

Computing Science Group

Learning to Extract Significant Phrases from Text

Yuan J. Lui

CS-RR-07-01

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

 1

Learning to Extract Significant Phrases from Text

Abstract

Prospective readers can quickly determine whether a document is relevant to their information
need if the significant phrases (or keyphrases) in this document are provided. Although
keyphrases are useful, not many documents have keyphrases assigned to them, and manually
assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic
keyphrase extraction. This report introduces a new domain independent keyphrase extraction
algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task,
and uses a combination of statistical and computational linguistics techniques, a new set of
attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases.
The experiments indicate that this algorithm performs at least as well as other keyphrase
extraction tools and that it significantly outperforms Microsoft Word 2000’s AutoSummarize
feature.

Keywords: keyphrase extraction, machine learning, summarization, classification

1. Introduction

With the proliferation of the Internet and the huge numbers of documents1 it contains, the
provision of summaries of these documents has become more and more important. Prospective
readers can quickly determine whether a document is relevant to their information need if the
significant phrases (or keyphrases) in this document are provided. Keyphrases give a short
summary of the document and provide supplementary information for the readers, in addition to
titles and abstracts. Even though keyphrases are useful, only a small minority of documents have
keyphrases assigned to them, and manually assigning keyphrases to existing documents is very
costly. Therefore, there is a need for automatic keyphrase extraction [2-5, 11-14].

Automatic keyphrase extraction is the identification of the most important phrases within the
body of a document by computers rather than human beings. It normally involves the use of
statistical information. There is no controlled vocabulary list, so in theory any phrase within the
body of the document can be identified as a keyphrase. When authors assign keyphrases without
a controlled vocabulary list, typically 70-90% of their keyphrases appear somewhere in their
documents [14]. Keyphrases are similar to keywords, except that the document is summarized by
a set of phrases rather than words.

1 “Document” is regarded as being synonymous with “text” in this report. We ignore non-text elements, e.g.
graphics, sound and video, though a document might contain them in its body.

 2

Keyphrase extraction is a classification task: a document can be seen as a set of phrases, and a
keyphrase extraction algorithm should correctly classify a phrase as a keyphrase or a non-
keyphrase. Machine learning techniques can automate this task if they are provided with a set of
training data composed of both keyphrase examples and non-keyphrase examples. The data are
used to train the algorithm to distinguish keyphrases from non-keyphrases. The resulting
algorithm can then be applied to new documents for keyphrase extraction. Previous work shows
that the training data and the new documents need not be from the same domain, though the
performance of the algorithm can be boosted significantly if they are [4].

This report introduces a new domain independent keyphrase extraction algorithm called KE. KE
is not tied to a specific domain; it is designed to summarize a given document, which can be on
any topic (excluding poetry and other similar works of literature), in a few keyphrases
automatically extracted from the body of that document. Unlike other keyphrase extraction
algorithms, KE uses a combination of statistical and computational linguistics techniques, a
different set of attributes, and a different machine learning method to extract keyphrases from
documents. The experiments indicate that KE performs at least as well as other keyphrase
extraction tools and that it significantly outperforms Microsoft Word 2000’s AutoSummarize
feature.

Section 2 summarizes related work by other researchers. Section 3 introduces the KE algorithm
and compares it with other keyphrase extraction algorithms. The experimental results are
presented in Section 4. Section 5 concludes this report and discusses future work.

2. Related work

This section discusses two important term weights: term frequency and inverse document
frequency, and two important keyphrase extraction algorithms: GenEx and Kea.

2.1. TF×IDF

The vector space model suggests that a document (or query) can be represented by a vector of
terms. Terms in this model are not equally weighted; each term is associated with a specific
weight which reflects the importance of that term. Term frequency (TF) and inverse document
frequency (IDF) are the two most important term weights in this model [10].

TF is the frequency of a term in the document. The more often a term occurs in the document,
the more likely it is to be important for that document. The standard TF of a term T in a
document D is calculated by:

Standard TF = no. of occurrences of T in D

IDF is the rarity of a term across the collection. A term that occurs in only a few documents is
often more valuable than a term that occurs in many documents. The standard IDF of a term T is
given by:

 3

Standard IDF =
inoccursdocuments ofno.

collectionin documents of no.log
T

TF×IDF is a common way of combining TF and IDF. Despite the popularity of these weights,
they do not have a universal definition.

