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Abstract

The submodular function minimization problem (SFM) is a fundamental problem
in combinatorial optimization and several fully combinatorial polynomial-time algo-
rithms have recently been discovered to solve this problem. The most general versions
of these algorithms are able to minimize any submodular function whose domain is a
set of tuples over any totally-ordered finite set and whose range includes both finite
and infinite values.

In this paper we demonstrate that this general form of SFM is just one example
of a much larger class of tractable discrete optimization problems defined by valued
constraints. These tractable problems are characterized by the fact that their valued
constraints have an algebraic property which we call a tournament pair multimor-
phism. This larger tractable class also includes the problem of satisfying a set of
Horn clauses (HORN-SAT), as well as various extensions of this problem to larger
finite domains.

Keywords: discrete optimization, constraint satisfaction problem, valued constraint
satisfaction, tractability, submodularity, tournament operation, majority operation, mod-
ular decomposition.



1 Introduction

In this paper we study a generic discrete optimization problem known as the valued
constraint satisfaction problem (VCSP) [49]. This problem generalises the standard
constraint satisfaction problem [22] by allowing different costs to be associated with dif-
ferent solutions. It provides a very general framework which includes many standard
combinatorial optimisation problems as special cases, including MAX-SAT [19], MAX-
CSP [11], MIN-ONEs SAT [19], and MIN-CosT HOMOMORPHISM [29].

The complexity of the VCSP depends on the types of valued constraints which are
allowed. For certain types of valued constraints an optimal solution can be obtained in
polynomial time; such constraints are called tractable valued constraints.

In the special case where each variable has just 2 possible values, a complete char-
acterization has been obtained of all tractable classes of valued constraints with positive
real-valued or infinite costs [8, 12]. This result extends the earlier characterizations of
the tractable classes for the SAT [48] and MAX-SAT [19] problems.

Over larger sets of possible values a complete characterization of the tractable cases
is not yet known, but a number of examples have been identified. Two important classes
of tractable valued constraints are submodular functions (see Example 3.7) and Horn
clauses (see Example 2.4). In this paper we show that these two examples are members of
a large family of tractable valued constraint classes which can be treated in a uniform way.
To obtain this generalisation, we introduce a class of operations known as tournament
operations, and show that any set of valued constraints associated with an arbitrary
pair of tournament operations defines a tractable optimization problem.

The paper is organised as follows. In Section 2 we define the standard constraint satis-
faction problem, and in Section 3 we extend this definition to the more general framework
of the valued constraint satisfaction problem and define the notion of a multimorphism.
In Section 4 we consider multimorphisms defined by special kinds of operations known
as tournament operations. In Section 5 we consider the set of all feasible assignments
to a valued constraint satisfaction problem, and the set of all optimal assignments, and
show that in certain cases these sets can be efficiently represented. In Section 6 we begin
a more detailed examination of tournament operations by considering decompositions of
the associated tournament graphs, and in Section 7 we examine the structure of valued
constraints which have a tournament pair multimorphism. Using these results we show
in Section 8 that all such valued constraints give rise to tractable optimisation problems,
and then in Section 9 we give some examples. Finally, in Section 10 we suggest some
directions for future research.

2 Constraints and polymorphisms

In this section we present the terminology and notation used to describe the standard
constraint satisfaction problem (CSP) and discuss the techniques which have been used
to identify tractable cases. In Section 3 we extend these ideas to the valued constraint
satisfaction problem.



Definition 2.1 An instance of the constraint satisfaction problem, CSP, is a tuple
P =(V,D,C) where:

e V is a finite set of variables;
e D is a finite set of possible values;

e C is a set of constraints. Fach element of C is a pair ¢ = (o, R) where o is a
tuple of variables called the scope of ¢, and R is a relation over D of arity |o| called
the constraint relation of c.

Definition 2.2 For any CSP instance P = (V, D,C), an assignment for P is a map-
ping s:V — D.

A solution to P is an assignment which satisfies all of the constraints. That is, for
each (o, R) € C, where o = (v1,v9,...,v,), the tuple (s(v1), s(v2),...,s(v,)) € R.

