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Learning to Extract Significant Phrases from Text  
 
 
 
 

 
Abstract  
 
Prospective readers can quickly determine whether a document is relevant to their information 
need if the significant phrases (or keyphrases) in this document are provided. Although 
keyphrases are useful, not many documents have keyphrases assigned to them, and manually 
assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic 
keyphrase extraction. This report introduces a new domain independent keyphrase extraction 
algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, 
and uses a combination of statistical and computational linguistics techniques, a new set of 
attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. 
The experiments indicate that this algorithm performs at least as well as other keyphrase 
extraction tools and that it significantly outperforms Microsoft Word 2000’s AutoSummarize 
feature.  
 
Keywords: keyphrase extraction, machine learning, summarization, classification  
 
1. Introduction  
 
With the proliferation of the Internet and the huge numbers of documents1 it contains, the 
provision of summaries of these documents has become more and more important. Prospective 
readers can quickly determine whether a document is relevant to their information need if the 
significant phrases (or keyphrases) in this document are provided. Keyphrases give a short 
summary of the document and provide supplementary information for the readers, in addition to 
titles and abstracts. Even though keyphrases are useful, only a small minority of documents have 
keyphrases assigned to them, and manually assigning keyphrases to existing documents is very 
costly. Therefore, there is a need for automatic keyphrase extraction [2-5, 11-14].  
 
Automatic keyphrase extraction is the identification of the most important phrases within the 
body of a document by computers rather than human beings. It normally involves the use of 
statistical information. There is no controlled vocabulary list, so in theory any phrase within the 
body of the document can be identified as a keyphrase. When authors assign keyphrases without 
a controlled vocabulary list, typically 70-90% of their keyphrases appear somewhere in their 
documents [14]. Keyphrases are similar to keywords, except that the document is summarized by 
a set of phrases rather than words.  
 

                                                 
1 “Document” is regarded as being synonymous with “text” in this report. We ignore non-text elements, e.g. 
graphics, sound and video, though a document might contain them in its body.  
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Keyphrase extraction is a classification task: a document can be seen as a set of phrases, and a 
keyphrase extraction algorithm should correctly classify a phrase as a keyphrase or a non-
keyphrase. Machine learning techniques can automate this task if they are provided with a set of 
training data composed of both keyphrase examples and non-keyphrase examples. The data are 
used to train the algorithm to distinguish keyphrases from non-keyphrases. The resulting 
algorithm can then be applied to new documents for keyphrase extraction. Previous work shows 
that the training data and the new documents need not be from the same domain, though the 
performance of the algorithm can be boosted significantly if they are [4].  
 
This report introduces a new domain independent keyphrase extraction algorithm called KE. KE 
is not tied to a specific domain; it is designed to summarize a given document, which can be on 
any topic (excluding poetry and other similar works of literature), in a few keyphrases 
automatically extracted from the body of that document. Unlike other keyphrase extraction 
algorithms, KE uses a combination of statistical and computational linguistics techniques, a 
different set of attributes, and a different machine learning method to extract keyphrases from 
documents. The experiments indicate that KE performs at least as well as other keyphrase 
extraction tools and that it significantly outperforms Microsoft Word 2000’s AutoSummarize 
feature.  
 
Section 2 summarizes related work by other researchers. Section 3 introduces the KE algorithm 
and compares it with other keyphrase extraction algorithms. The experimental results are 
presented in Section 4. Section 5 concludes this report and discusses future work.  
 
2. Related work  
 
This section discusses two important term weights: term frequency and inverse document 
frequency, and two important keyphrase extraction algorithms: GenEx and Kea.  
 
2.1. TF×IDF  
 
The vector space model suggests that a document (or query) can be represented by a vector of 
terms. Terms in this model are not equally weighted; each term is associated with a specific 
weight which reflects the importance of that term. Term frequency (TF) and inverse document 
frequency (IDF) are the two most important term weights in this model [10].  
 