Salton and Buckley [8] review the use of statistical information for weighting document terms
and query terms, and discuss various ways of defining and combining TF and IDF. A total of
1,800 different term weighting combinations were used in their experiments, and 287 were found
to be distinct. They make recommendations on the best combination in different situations. For
technical documents (like the ones used in our experiments), they recommend using the
normalized TF and the standard IDF. The normalized TF is calculated by normalizing the
standard TF factor by the maximum TF in the vector (with the result in the range of 0.5 to 1.0):

Normalized TF =
TFmax

TF5.05.0 +

2.2. GenEx

Turney [12, 13] proposes a keyphrase extraction algorithm called GenEx which consists of a set
of parameterized heuristic rules that are fine-tuned by a genetic algorithm. During training, the
genetic algorithm adjusts the rules’ parameters to maximize the match between the output
keyphrases and the target keyphrases. Table 1 shows the parameters used in GenEx. The sample
values of these parameters are from [12]. The experiments show that machine learning
techniques can be used for the problem of keyphrase extraction and that GenEx generalizes well
across collections. While GenEx is trained on a collection of journal articles, it successfully
extracts keyphrases from web pages on different topics.

 4

Table 1: Parameters used in GenEx

Parameter Description Sample
Value

NUM_PHRASES Length of the output list, i.e. the number of
keyphrases to be output.

10

NUM_WORKING Length of the working list, i.e. only words
ranked higher than this are considered as
candidate phrases

50

FACTOR_TWO_ONE Reward for two-word phrases 2.33
FACTOR_THREE_ONE Reward for three-word phrases 5
MIN_LENGTH_LOW_RANK Low rank words must be longer than this; if not,

they will be removed from the output list
0.9

MIN_RANK_LOW_LENGTH Short words must be ranked higher than this; if
not, they will be removed from the output list

5

FIRST_LOW_THRESH Definition of early occurrence; words which
occur before this position are rewarded by
FIRST_LOW_FACTOR

40

FIRST_HIGH_THRESH Definition of late occurrence; words which occur
after this position are penalized by
FIRST_HIGH_FACTOR

400

FIRST_LOW_FACTOR Reward for early occurrence 2
FIRST_HIGH_FACTOR Penalty for late occurrence 0.65
STEM_LENGTH Maximum characters for fixed length stemming 5
SUPPRESS_PROPER Flag for suppressing proper nouns 0

2.3. Kea

Frank et al. [4] discuss another keyphrase extraction algorithm called Kea which is based on the
naïve Bayes learning technique. The basic model involves two attributes: TF×IDF and distance.

The standard TF is used, but the IDF is defined differently. They calculate the IDF of a term T in
a document D by (the counters start with one to avoid taking the logarithm of zero):

Kea’s IDF = -log (no. of documents in collection that contain T, excluding D)

The distance attribute is the position where a term first appears in the document. A term that
occurs at the beginning of the document is often more valuable than a term that occurs at the end
of that document. The distance of a term T in a document D is given by:

Distance =
D

T
in wordsof no.

 of appearancefirst before wordsof no.

 5

Kea uses the same set of training and testing documents as GenEx so that its performance can be
directly compared with GenEx. The experiments indicate that GenEx and Kea perform at
roughly the same level, measured by the average number of matches between author-assigned
keyphrases and machine-extracted keyphrases [14].

3. Keyphrase extraction

This section introduces the attributes used in the KE algorithm, gives an overview of KE, and
compares KE with GenEx and Kea.

3.1. Attributes

The selection of relevant attributes is probably the most important factor in determining the
effectiveness of a keyphrase extraction algorithm. Many attributes have been considered, e.g. the
frequency of a term, the length of a document, the position of a term in the document, etc.
However, in our experiments, only five attributes have been found useful for keyphrase
extraction:

• The TF×IDF attribute has already been discussed; see Section 2.1 for details.

• The position attribute is the same as Kea’s distance; see Section 2.3 for details.