Example 2.3 The standard problem of colouring the vertices of a graph G with k colours
so that adjacent vertices are assigned different colours can be viewed as a special case
of the CSP, where the constraint relation of each constraint is the binary disequality
relation, R, given by

R, = {(a,b) € D* | a # b}.

For any given graph (V, E), we have the corresponding CSP instance (V, D,C), where
D ={1,2,...,k} and C = {((vi,v;), Ryz) | {v;,vj} € E}.
This problem is well-known to be NP-complete when k& > 3. EI

Example 2.4 The propositional satisfiability problem for Horn clauses, HORN-SAT, can
be viewed as a special case of the CSP, where the constraint relations are relations over
a 2-element set which are specified by Horn clauses. Such relations describe the possible
satisfying assignments for a particular Horn clause; for example, the relation

RﬁIVﬁy\/Z = {<0707 0)7 (07 07 1>7 (07 17 0>7 (07 17 1)7 (17 070>7 (17 07 1)7 (17 ]-7 1)}

describes the satisfying assignments for the Horn clause -z V -y V 2z, where the value 0
corresponds to false and the value 1 corresponds to true.
The problem of satisfying any set of Horn clauses can be solved in linear time [23]. O

If I' is a set of relations over some fixed set D, we will write CSP(I") to denote the class
of all CSP instances where the constraint relations of all constraints lie in T'.

For certain sets of relations I' the problem CSP(T") is NP-complete. (For example,
the set {R+}, where R is the disequality relation over some set D with |[D| > 3, as
defined in Example 2.3.) For other sets of relations I" the problem CSP(T") can be solved
in polynomial time. (For example, the set of all relations specified by Horn clauses, as
defined in Example 2.4.)

A finite set of relations I' will be called tractable if there exists a polynomial-time
algorithm to solve CSP(T"). An infinite set of relations " will be called tractable if all
finite subsets of I' are tractable.



Many new tractable sets of relations have been identified by investigating certain
invariance properties of relations, known as polymorphisms [7, 25, 37].

Definition 2.5 A function f : D™ — D is a polymorphism of a relation R C D" if
for all {a11,...,a1p)s -y {Qm1, .-, amr) € R, we also have

<f(a11,---aaml),---af(alra---aamr» € R.

If a relation R has a polymorphism f, then we will say that R is preserved by f.

Example 2.6 The relations over the 2-element domain {0,1} which are specified by
Horn clauses are precisely the relations having the polymorphism min : {0,1}? — {0, 1},
which returns the minimum of its 2 arguments.

For example, if we take any 2 tuples from the relation R-;y—yy, defined in Exam-
ple 2.4, (such as (0, 1,1) and (1,0,1)), and apply the operation min co-ordinatewise, then
we obtain a new tuple, ((0,0,1)), which is also a member of this relation.

A binary operation, min, which returns the minimum of its two arguments, can be
defined on any finite totally-ordered set D of arbitrary size. Hence, for each such D there
is an obvious generalisation to the set, I'imin, consisting of all relations over D which are
preserved by the operation min. It has been shown [38] that CSP(I'pnin) is tractable for
all finite sets D. O

Many other tractable sets of relations have been identified, or extended, thanks to the
study of polymorphisms [3, 4, 6, 7, 37]. In fact, it is known that the existence of a non-
trivial polymorphism of a set of relations I' is a necessary condition for tractability of
CSP(T") [35].

Definition 2.7 A majority operation is a function f : D> — D satisfying

Vo,y € D, f(z,z,y) = f(z,y,2) = f(y,z,2) ==

It has been shown that having a majority operation as a polymorphism is a sufficient
condition for tractability of a set of relations [25, 36, 37]. However, it is the following
more specific property of relations preserved by a majority operation which is of more
interest to us in this paper.

Definition 2.8 The projection of a relation R of arity v onto a pair of positions 1
and j, which we denote by I1;; R, is the binary relation containing all pairs that can be
extended to elements of R. That is,

;R Y {(zs,2;) | Hz1,...,2) € R}

A relation R of arity r is said to be decomposable into its binary projections if

R={(z1,...,2,) € D" |Vi,j € {1,...,r}, (z;,2;) € II;; R}.