TF is the frequency of a term in the document. The more often a term occurs in the document, 
the more likely it is to be important for that document. The standard TF of a term T in a 
document D is calculated by:  
 
Standard TF = no. of occurrences of T in D  
 
IDF is the rarity of a term across the collection. A term that occurs in only a few documents is 
often more valuable than a term that occurs in many documents. The standard IDF of a term T is 
given by:  
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Standard IDF = 
inoccursdocuments ofno.

collectionin  documents of no.log
T

  

 
TF×IDF is a common way of combining TF and IDF. Despite the popularity of these weights, 
they do not have a universal definition.  
 
Salton and Buckley [8] review the use of statistical information for weighting document terms 
and query terms, and discuss various ways of defining and combining TF and IDF. A total of 
1,800 different term weighting combinations were used in their experiments, and 287 were found 
to be distinct. They make recommendations on the best combination in different situations. For 
technical documents (like the ones used in our experiments), they recommend using the 
normalized TF and the standard IDF. The normalized TF is calculated by normalizing the 
standard TF factor by the maximum TF in the vector (with the result in the range of 0.5 to 1.0):  
 

Normalized TF = 
TFmax 

TF5.05.0 +   

 
2.2. GenEx  
 
Turney [12, 13] proposes a keyphrase extraction algorithm called GenEx which consists of a set 
of parameterized heuristic rules that are fine-tuned by a genetic algorithm. During training, the 
genetic algorithm adjusts the rules’ parameters to maximize the match between the output 
keyphrases and the target keyphrases. Table 1 shows the parameters used in GenEx. The sample 
values of these parameters are from [12]. The experiments show that machine learning 
techniques can be used for the problem of keyphrase extraction and that GenEx generalizes well 
across collections. While GenEx is trained on a collection of journal articles, it successfully 
extracts keyphrases from web pages on different topics. 
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Table 1: Parameters used in GenEx  

Parameter  Description Sample 
Value  

NUM_PHRASES  Length of the output list, i.e. the number of 
keyphrases to be output.  

10 

NUM_WORKING  Length of the working list, i.e. only words 
ranked higher than this are considered as 
candidate phrases  

50 

FACTOR_TWO_ONE  Reward for two-word phrases  2.33 
FACTOR_THREE_ONE Reward for three-word phrases  5 
MIN_LENGTH_LOW_RANK  Low rank words must be longer than this; if not, 

they will be removed from the output list  
0.9 

MIN_RANK_LOW_LENGTH  Short words must be ranked higher than this; if 
not, they will be removed from the output list  

5 

FIRST_LOW_THRESH  Definition of early occurrence; words which 
occur before this position are rewarded by 
FIRST_LOW_FACTOR  

40 

FIRST_HIGH_THRESH  Definition of late occurrence; words which occur 
after this position are penalized by 
FIRST_HIGH_FACTOR  

400 

FIRST_LOW_FACTOR  Reward for early occurrence  2 
FIRST_HIGH_FACTOR  Penalty for late occurrence  0.65 
STEM_LENGTH  Maximum characters for fixed length stemming  5 
SUPPRESS_PROPER  Flag for suppressing proper nouns  0 
 
2.3. Kea  
 
Frank et al. [4] discuss another keyphrase extraction algorithm called Kea which is based on the 
naïve Bayes learning technique. The basic model involves two attributes: TF×IDF and distance.  
 
The standard TF is used, but the IDF is defined differently. They calculate the IDF of a term T in 
a document D by (the counters start with one to avoid taking the logarithm of zero):  
 
Kea’s IDF = -log (no. of documents in collection that contain T, excluding D)  
 
The distance attribute is the position where a term first appears in the document. A term that 
occurs at the beginning of the document is often more valuable than a term that occurs at the end 
of that document. The distance of a term T in a document D is given by:  
 

Distance = 
D

T
in   wordsof no.

 of appearancefirst  before  wordsof no.   
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Kea uses the same set of training and testing documents as GenEx so that its performance can be 
directly compared with GenEx. The experiments indicate that GenEx and Kea perform at 
roughly the same level, measured by the average number of matches between author-assigned 
keyphrases and machine-extracted keyphrases [14].  
 