• The title attribute is a flag that indicates if a term appears in the title of the document. A
term that occurs in the title of the document is often more valuable than a term that does
not. Titles may not provide enough information on their own, but they may contain some
important words. In fact, it has been reported that the use of abstracts in addition to titles
brings substantial advantages in retrieval effectiveness and that the additional utilization
of the full texts of the documents appears to produce little improvement over titles and
abstracts alone in most subject areas [9]. If a term is found in the title, title is set to 1;
otherwise, it is set to 0.

• The proper noun attribute is a flag that indicates if a term is a proper noun. If a term is a

proper noun, proper noun is set to 1; otherwise, it is set to 0.

• The number of terms attribute is the number of terms in a term phrase.

3.2. The KE algorithm

The KE algorithm is based on GenEx and Kea (for details of the differences between KE,
GenEx, and Kea, see Section 3.3) and consists of seven steps:

 6

• Step 1 is to tag2 the input document and to select all the words which have been tagged as

adjective, verb and noun and are not included in the stopword list. Although it is unlikely
that adjectives and verbs will be output, they help to boost the score of their noun form
(provided their stems are the same as the noun’s) and therefore increase the likelihood
that it will be output.

• Step 2 is to stem3 the selected words, to calculate the TF×IDF, position, title and proper

noun of each term, to assign a score to each term based on these attributes, and to sort the
terms in descending order of score.

• Step 3 is to select all the noun phrases in the document. Like KE, D’Avanzo and Magnini

[2, 3] use a part-of-speech tagger to help to select candidate phrases in their keyphrase
extraction algorithm: candidate phrases are selected if they match one of the many
manually predefined linguistics-based patterns, e.g. adjective + noun, and noun + verb +
adjective + noun (the symbol ‘+’ denotes ‘followed by’). Nevertheless, we believe this
could be simplified by selecting only noun phrases, which can be naively defined as zero,
one or two nouns or adjectives followed by a noun or a gerund, from the document. This
is because almost all the keyphrases are noun phrases and they normally follow this
definition [11].

• Step 4 is similar to Step 2. The main differences are that noun phrases, instead of words,

are stemmed and that the TF×IDF, position, title, and number of terms of each term
phrase is calculated.

• Step 5 is to expand the single terms to term phrases. For each term, find all the term

phrases that contain the term, and link it with the highest scoring term phrase. The result
is a list of term phrases. The scores calculated in Step 2 are used to rank this list because
it is generally preferable to represent documents and measure the importance of each
representation element in terms of single terms rather than term phrases [8]. Term
phrases, on the other hand, are used for output purposes. This is because documents are
summarized by a set of phrases, not words.

• Step 6 is to eliminate duplicates from the list of term phrases. More than one term may be

linked to the same term phrase. If that is the case, the term phrase will be linked to the
highest scoring term.

2 Eric Brill’s part-of-speech tagger has been used for tagging in our algorithm. It is chosen because it works as well
as statistical taggers but is simpler and requires less stored information [1].
3 The iterated Lovins algorithm has been used for stemming in our algorithm. It is chosen because it has been
reported that aggressive stemming is better for keyphrase extraction than conservative stemming and that the iterated
Lovins algorithm is more aggressive than the Porter and the Lovins algorithms [11, 12].

 7

• Step 7 is to identify the most frequent corresponding phrase in the document for each of

the term phrase. If a term phrase is linked to more than one phrase, the most frequent
phrase will be chosen. This step also eliminates subphrases if they do not perform better
than their superphrases. If phrase P1 occurs within phrase P2, P1 is a subphrase of P2 and
P2 is a superphrase of P1. If a phrase is a subphrase of another phrase, it will only be
accepted as a keyphrase if it is ranked higher; otherwise it will be deleted from the output
list.

3.3. Comparison with GenEx and Kea

KE is based on GenEx and Kea, but differs from them in several ways:

• Purely statistical methods have been used in GenEx and Kea. KE, however, uses a
combination of statistical and computational linguistics techniques for keyphrase
extraction. Part-of-speech tagging, which is a useful computational linguistics technique,
has been used to improve the quality of candidate phrases. Only words which have been
tagged as adjective, verb and noun are selected as candidate phrases.