Lemma 2.9 ([36]) Any relation which is preserved by a majority operation is decom-
posable into its binary projections.

Finally, we will occasionally make use of the following standard definitions from the
field of constraint satisfaction [22].

Definition 2.10 A partial assignment to a subset W of the variables of a CSP instance
is consistent if it satisfies all the constraints whose scopes are contained in W .

Definition 2.11 A CSP instance is k-consistent if, for every subset W of k—1 variables
and any other variable v € W, every consistent partial assignment to W can be extended
to a consistent partial assignment to W U {v}.

Definition 2.12 A CSP instance is strong k-consistent if it is j-consistent for all
j <k

3 Valued constraints and multimorphisms

In the constraint satisfaction problem, the aim is simply to find an assignment to the
variables which satisfies all of the constraints. In other words, standard constraint satis-
faction problems deal with feasibility rather than optimization. To provide a more general
framework, the notion of an all-or-nothing constraint relation can be extended to the no-
tion of a cost function which assigns a specified cost to each possible assignment. We
use R to denote {u € R:u >0} U {oo}.

Definition 3.1 For any set D, an order-r cost function on D is a function ¢ : D" —
Ry which assigns a cost f(ay,...,a,) to each combination of values aq,...,a, € D".

Definition 3.2 A cost function ¢ is said to be crisp if ¢(z1,...,2,) € {0,00} for all
choices of (x1,...,z,).

A constraint relation can be modelled by a crisp cost function which assigns a cost of
0 to permitted assignments and a cost of co to disallowed assignments.

Definition 3.3 An instance of the valued constraint satisfaction problem, VCSP,
is a tuple P = (V,D,C) where:

e V is a finite set of variables;
e D is a finite set of possible values;

e C is a set of valued constraints. Each element of C is a pair ¢ = (o, p) where o
is a tuple of variables called the scope of ¢, and ¢ is a mapping from DIl to Ry,
called the cost function of c.



In the original, more general, definition of the Valued Constraint Satisfaction Problem
[49], costs were allowed to lie in any positive tomonoid S. Under the additional assump-
tions of discreteness and the existence of a partial inverse operation, it has been shown
[16] that such a structure S can be decomposed into independent positive tomonoids,
each of which is isomorphic to a subset of Ry with the operator being either standard
addition, +, or bounded addition, +j, where a +; b = min{k,a + b}. The latter case
is of some interest, because it can be used to model the process of branch and bound
search (k being the cost of the best solution found so far) [42]. However, for the purposes
of this paper we shall restrict attention to the standard case studied in Mathematical
Programming where all costs lie in Ry and are combined using standard addition.

Definition 3.4 For any VCSP instance P = (V,D,C), an assignment for P is a
mapping s : V. — D. The cost of an assignment s, denoted Costp(s), s given by the
sum of the costs for the restrictions of s onto each constraint scope, that is,

Costp(s) < 3 B(s(v1),5(v2), ..., 5(vm)).

(<U1 702,---,Um>,¢)60

A solution to P is an assignment with minimal cost.

Example 3.5 We can encode the search for a minimum cut in a weighted directed graph
G as a VCSP instance P with a variable for each node of G, domain {0, 1}, and a valued
constraint ((z,7), x"¥) for each directed edge (7, j) of weight w;; in G, where

w _ J w if (z,y) = (0,1)
X"(y) = {0 otherwise

If we impose unary constraints on the source and target nodes to ensure that they take
the values {0} and {1}, respectively, then any minimum cut in G corresponds to the set
of directed edges (i, j) whose corresponding variables are labeled (0, 1) in some solution
to P. O

If T' is a set of cost functions ¢ : D" — R, for some fixed set D, we will write
VCSP(T") to denote the class of all VCSP instances where the cost functions of all the
valued constraints lie in I'. A finite set of cost functions I will be called tractable if there
exists a polynomial-time algorithm to solve VCSP(T"). An infinite set of cost functions T’
will be called tractable if all finite subsets of I' are tractable.

To analyse the complexity of problems of the form VCSP(T") for different choices of '
we shall make use of a generalization of the notion of polymorphism which is known as a
multimorphism [12].