3. Keyphrase extraction  
 
This section introduces the attributes used in the KE algorithm, gives an overview of KE, and 
compares KE with GenEx and Kea.  
 
3.1. Attributes  
 
The selection of relevant attributes is probably the most important factor in determining the 
effectiveness of a keyphrase extraction algorithm. Many attributes have been considered, e.g. the 
frequency of a term, the length of a document, the position of a term in the document, etc. 
However, in our experiments, only five attributes have been found useful for keyphrase 
extraction:  
 

• The TF×IDF attribute has already been discussed; see Section 2.1 for details.  
 

• The position attribute is the same as Kea’s distance; see Section 2.3 for details.  
 

• The title attribute is a flag that indicates if a term appears in the title of the document. A 
term that occurs in the title of the document is often more valuable than a term that does 
not. Titles may not provide enough information on their own, but they may contain some 
important words. In fact, it has been reported that the use of abstracts in addition to titles 
brings substantial advantages in retrieval effectiveness and that the additional utilization 
of the full texts of the documents appears to produce little improvement over titles and 
abstracts alone in most subject areas [9]. If a term is found in the title, title is set to 1; 
otherwise, it is set to 0.  

 
• The proper noun attribute is a flag that indicates if a term is a proper noun. If a term is a 

proper noun, proper noun is set to 1; otherwise, it is set to 0.  
 

• The number of terms attribute is the number of terms in a term phrase.  
 
3.2. The KE algorithm  
 
The KE algorithm is based on GenEx and Kea (for details of the differences between KE, 
GenEx, and Kea, see Section 3.3) and consists of seven steps:  
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• Step 1 is to tag2 the input document and to select all the words which have been tagged as 

adjective, verb and noun and are not included in the stopword list. Although it is unlikely 
that adjectives and verbs will be output, they help to boost the score of their noun form 
(provided their stems are the same as the noun’s) and therefore increase the likelihood 
that it will be output.  

 
• Step 2 is to stem3 the selected words, to calculate the TF×IDF, position, title and proper 

noun of each term, to assign a score to each term based on these attributes, and to sort the 
terms in descending order of score.  

 
• Step 3 is to select all the noun phrases in the document. Like KE, D’Avanzo and Magnini 

[2, 3] use a part-of-speech tagger to help to select candidate phrases in their keyphrase 
extraction algorithm: candidate phrases are selected if they match one of the many 
manually predefined linguistics-based patterns, e.g. adjective + noun, and noun + verb + 
adjective + noun (the symbol ‘+’ denotes ‘followed by’). Nevertheless, we believe this 
could be simplified by selecting only noun phrases, which can be naively defined as zero, 
one or two nouns or adjectives followed by a noun or a gerund, from the document. This 
is because almost all the keyphrases are noun phrases and they normally follow this 
definition [11].  

 
• Step 4 is similar to Step 2. The main differences are that noun phrases, instead of words, 

are stemmed and that the TF×IDF, position, title, and number of terms of each term 
phrase is calculated.  

 
• Step 5 is to expand the single terms to term phrases. For each term, find all the term 

phrases that contain the term, and link it with the highest scoring term phrase. The result 
is a list of term phrases. The scores calculated in Step 2 are used to rank this list because 
it is generally preferable to represent documents and measure the importance of each 
representation element in terms of single terms rather than term phrases [8]. Term 
phrases, on the other hand, are used for output purposes. This is because documents are 
summarized by a set of phrases, not words.  

 
• Step 6 is to eliminate duplicates from the list of term phrases. More than one term may be 

linked to the same term phrase. If that is the case, the term phrase will be linked to the 
highest scoring term.  

