSS measurements in the experiments are divided into
two groups, the training group which is used to train the
propagation models or the regression model and the test group
which tests the accuracy of the models.

1) Standard Propagation Model (SPM): This is the first
strawman algorithm that we use as a basis for comparison.
We use least squares approximation to derive the parameters
γ and WAF of the propagation model in Equation (2) that best
fit the training RSS measurements for each anchor. Here the
training RSS data include both LOS and NLOS measurements.

2) Breakpoint Propagation Model (BPM): This is the sec-
ond benchmark algorithm that we use for comparison [12].
It is observed that the path loss in indoor environments as
a function of distance has two distinct regions [13] which
differ significantly in terms of propagation parameters. The
breakpoint propagation model takes the point that separates the
two regions, called breakpoint, into account in the log-normal



0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Di t ti ti ( )

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

SPM
BPM
HT-PM
ML-RM

Fig. 5. Mean and RMS of distance estimation errors. Features are extracted
from every 100 RSS samples.

propagation model and could estimate the transmitter-receiver
distance more accurately than SPM. Similarly, we also use
least squares approximation to derive the BPM parameters.

3) Hypothesis Testing Propagation Model (HT-PM): This
is the first proposed algorithm which uses the hypothesis
testing to identify LOS/NLOS conditions so as to estimate
distances more accurately. We divide the training RSS mea-
surements into two subsets: LOS and NLOS. We then use
least squares approximation to derive propagation parameters
in Equation (2) separately for the LOS subset, denoted with
γ(l) and WAF (l), and the NLOS subset, denoted with γ(n) and
WAF (n). After that, in practical implementations we use the
hypothesis testing classifier to distinguish between LOS and
NLOS conditions before we choose which propagation model
(LOS or NLOS) should be used to estimate the distances.

4) Regression Model (ML-RM): This is the second and
most important proposed algorithm. Instead of deriving the
distance with only the mean of RSS measurements in the
propagation models, the regression model takes into account
more features of the RSS measurements and uses the LS-
SVM regressor in the optimization problem (16) to estimate
the distances. In addition to the same features introduced in
Section III, we also use the distances estimated by the standard
propagation model without NLOS identification as an input to
the LS-SVM regressor. The use of the distance estimations in
the regression model is to convert the RSS values from linear
space to log space.

The distance estimation errors of different models are
shown in Fig. 5. It is observed that the HT-PM technique
only improves the distance estimation accuracy by around 20
percent compared to BPM. However, the ML-RM technique
greatly outperforms other models in distance estimation ac-
curacy, with the mean error from 6.61m for SPM to 0.86m
for ML-RM. The main reason is that the propagation model
only considers the mean of the RSS measurements while the
regression model takes into account more features of the RSS
measurements. In addition, the mean RSS and the distance
estimated by SPM are key features in the regression model
analysis.

E. Robustness

To test the robustness of the machine learning based NLOS
identification and mitigation algorithms, we use the same set
of parameters trained from the experimental site in Fig. 2(a)

(site (a) hereafter, same for site (b)) to identify and mitigate the
NLOS conditions in a different experimental site in Fig. 2(b).

The overall misclassification rate is 0.0909 with the best
feature set (μ, Kr, χ2) in Table I. The average distance
estimation error is 2.84m, with an improvement of over 50
percent in accuracy compared with the propagation model.

With the best 3-feature set (μ, Kr, χ2), the overall mis-
classification rate of the algorithm is 0.0909 when tested in
a different building than trained, as opposed to 0.0648 when
tested in the same building as trained (see Table I). In terms of
average distance estimation error, we observed it to be 2.84m
when the regressor was tested in a different building than the
one used for training, as opposed to 0.86m when it was trained
and tested in the same building. The observed error of 2.84m
already offers over 50 percent improvement over the standard
propagation model (SPM) approach.

VII. IMPACT ON POSITIONING SYSTEM

Our NLOS identification and mitigation techniques are im-
plemented in indoor localisation. With the distance estimation
techniques in Section VI, the location of the mobile phones
can be determined with simple trilateration. After that, these
locations are smoothed with a simple particle filter.

Fig. 6 compares the trajectories estimated from different
range-based localisation approaches. All trajectories in this
figure are estimated from the same raw RSS measurements.
The trajectories in the two figures in the left column (Figs. 6(a)
and 6(d)) are calculated with distances estimated from SPM
and BPM. The trajectories in the middle column (Figs. 6(b)
and 6(e)) are generated from distance estimations using the
state-of-the-art NLOS identification and mitigation approaches
with RSS measurements. The trajectories in the right column
(Figs. 6(c) and 6(f)) are estimated from the two distance esti-
mation algorithms proposed in this paper: HT-PM (hypothesis
testing) and ML-RM (machine learning).

It is observed from Fig. 6 that the approach proposed by
Guvenc et al [2], which selects the access points subset with
minimum weighted residual, works fairly well in our exper-
iments. In addition, recall that the generic NLOS mitigation
approach proposed by Nawaz et al in [6] tries to recover the
estimation errors by assuming that LOS anchors outnumber
NLOS anchors. In our experiments their proposed algorithm
results in very poor performance at many locations where there
are more NLOS anchors than LOS anchors.

Fig. 6 also shows that there is only slight improvement in
accuracy for the propagation model derived from hypothesis
testing results, compared with the generic NLOS identification
and mitigation approaches proposed in existing works [2], [6].
The incapability for a simple propagation model to capture
major features of complicated indoor environments results in
this phenomenon.

We can also see from Fig. 6 that the localisation system
based on the regression model could improve the localisation
accuracy by 60 percent compared with the trajectories estimat-
ed with the state-of-the-art NLOS mitigation algorithms, which
greatly increases the potential of using WiFi-based localisation
in practical settings.

In addition, our model outperforms fingerprinting ap-
proach [14] in terms of training time and complexity because
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Fig. 6. Trajectories generated by different algorithms, showing the efficiency of our NLOS identification and mitigation algorithms.

our model parameters trained from one site can also be used
in another site while fingerprinting approach has to train its
model for each individual site before it can be used.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two NLOS identification
and mitigation algorithms using only WiFi RSS measure-
ments. Two optimization problems are developed to solve
the problems of NLOS identification and distance estimation
from RSS measurements. To our knowledge, this is the first
identification and mitigation method that is solely based on
RSS samples from a WiFi service on mobile phones. The
extensive experimental results have shown the accuracy of the
proposed NLOS identification and mitigation algorithms.

Our future work will incorporate some other information
available in the building, like the map and the location of
access points for localization purposes, to reduce or even
eliminate the training phase of the machine learning based
algorithm and develop online learning algorithms or unsuper-
vised machine learning algorithms to identify the LOS/NLOS
conditions. Alternatively, our model can also be initialized with
our data sets and then finetuned to new environments.
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