• KE uses a different set of attributes to discriminate between keyphrases and non-

keyphrases: TF×IDF, position, title, proper noun and number of terms. Kea uses only
two attributes: TF×IDF and distance. GenEx, on the other hand, uses many more
attributes (i.e. 12 parameters), but it does not use TF×IDF and title.

• KE uses a different machine learning algorithm; it is trained by an artificial neural

network (for details of the training of KE, see Section 4.2). GenEx is trained by a genetic
algorithm while Kea is based on the naïve Bayes learning technique.

• KE is a different model; it consists of seven steps, and takes both words and phrases as

candidate phrases. Kea is a simple model; it only selects phrases as candidate phrases, so
it does not involve any linking between words and phrases. GenEx is more complicated;
it consists of ten steps, considers both words and phrases, and involves many post-
processing tasks.

We expect these differences will make KE a better algorithm in some application domains, but
further testing is needed to support this. Nevertheless, the results summarized in Table 2 (see
Section 4.5) suggest that KE is already at least as good as GenEx and Kea.

4. Experiments

This section explains how we evaluate the output keyphrases and train the KE algorithm,
compares the individual performance of different attributes, the performance of different
combinations of TF×IDF, and the performance of different keyphrase extraction tools, and
discusses the experimental results.

 8

4.1. Methodology

KE has been trained and tested on the same set of documents as GenEx and Kea. Of course, we
could use other corpora, but then we would not be able to compare our experimental results with
other keyphrase extraction algorithms. The criteria used for evaluating the output keyphrases are
also the same as in GenEx and Kea (i.e. a machine-extracted keyphrase is said to be correct if its
stem matches the stem of an author-assigned keyphrase), so direct comparison is possible. For
details of the corpus and the evaluation method used, see [12].

4.2. Training of KE

The set of terms (i.e. output of Step 2) and the set of term phrases (i.e. output of Step 4) were
trained separately by a fully connected 4-9-1 back-propagation neural network. The resulting
sets were then combined to perform Step 5, 6 and 7 of the KE algorithm. The number of hidden
units affects the generalization performance of a neural network [7]. We have tested different
numbers of hidden units, and found that nine hidden units give the best result. Also, it is possible
to have more than one hidden layer in a neural network, but one hidden layer is adequate for
most applications [7]. KE has been trained and tested on a neural network with two hidden
layers, but the difference between that and one hidden layer is not statistically significant.
Therefore, only one hidden layer is used.

The experiments also indicate that the term set often requires more training iterations than the
term phrase set. A training iteration involves all the documents in the training set and the
selection of 150 terms (or term phrases), including both keyphrase and non-keyphrase examples,
from each document. The cross-validation method [7] has been used to estimate the appropriate
point to stop training to avoid overfitting.

4.3. Different attributes

Five different attributes are used in the KE algorithm, but we have only compared the individual
performance of four attributes: TF×IDF (using the standard TF and Kea’s IDF), position, title,
and proper noun. Number of terms has not been evaluated in this experiment. Since number of
terms is always one when it comes to single terms, the attribute (if used alone) cannot
discriminate between different terms. Therefore, we decided not to evaluate the individual
performance of this attribute.

Figure 1 shows the comparison of the individual performance of different attributes with varying
number of output keyphrases. Precision is the proportion of the keyphrases extracted that are
correct. The experiments indicate that the performance of position is more stable than TF×IDF
and is always better than title, and that proper noun gives the worst performance. We conclude
that position is the best individual indicator of keyphrase extraction. This confirms the findings
by Edmundson (1969) and Kupiec et al. (1995) that location-based methods give the best
performance, though their work is concerned with sentence extraction and they use a different
set of attributes. For details of their work, see [6].

 9

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

TF×IDF
Position
Title
Proper Noun

Figure 1: Comparison of different attributes’ individual performance

4.4. Different combinations of TF×IDF

As mentioned before, there is no universal definition of TF×IDF. Four different TF×IDF
definitions have been discussed: standard TF, standard IDF, normalized TF, and Kea’s IDF.
Three different combinations of TF×IDF have been implemented using these definitions and
tested in our experiments.