Definition 3.6 ([12]) A list of functions, (f1,..., fm), where each f; is a function from

D™ to D, is a multimorphism of a cost function ¢ : D" — R, if, for all {a1q,...,a1,),
v {am1y -y amy) € DT, we have
m m
Y filarts.oami)s e filaars o am)) <D Pla, .., aq) (1)
i=1 1=1



Note that if (f1,..., fis) is a multimorphism of a cost function ¢, then the average
cost of a set of m assignments is lowered, or improved by applying the functions f1,..., fm
co-ordinatewise. This observation explains the following choice of notation.

Notation: The set of all cost functions ¢ : D™ — R, which have (fi,..., fm) as a
multimorphism will be denoted Imp(fy, ..., fm)-

Example 3.7 A cost function ¢ has the multimorphism (min, max) if and only if ¢
satisfies the submodularity condition

VZ,j€ D" $ZVY) + @AY < 4(T)+ b(7)

where V and A represent co-ordinatewise maximum and minimum operations respectively.

Submodularity [26, 51] is usually defined over totally-ordered domains, but this defini-
tion can be extended to the case in which the domain D has an arbitrary lattice structure,
in which case V and A represent co-ordinatewise join and meet operations respectively.

Submodular function minimization (SFM) [26, 51] is a tractable discrete optimization
problem which has applications in such diverse areas as statistical physics [1] and the
design of electrical networks [44]. Well-known examples of submodular functions are the
cut function of a graph [20] (see Example 3.5) or of a hypergraph [27], and the rank
function of a matroid.

The ellipsoid algorithm provides a polynomial-time algorithm for SFM in theory, but
is not efficient in practice [30]. Recently, several more efficient polynomial-time algorithms
have been published to solve SFM [34, 50, 32, 33]. The fact that these algorithms can
be applied to minimize a submodular function defined on a distributive lattice [32] (also
known as a ring family [50]) has been used to show that they can be applied to submodular
functions which may take on both finite and infinite values over totally-ordered finite
domains of arbitrary size [12]. The complexity of the fastest known algorithm for SFM
is O((n*y + n°) min{log M,n?logn}), where n is the number of variables, 7 is the time
to calculate the objective function ¢ and M is the maximum absolute value of ¢ [33]. O

Example 3.8 Bisubmodular functions were introduced in [28]. They are integer-valued
functions on {0, 1,2}", and can be characterized [9, 12] as those functions having the bi-
nary multimorphism (ming, maxg), where the functions ming, maxy : {0, 1,2}% — {0,1,2}
are defined as follows:

. B min(a,b) if {a,b} # {1,2}
ming(a,b) = { 0 otherwise

B max(a,b) if {a,b} # {1,2}
maxg(a,b) = { 0 otherwise

An example of a bisubmodular function is the rank function of a delta-matroid [28].

An integer-valued bisubmodular function 3 can be minimized in O(n’log M) time
where M is the maximum value of the function ¢ and n is the number of variables [28].
O



Example 3.9 The set of crisp cost functions over some fixed finite totally-ordered do-
main D which all have the multimorphism (min, min) corresponds to the tractable set
of relations 'y defined in Example 2.6 which generalise the Horn clause satisfiability
problem.

We can generalise this class further by dropping the requirement for the cost functions
to be crisp. This gives a larger tractable class of cost functions which also allow arbitrary
monotone finite-valued cost functions on the same variables [9, 12]. O

We have previously shown [8] that a set of cost functions over a Boolean domain is
tractable if it has a non-trivial multimorphism and NP-complete otherwise. Over non-
Boolean domains, the situation is more complex, but it is known that the complexity
of any set of cost functions over any finite domain is characterized by certain algebraic
properties which can be seen as generalised multimorphisms [13].

4 Tournament operations

In this section we focus on the properties of a particular kind of operation, which we call
a tournament opemtz'onl.

Definition 4.1 A tournament operation is a binary operation f : D?> — D with the
following properties:

e f is conservative, that is f(z,y) € {z,y}, for all z,y € D.
e f is commutative, that is f(z,y) = f(y,z), for all z,y € D.