 

                                                 
2 Eric Brill’s part-of-speech tagger has been used for tagging in our algorithm. It is chosen because it works as well 
as statistical taggers but is simpler and requires less stored information [1].  
3 The iterated Lovins algorithm has been used for stemming in our algorithm. It is chosen because it has been 
reported that aggressive stemming is better for keyphrase extraction than conservative stemming and that the iterated 
Lovins algorithm is more aggressive than the Porter and the Lovins algorithms [11, 12].  
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• Step 7 is to identify the most frequent corresponding phrase in the document for each of 

the term phrase. If a term phrase is linked to more than one phrase, the most frequent 
phrase will be chosen. This step also eliminates subphrases if they do not perform better 
than their superphrases. If phrase P1 occurs within phrase P2, P1 is a subphrase of P2 and 
P2 is a superphrase of P1. If a phrase is a subphrase of another phrase, it will only be 
accepted as a keyphrase if it is ranked higher; otherwise it will be deleted from the output 
list.  

 
3.3. Comparison with GenEx and Kea  
 
KE is based on GenEx and Kea, but differs from them in several ways:  
 

• Purely statistical methods have been used in GenEx and Kea. KE, however, uses a 
combination of statistical and computational linguistics techniques for keyphrase 
extraction. Part-of-speech tagging, which is a useful computational linguistics technique, 
has been used to improve the quality of candidate phrases. Only words which have been 
tagged as adjective, verb and noun are selected as candidate phrases.  

 
• KE uses a different set of attributes to discriminate between keyphrases and non-

keyphrases: TF×IDF, position, title, proper noun and number of terms. Kea uses only 
two attributes: TF×IDF and distance. GenEx, on the other hand, uses many more 
attributes (i.e. 12 parameters), but it does not use TF×IDF and title.  

 
• KE uses a different machine learning algorithm; it is trained by an artificial neural 

network (for details of the training of KE, see Section 4.2). GenEx is trained by a genetic 
algorithm while Kea is based on the naïve Bayes learning technique.  

 
• KE is a different model; it consists of seven steps, and takes both words and phrases as 

candidate phrases. Kea is a simple model; it only selects phrases as candidate phrases, so 
it does not involve any linking between words and phrases. GenEx is more complicated; 
it consists of ten steps, considers both words and phrases, and involves many post-
processing tasks.  

 
We expect these differences will make KE a better algorithm in some application domains, but 
further testing is needed to support this. Nevertheless, the results summarized in Table 2 (see 
Section 4.5) suggest that KE is already at least as good as GenEx and Kea.  
 
4. Experiments  
 
This section explains how we evaluate the output keyphrases and train the KE algorithm, 
compares the individual performance of different attributes, the performance of different 
combinations of TF×IDF, and the performance of different keyphrase extraction tools, and 
discusses the experimental results.  
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4.1. Methodology  
 
KE has been trained and tested on the same set of documents as GenEx and Kea. Of course, we 
could use other corpora, but then we would not be able to compare our experimental results with 
other keyphrase extraction algorithms. The criteria used for evaluating the output keyphrases are 
also the same as in GenEx and Kea (i.e. a machine-extracted keyphrase is said to be correct if its 
stem matches the stem of an author-assigned keyphrase), so direct comparison is possible. For 
details of the corpus and the evaluation method used, see [12].  
 
4.2. Training of KE  
 
The set of terms (i.e. output of Step 2) and the set of term phrases (i.e. output of Step 4) were 
trained separately by a fully connected 4-9-1 back-propagation neural network. The resulting 
sets were then combined to perform Step 5, 6 and 7 of the KE algorithm. The number of hidden 
units affects the generalization performance of a neural network [7]. We have tested different 
numbers of hidden units, and found that nine hidden units give the best result. Also, it is possible 
to have more than one hidden layer in a neural network, but one hidden layer is adequate for 
most applications [7]. KE has been trained and tested on a neural network with two hidden 
layers, but the difference between that and one hidden layer is not statistically significant. 
Therefore, only one hidden layer is used.  
 