Figure 2 shows the comparison of different TF×IDF combinations with varying number of
output keyphrases. The difference between the standard TF and Kea’s IDF and the standard TF
and standard IDF is not statistically significant, though the former tends to give more stable
results.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on Standard TF and
Kea’s IDF
Standard TF and
Standard IDF
Normalized TF and
Standard IDF

Figure 2: Comparison of different combinations of TF×IDF

 10

4.5. Different keyphrase extraction tools

We have compared the performance of KE with other keyphrase extraction tools: GenEx, C4.54,
Kea, Kea-C4.55, and Microsoft Word 2000 (the AutoSummarize6 feature). C4.5 and Kea-C4.5
have not been discussed because they have mainly been used as a standard of comparison for
evaluating the performance of GenEx and Kea respectively. Please refer to [4, 12] for details of
C4.5 and Kea-C4.5. Five keyphrases have been extracted from each testing document by these
tools and compared with the corresponding author-assigned keyphrases. The number of output
keyphrases is set to five because AutoSummarize always generates exactly five keyphrases.
Also, unlike the other tools, AutoSummarize cannot be trained and the output keyphrases always
contain exactly one word.

Table 2 shows the number of correct keyphrases identified by different keyphrase extraction
tools. Results of GenEx, C4.5, Kea, and Kea-C4.5 are from [4]. The experiments indicate that
KE (using the standard TF and Kea’s IDF) performs comparably to GenEx and that the
difference between KE, GenEx, C4.5 and Kea is not statistically significant. Since Word 2000
can only extract five single words from each document and most of the keyphrases in the corpus
contain more than one word, it is not surprising that Word 2000 gives the worst performance.
Table 3 shows the keyphrases extracted by KE from two testing documents. Correct keyphrases
are printed in bold.

Table 2: Experimental results for different keyphrase extraction tools

 Average Number of Correct Keyphrases Standard Deviation
KE 1.45 1.32
GenEx 1.45 1.24
C4.5 1.40 1.28
Kea 1.35 0.93
Kea-C4.5 1.20 0.83
Word 2000 0.85 0.93

4 C4.5 consists of a set of parameterized heuristic rules that are fine-tuned by the C4.5 decision tree learning
algorithm. Some of these parameters are also used in GenEx.
5 Kea-C4.5 is a variation on Kea. The pre- and post-processing are the same as Kea. The only difference is that it
uses the C4.5 decision tree learning algorithm, instead of the naïve Bayes learning algorithm.
6 The AutoSummarize feature aims at extracting key sentences from a given document and is available from the
Tools menu. The generation of keywords is actually a by-product of AutoSummarize. When AutoSummarize is used,
it also fills in the Keywords field of the document’s Properties, which is available from the File menu.

 11

Table 3: Examples of the keyphrases extracted by KE

Title Precis of: Metapsychology: Missing Links in Behavior, Mind, and
Science

Author-assigned
Keyphrases

Behavior, causality, experimentation, explanation, introspection,
mind-body problem, observation, philosophy, psychology,
reductionism, science, theory

Machine-extracted
Keyphrases (Top 5)

Science, psychology, theory, explanation, behavior

Title Precis of: The Roots of Thinking
Author-assigned
Keyphrases

Analogical thinking, animate form, concepts, evolution, tactile-
kinesthetic body

Machine-extracted
Keyphrases (Top 5)

Thinking, concept, tactile kinesthetic body, hominid evolution,
thesis

4.6. Discussion of results

The above performance numbers are misleadingly low. Author-assigned keyphrases are often a
small subset of the set of good quality keyphrases for a given document. On average, there are
only 7.5 keyphrases per document in the corpus, and these phrases constitute less than 0.1% of
the document length. A more accurate picture can be obtained by asking human assessors to
evaluate the machine-extracted keyphrases. GenEx has been tested on 267 web pages: 62% of
the keyphrases extracted from these pages are rated by human assessors as ‘good’, 18% as ‘bad’,
and 20% as ‘no opinion’. This suggests that about 80% of the keyphrases extracted by GenEx
are acceptable [13]. The quality of machine-extracted keyphrases may not be as good as author-
assigned keyphrases. Nevertheless, machine-extracted keyphrases could give the author a useful
starting point for further manual refinement when author-assigned keyphrases are not available.

