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Abstract—Indoor tracking and navigation is a fundamental
need for pervasive and context-aware smartphone applications.
Although indoor maps are becoming increasingly available, there
is no practical and reliable indoor map matching solution
available at present. In this demo abstract, we describe a working
prototype of a novel, robust and responsive tracking technique
that is extremely computationally efficient (running in under 10
ms on an Android smartphone), does not require training in dif-
ferent sites, and tracks well even when presented with very noisy
sensor data. The tracking system requires zero user effort (war-
driving, fingerprinting, etc.) — only the floor plan is required. We
also demonstrate how it is able to accurately track the position
of a user from accelerometer and magnetometer measurements
only (i.e. gyro- and WiFi-free). We believe that such an energy-
efficient approach will enable always-on continuous background
localisation, enabling a new era of location-aware applications to
be developed.

I. INTRODUCTION

Whereas GPS is the de facto solution for outdoor po-
sitioning, no clear solution has as yet emerged for indoor
positioning despite intensive research and the commercial
significance. Applications of indoor positioning include smart
retail, navigation through large public spaces like transport
hubs, and assisted living. The ultimate objective of an indoor
positioning system is to provide continuous, reliable and accu-
rate positioning on smartphone class devices [1]. We identify
maps as the key to providing accurate indoor location. Based
on a time-series of observations, such as inertial trajectories
or RF scans, the goal is to reconcile the observations with the
constraints provided by the maps in order to estimate the most
feasible trajectory of the user, i.e. the sequence that violates
the fewest constraints.

In this demo abstract, we describe a working prototype of
continuous indoor tracking system that is lightweight and com-
putationally efficient, but also robust to noisy data, allowing
it to provide always-on and real-time location information to
mobile device users. The proposed system uses an undirected
graphical model, known as linear chain conditional random
fields (CRFs) [2] which is particularly flexible and expressive,
which allows us to capture correlations among observations
over time, and to express the extent to which observations
support not only states, but also state transitions.

The working prototype is very computationally efficient,
running in < 10 msec on an Android phone, enabling real-
time location computation online. It also offers high location
accuracy even when it uses ultra low power sensors (e.g.
accelerometer and magnetometer). With the trend of low
power digital motion processors (DMPs), e.g. InvenSense
MPU-6000/MPU-6050 which are able to task and process
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Fig. 1. Overview of the tracking system.

inertial data in bursts, while the system processor remains in
a low-power sleep mode, our system could offer an always-on
tracking service for a large range of low power devices.

II. TRACKING SYSTEM MODEL

The system architecture is shown graphically in Fig. 1, and
is described through the use of an example.

When a user enters a building and launches the tracking
application, the application requests a floor plan (along with
other meta-data as generated by other systems, which could
include fingerprint maps) from the server, if not already within
the cache. Note that this is the only time that a user needs to
reveal any data about their coarse position to a third party.
The floor plan provides constraints over the set of possible
positions a user can take, as well as allowed transitions
between locations (i.e. a user cannot directly travel from one
end of the building to the other without visiting intermediate
locations). As such, the floor plan forms a sparse graph and
can thus be efficiently stored in memory. Sensors on the user’s
phone collect data about the motion and (radio) environment.
Motion sensors can include accelerometers, magnetometers
and gyroscopes. Radio sensors can include WiFi, Bluetooth
(low energy), FM radio and so forth. Raw sensor data is
typically not immediately usable and needs to be processed.
In the case of motion data, this could include dead reckoning
trajectories based on counting steps and estimating heading, or
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Fig. 2. Experiments in the museum (109m X 89m), showing raw, ground-truth and matched trajectories.

using full IMU tracking in the case of foot mounted sensors.
For RF data, a channel/propagation model can be used to relate
received signal strengths to physical distances. Alternatively,
raw signal strengths may be directly forwarded to the CRF
model, to be later combined with RF fingerprint map data if
available.

Maps and observations are combined using conditional ran-
dom fields, an undirected graphical model which is particularly
well suited to this sequential problem because it allows us
to flexibly define feature functions that capture the extent to
which observations support states and state transitions, given
map constraints. As a user moves through the building, certain
paths become unlikely, as they violate map constraints.

More specifically, this process involves four distinct steps:
Map pre-processing

This step takes a floor plan as input, and produces a graph
that a) encodes a set of discrete states (locations), and b)
represents physical constraints between discrete states imposed
by the map. This information will then be fed to the second
step, to help us define the CRF’s states and feature functions.
Definition of states and feature functions

Our system uses feature functions to elegantly model d-
ifferent sensor data including the inertial measurements, RF
measurements, visual measurements, user inputs, etc. and uses
potential function to fuse them together;

Training to determine feature weights (optional)

With one or more true trajectories paired with respective
sequences of sensor observations, training the CRFs to esti-
mate weights is then performed by maximising the conditional
probability of states given observations. Our system works
well without training but training can help the tracking system
to capture the special per-site features, which could help
improve the tracking accuracy.

Inference to estimate location over time

The Viterbi algorithm is used to efficiently find the most
likely sequence of states through the transition graph, culmi-
nating in an estimate of the user’s location and quality thereof.

The first three steps are performed once for each building.
The fourth step is performed online on the user’s smartphone
to track themselves.

Fig. 2 shows an example of our experimental results in

the museum, including the raw trajectory, ground truth, and
matched trajectory, demonstrating an RMS error of 1.14m.

III. DEMO

In the demo session, we will show a working prototype of
the continuous tracking system that offers accurate pedestri-
an location information without delay. The tracking system
requires only the floor plan of the test site. In addition,
to demonstrate the robustness of our system in different
environments, we will also show the videos of our experiments
in three other experimental sites: an office building, a museum,
and a market.

IV. CONCLUSION

We demonstrated the merit of a novel continuous indoor
tracking system, based on the application of conditional ran-
dom fields. We have shown how it is robust, being able
to operate with very noisy sensor data; lightweight, running
in under 10 ms on a smartphone; and accurate, achieving
the lowest RMS errors compared with other state-of-the-art
approaches. Our system is able to establish a user’s position
using only dead-reckoned trajectories and a floorplan, with-
out any external information such as a starting location or
knowledge of WiFi access point locations. We believe that
our tracking system has widespread application to a number
of domains, as this single approach can be used with a
wide variety of sensors and map information. One particularly
relevant area is estimating location online and in real-time in
resource-constrained body-worn sensors. In summary, we have
presented a system that addresses the very pressing problem
of providing accurate, low power, indoor tracking, that is
responsive, robust and scalable.
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