The experiments also indicate that the term set often requires more training iterations than the 
term phrase set. A training iteration involves all the documents in the training set and the 
selection of 150 terms (or term phrases), including both keyphrase and non-keyphrase examples, 
from each document. The cross-validation method [7] has been used to estimate the appropriate 
point to stop training to avoid overfitting.  
 
4.3. Different attributes  
 
Five different attributes are used in the KE algorithm, but we have only compared the individual 
performance of four attributes: TF×IDF (using the standard TF and Kea’s IDF), position, title, 
and proper noun. Number of terms has not been evaluated in this experiment. Since number of 
terms is always one when it comes to single terms, the attribute (if used alone) cannot 
discriminate between different terms. Therefore, we decided not to evaluate the individual 
performance of this attribute.  
 
Figure 1 shows the comparison of the individual performance of different attributes with varying 
number of output keyphrases. Precision is the proportion of the keyphrases extracted that are 
correct. The experiments indicate that the performance of position is more stable than TF×IDF 
and is always better than title, and that proper noun gives the worst performance. We conclude 
that position is the best individual indicator of keyphrase extraction. This confirms the findings 
by Edmundson (1969) and Kupiec et al. (1995) that location-based methods give the best 
performance, though their work is concerned with sentence extraction and they use a different 
set of attributes. For details of their work, see [6].  
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Figure 1: Comparison of different attributes’ individual performance  

 
4.4. Different combinations of TF×IDF  
 
As mentioned before, there is no universal definition of TF×IDF. Four different TF×IDF 
definitions have been discussed: standard TF, standard IDF, normalized TF, and Kea’s IDF. 
Three different combinations of TF×IDF have been implemented using these definitions and 
tested in our experiments.  
 
Figure 2 shows the comparison of different TF×IDF combinations with varying number of 
output keyphrases. The difference between the standard TF and Kea’s IDF and the standard TF 
and standard IDF is not statistically significant, though the former tends to give more stable 
results.  
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Figure 2: Comparison of different combinations of TF×IDF  
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4.5. Different keyphrase extraction tools  
 
We have compared the performance of KE with other keyphrase extraction tools: GenEx, C4.54, 
Kea, Kea-C4.55, and Microsoft Word 2000 (the AutoSummarize6 feature). C4.5 and Kea-C4.5 
have not been discussed because they have mainly been used as a standard of comparison for 
evaluating the performance of GenEx and Kea respectively. Please refer to [4, 12] for details of 
C4.5 and Kea-C4.5. Five keyphrases have been extracted from each testing document by these 
tools and compared with the corresponding author-assigned keyphrases. The number of output 
keyphrases is set to five because AutoSummarize always generates exactly five keyphrases. 
Also, unlike the other tools, AutoSummarize cannot be trained and the output keyphrases always 
contain exactly one word.  
 
Table 2 shows the number of correct keyphrases identified by different keyphrase extraction 
tools. Results of GenEx, C4.5, Kea, and Kea-C4.5 are from [4]. The experiments indicate that 
KE (using the standard TF and Kea’s IDF) performs comparably to GenEx and that the 
difference between KE, GenEx, C4.5 and Kea is not statistically significant. Since Word 2000 
can only extract five single words from each document and most of the keyphrases in the corpus 
contain more than one word, it is not surprising that Word 2000 gives the worst performance. 
Table 3 shows the keyphrases extracted by KE from two testing documents. Correct keyphrases 
are printed in bold.  
 
Table 2: Experimental results for different keyphrase extraction tools  

 Average Number of Correct Keyphrases Standard Deviation 
KE  1.45 1.32 
GenEx 1.45 1.24 
C4.5  1.40 1.28 
Kea 1.35 0.93 
Kea-C4.5 1.20 0.83 
Word 2000 0.85 0.93 
 