The dual of a tournament operation f is the unique tournament operation g satisfying
z#y=g(zy) # fz,y), forall z,y € D.

Note that, by definition, a tournament operation is necessarily idempotent, that is,
f(z,z) =z, for all x € D.

Definition 4.2 A tournament pair is a pair (f,g), where f and g are both tournament
operations. A tournament pair (f,g) is called symmetric if g is the dual of f.

We will show in Section 8 that any set of cost functions with a tournament pair as
a multimorphism is tractable. We first establish a partial converse of this result: any
tractable set of cost functions containing all unary cost functions which is characterised
by a binary multimorphism, must be characterised by a tournament pair multimorphism
(assuming that P # NP).

Proposition 4.3 For any binary operations f,qg, if Imp(f,g) contains all unary cost
functions, then either (f,q) is a symmetric tournament pair or VCSP(Imp(f,g)) is NP-
hard.

!The reason for this choice of terminology will be made clear in Section 6, where we explain the
connection between tournament operations and directed graphs.



Proof: Since Imp(f,g) contains all unary cost functions, it is an easy consequence of
Definition 3.6 that

v,y € D {f(z,y),9(z,9)} = {z,y} (2)

It follows that (f,g) is a symmetric tournament pair if f is commutative.
Consider now the case in which f is not commutative, that is, f(a,b) # f(b,a) for
some a,b € D. Define the binary cost function ¢xopr : D? — R as follows.

1 ifz,y€{a,b}andz=y

b¢xor(z,y) = 0 ifz,y€{a,b}andz#y
oo otherwise

Using Equation 2 it is easily verified that ¢xor € Imp(f,g). However, VCSP({¢xor})
can be shown to be NP-hard by a polynomial-time reduction from the MAX-2-SAT
problem restricted to the XOR predicate, which is known to be NP-hard [18, 19]. Hence
in this case VCSP(Imp(f,g)) is NP-hard. n

If we relax the conditions so that we require only crisp unary functions to be included,
then we can still show that any tractable set of cost functions characterised by a binary
multimorphism must have a tournament pair as a multimorphism.

Proposition 4.4 For any binary operations f,g, if Imp(f,g) contains all crisp unary
cost functions, then either Imp(f,g) C Imp(f',g") for some tournament pair (f',g') or
VCSP(Imp(f,g)) is NP-hard.

Proof: If Imp(f,g) contains all crisp unary cost functions, then it is straightforward to
verify that the functions f,g must be conservative, and hence idempotent.

For any a,b € D, denote the restrictions of f,g on {a,b} by faup,gap- (In other words,
fap is the function flr4pyx{ap} {a,b}? — {a,b}). Since fup,gap are idempotent, this
leaves just four possibilities for each of the functions fu;,gq. Out of these four, two
are commutative and the other two are projections (i.e., one of the functions pq,po :
{a,b}? — {a,b} such that for all u,v, pi(u,v) = u and pa(u,v) = v). If both fy and
gap are projections, then Imp(f, g) contains all crisp cost functions ¢ : D" — {0, 0o} such
that ¢(T) = oo if T & {a,b}", so Imp(f,g) is NP-hard, by a polynomial-time reduction
from SAT.

Consider now the case in which for each a,b € D either fu, or g, is commutative (or
both). Define f',¢' : D? — D as follows

! _ f(a,b) if fup is commutative
fa;b) { g(a,b) otherwise

/ . g(a,b) if g, is commutative
glab) = { f(a,b) otherwise

Clearly f', ¢’ are tournament operations. It remains to show that Imp(f, g) C Imp(f’, g').