We notice that some common words are ranked fairly high in the output list despite the use of
stopword lists and IDF. These words come from two main categories. Recall that the score of a
term (or term phrase) is dependent on TF×IDF, position, and other attributes. Terms such as
‘chapter’ tend to occur at the beginning of the document. Early occurrence often boosts the score
of these terms and increases the likelihood that they are output, though their IDF might be low.
In addition, because of the nature of the corpus, terms such as ‘person’, which tend to occur
rather frequently in everyday documents, appear only in a few documents in the corpus. This
boosts the IDF of these terms and improves their ranking. A possible way of solving this
problem is to add these common words to the stopword lists, but this will make KE more domain
dependent, and that is not what we want.

 12

The use of proper noun appears to degrade the performance of KE. This is probably because the
training and testing documents are all academic papers, which tend to contain many proper
nouns, especially in the References section. Indicator phrases [6] may be used to resolve this
problem by ignoring all the words in the References section, but this will make KE more domain
dependent. However, we believe that proper nouns might be useful in some domains (e.g. news)
where they tend to occur less frequently.

Syntactic methods (e.g. the use of italics) seem helpful in extracting high quality keyphrases, and
initially they were considered as an attribute for keyphrase extraction. However, all the
documents in the corpus are in ASCII and Unicode format, so we cannot implement this.

5. Conclusions and future work

We have discussed a new domain independent keyphrase extraction algorithm called KE, and
shown that it performs at least as well as other keyphrase extraction tools, including GenEx and
Kea, and that it significantly outperforms Microsoft Word 2000’s AutoSummarize feature.
Machine-extracted keyphrases can provide valuable information about the content of a
document, though they are not as good as author-assigned keyphrases. To ensure comparability,
KE has been trained and tested on the same set of documents as GenEx and Kea, but it will be
interesting to see how KE performs when it is tested on a different (and possibly larger) corpus.

References

1. E. Brill, “A Simple Rule-Based Part of Speech Tagger”, Proceedings of 3rd Conference
on Applied Natural Language Processing, Trento, Italy, ACM Press, 1992, pp. 152-155.

2. E. D’Avanzo and B. Magnini, “A Keyphrase-Based Approach to Summarization: the

LAKE System at DUC-2005”, Document Understanding Workshop, Vancouver, Canada,
2005.

3. E. D’Avanzo, B. Magnini and A. Vallin, “Keyphrase Extraction for Summarization

Purposes: The LAKE System at DUC-2004”, Document Understanding Workshop,
Boston, USA, 2004.

4. E. Frank, G. Paynter, I. Witten, C. Gutwin and C. Nevill-Manning, “Domain-Specific

Keyphrase Extraction”, Proceedings of 16th International Joint Conference on Artificial
Intelligence, California, USA, Morgan Kaufmann, 1999, pp. 668-673.

5. Y. Lui, “An Improved Keyphrase Extraction Algorithm”, Proceedings of PREP2005,

Lancaster, UK, 2005.

6. I. Mani, “Automatic Summarization”, John Benjamins, 2001.

 13

7. D. Rumelhart, B. Widrow and M. Lehr, “The Basic Ideas in Neural Networks”,
Communications of the ACM, Vol. 37, No. 3, 1994, pp. 87-92.

8. G. Salton and C. Buckley, “Term-Weighting Approaches in Automatic Text Retrieval”,

Information Processing and Management, Vol. 24, No. 5, 1988, pp. 513-523.

9. G. Salton and M. McGill, “Introduction to Modern Information Retrieval”, McGraw-Hill,
1983.

10. K. Sparck-Jones and P. Willett, “Readings in Information Retrieval”, Morgan Kaufmann,

1997.

11. P. Turney, “Extraction of Keyphrases from Text: Evaluation of Four Algorithms”,
Technical Report ERB-1051, National Research Council of Canada, 1997.

12. P. Turney, “Learning to Extract Keyphrases from Text”, Technical Report ERB-1057,

National Research Council of Canada, 1999.

13. P. Turney, “Learning Algorithms for Keyphrase Extraction”, Information Retrieval, Vol.
2, No. 4, 2000, pp. 303-336.

14. P. Turney, “Coherent Keyphrase Extraction via Web Mining”, Proceedings of 18th

International Joint Conference on Artificial Intelligence, Acapulco, Mexico, CogPrints,
2003, pp. 434-439.