                                                 
4 C4.5 consists of a set of parameterized heuristic rules that are fine-tuned by the C4.5 decision tree learning 
algorithm. Some of these parameters are also used in GenEx.  
5 Kea-C4.5 is a variation on Kea. The pre- and post-processing are the same as Kea. The only difference is that it 
uses the C4.5 decision tree learning algorithm, instead of the naïve Bayes learning algorithm.  
6 The AutoSummarize feature aims at extracting key sentences from a given document and is available from the 
Tools menu. The generation of keywords is actually a by-product of AutoSummarize. When AutoSummarize is used, 
it also fills in the Keywords field of the document’s Properties, which is available from the File menu.  
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Table 3: Examples of the keyphrases extracted by KE  

Title  Precis of: Metapsychology: Missing Links in Behavior, Mind, and 
Science  

Author-assigned 
Keyphrases  

Behavior, causality, experimentation, explanation, introspection, 
mind-body problem, observation, philosophy, psychology, 
reductionism, science, theory  

Machine-extracted 
Keyphrases (Top 5)  

Science, psychology, theory, explanation, behavior  

  
Title  Precis of: The Roots of Thinking  
Author-assigned 
Keyphrases  

Analogical thinking, animate form, concepts, evolution, tactile-
kinesthetic body 

Machine-extracted 
Keyphrases (Top 5)  

Thinking, concept, tactile kinesthetic body, hominid evolution, 
thesis  

 
4.6. Discussion of results  
 
The above performance numbers are misleadingly low. Author-assigned keyphrases are often a 
small subset of the set of good quality keyphrases for a given document. On average, there are 
only 7.5 keyphrases per document in the corpus, and these phrases constitute less than 0.1% of 
the document length. A more accurate picture can be obtained by asking human assessors to 
evaluate the machine-extracted keyphrases. GenEx has been tested on 267 web pages: 62% of 
the keyphrases extracted from these pages are rated by human assessors as ‘good’, 18% as ‘bad’, 
and 20% as ‘no opinion’. This suggests that about 80% of the keyphrases extracted by GenEx 
are acceptable [13]. The quality of machine-extracted keyphrases may not be as good as author-
assigned keyphrases. Nevertheless, machine-extracted keyphrases could give the author a useful 
starting point for further manual refinement when author-assigned keyphrases are not available.  
 
We notice that some common words are ranked fairly high in the output list despite the use of 
stopword lists and IDF. These words come from two main categories. Recall that the score of a 
term (or term phrase) is dependent on TF×IDF, position, and other attributes. Terms such as 
‘chapter’ tend to occur at the beginning of the document. Early occurrence often boosts the score 
of these terms and increases the likelihood that they are output, though their IDF might be low. 
In addition, because of the nature of the corpus, terms such as ‘person’, which tend to occur 
rather frequently in everyday documents, appear only in a few documents in the corpus. This 
boosts the IDF of these terms and improves their ranking. A possible way of solving this 
problem is to add these common words to the stopword lists, but this will make KE more domain 
dependent, and that is not what we want.  
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The use of proper noun appears to degrade the performance of KE. This is probably because the 
training and testing documents are all academic papers, which tend to contain many proper 
nouns, especially in the References section. Indicator phrases [6] may be used to resolve this 
problem by ignoring all the words in the References section, but this will make KE more domain 
dependent. However, we believe that proper nouns might be useful in some domains (e.g. news) 
where they tend to occur less frequently.  
 
Syntactic methods (e.g. the use of italics) seem helpful in extracting high quality keyphrases, and 
initially they were considered as an attribute for keyphrase extraction. However, all the 
documents in the corpus are in ASCII and Unicode format, so we cannot implement this.  
 
5. Conclusions and future work  
 
We have discussed a new domain independent keyphrase extraction algorithm called KE, and 
shown that it performs at least as well as other keyphrase extraction tools, including GenEx and 
Kea, and that it significantly outperforms Microsoft Word 2000’s AutoSummarize feature. 
Machine-extracted keyphrases can provide valuable information about the content of a 
document, though they are not as good as author-assigned keyphrases. To ensure comparability, 
KE has been trained and tested on the same set of documents as GenEx and Kea, but it will be 
interesting to see how KE performs when it is tested on a different (and possibly larger) corpus.  
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