Consider an arbitrary cost function ¢ : D™ — Ry in Imp(f,g). For 7,57 € D", we
use f(T,7y) to represent the vector obtained by applying f coordinatewise to T and 7.
Applying the multimorphism property (Equation 1) twice gives

o(T)+ 9y = 9@ Y) +¢(f(Z,7) = opE.7)) + ¢q(Z,7))
where p(T, y) = f(g(fa y)v f(fv y)) and Q(Evy) = g(g(fvy)v f(fv y)) Similarly,
() +9(y) = ¢(f(@.Y) +9(x,y) = ¢(r(@,7)) + ¢(s(7,7))

where r(z,7) = f(f(,7),9(7,9)) and 5(Z,) = g(f(Z,7),9(z,¥)). By another applica-
tion of Equation 1,

¢(p(T, 7)) + o(r(%,7))

Y

o(f(p(Z,7),r(@,7))) + ¢(9(p(Z,7),7(Z.7)))
and
o(s(z, 7)) + ¢(a(7,9)) > o(f(s(7,9),4(%,9))) + ¢(9(s(Z,9),¢(7,7)))

Now it is tedious but simple (using the fact that f and g are conservative, and checking
all 16 possibilities) to show that, for all z,y € D

flz,y),r(z,y) = f(z,y)
9(p(z,y),r(z,y) = f'(z,9)
f(s(z,y),q(z,y) = 4¢'(z,9)
9(s(z,9),q(z,y)) = ¢'(z,y)

It follows that 2¢(T) +2¢(y) > 2¢(f'(Z, 7)) +2¢(¢' (Z,7)), and hence that ¢ € Imp(f’, ¢').
.

It is interesting to note that it is possible to have the strict inclusion Imp(f,g) C
Imp(f’,¢’) in the above result, as the next example shows.

Example 4.5 Let D = {1,2,3} and let ¢ : D?> — {0,00} be given by % (Z) = 0 if
7 € {(1,2),(1,3),(2,2)} and (%) = oo otherwise. Define f,g: D?> — D by

a if a,b € {1,2}
max(a,b) otherwise

fan) =
ga,t) = min(a,b)
Then ¢’ = g and [’ is given by

(a.b) { min(a,b) ifa,be {1,2}

max(a,b) otherwise

Now 1) € Imp(f’,g") but 4 & Imp(f, g) (since 1)(2,2) = ¢(1,3) = 0but ¢(f((2,2),(1,3))) =
¢(2a3) = OO) l

10



5 The set of all feasible/optimal assignments

For any cost function ¢ we define the corresponding sets of feasible assignments and
optimal assignments in the following way.

Definition 5.1 For any cost function ¢ : D" — R, the set of feasible assignments
for ¢, denoted Feas(¢), is defined as follows

Feas(p) % {Ze€ D" : (7)< oo}

The set of optimal assignments for ¢, denoted Opt(¢p), is defined as follows

Opt(¢) = {TeD :¥je D', ¢(@) < (@)}
Lemma 5.2 If ¢ : D" — R, has the multimorphism (f1,..., fn), then the relations
Opt(¢p) and Feas(¢) both have the polymorphism f;, fori=1,2...,m.

Proof: Consider (a11,...,a17),--,{(@m1s---,amr) € Opt(¢), and let « be the optimal
value, i.e. a = ¢(ai1,...,a1,). It is clear that to satisfy the inequality in Definition 3.6,
we must have, for all : € {1,...,m},

o(filarr, ... ami), .., filarr, ... amr)) = @

The result for Opt(¢) follows immediately. A similar argument gives the result for
Feas(¢). n

Definition 5.3 If f,g are functions from D? to D, then we say that f absorbs g if
Vz,y € D,

f(g(xay)vx) = f(g(yax)vx) = f(xvg(xay)) = f(xvg(yax)) =T

Example 5.4 Let f be a tournament operation and g its dual. If g(z,y) = z then

flg(z,y),z) = f(z,z) = z. Conversely, if g(z,y) =y then f(g(z,y),z) = f(y,z) ==
(since f and g are dual). Hence f absorbs g. A symmetric arguments shows that g
absorbs f. O

Example 5.5 It is easy to verify that the binary functions min and max are mutually
absorbing. In fact, by definition, any lattice operations A and V are mutually absorbing.
O

Example 5.6 Reconsider the operations maxg, ming defined in Example 3.8. It is easy to
verify that maxg absorbs ming, but ming does not absorb maxg (since ming(maxg(1,2),1) =
0#1). O

Lemma 5.7 Suppose that f, g : D?> — D are idempotent and f absorbs g. If ¢ : D" — R
has the multimorphism (f,g), then the relations Feas(¢) and Opt(¢) are both preserved
by a majority operation.

11



Proof: By Lemma 5.2, Feas(¢) and Opt(¢) both have the polymorphisms f and g. Now
define the ternary operation h : D* — D, for all z,y, z € D, as follows

hz,y,2) © f(f9(w,y), 9(x,2)), 9(y, 2)).-

It is easy to verify that A is a majority operation (see Definition 2.7), since

h(I,I,Z) = f(f(:z:,g(ac,z)),g(a:,z)) = f(x,g(x,z)) T
h(I,y,I) = f(f(g(fv,y),flﬁ),g(y,x)) = f(x,g(y,x)) =T
h(z,y,y) = [f(f(g(z,9),9(2,9)y) = fl9(z,9),y) =y

The set of polymorphisms of any relation is closed under composition [35], so Feas(¢)
and Opt(¢) both have the polymorphism h. "

Corollary 5.8 If ¢ : D" — R, has the multimorphism (f,g), then Opt(¢) and Feas(¢)
are preserved by a majority operation in each of the following cases:

1. f,g are the meet and join operations of a lattice.
2. f,g are the operations maxg, ming defined in Example 3.8.
3. f is a tournament operation and g is its dual.

Proof: Tt is simple to verify that, in each case, f and g are idempotent and f absorbs
g, as discussed in Examples 5.4 to 5.6. ]

When a relation is preserved by a majority operation, and hence decomposable into
binary projections, this provides a very compact representation for the relation, by simply
listing the binary projections.

Proposition 5.9 If f,g : D> — D are idempotent binary functions such that, for any
cost function ¢ : D" — R, € Imp(f,g) the minimum value of ¢ can be computed in
O(T(n)) time, then each binary projection of Opt(¢) can be computed in O(|D|*T(n))
time.

Proof: Consider any ¢ : D" — R, € Imp(f,g). We denote by ¢§‘;’ the function on n — 2
arguments obtained by fixing z; = a and z; = b, that is, we set

ab
ij (xl, sy L1y Lt Ly e oo s Lj—1y L1y - v - ,xn)

¢($1, ey L= Ay L1y - - - ,$]‘_1,b,£]‘+1,. .. ,xn)

def

Let oz%b be the minimum value attained by ;‘jb on D" 2 and let @ be the minimum value
attained by ¢ on D". It follows that

I;[0pt(¢)] = {(a,0) € D*| o} = a}.
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and thus the binary projections of Opt(¢) can be determined by calculating the values
of o and a%’ for all a,b € D.

It follows directly from Definition 3.6 that if ¢ has the multimorphism (f, g}, where
f and ¢ are both idempotent, then ¢%’ also has the multimorphism (f, g). Hence all of
these values can be computed in O(|D|?*T(n —2) +T(n)) time, and hence in O(|D|?*T(n))
time. "

Hence, in each of the cases mentioned in Corollary 5.8, a compact representation of
all minimizers for a given cost function can be found in polynomial time by using existing
polynomial-time algorithms to find the minimal value.

Example 5.10 Consider the important special case of submodular function minimisa-
tion (SFM) over a Boolean domain, {0,1}. In this case the relations II;;[Opt(¢)] are
Boolean binary submodular relations. By exhaustion, it is easy to show that any such
relation can be represented as a conjunction of 0,1 or 2 of the following relations: X; = 0,
X,=1,X;=0,X;=1 X, = X;, X; <Xj, X; > Xj;. It follows that the set Opt(¢)
of optimal solutions to an SFM problem over a Boolean domain can be represented by a
partial order. Ekin et al. [24] established the same result for Feas(¢). O

6 Modular decomposition of tournaments

In this section we introduce a number of ideas from graph theory which will be used in
Section 7 to analyse the structure of cost functions with a tournament pair multimor-
phism.

First we note that there is a one-to-one correspondence between tournament opera-
tions f and complete digraphs G = (D, E) given by (z,y) € E iff z # y and f(x,y) = v,
for all z,y € D. Such complete digraphs are usually known as tournaments. Hence
every tournament operation has an associated tournament, and vice-versa.

If f: D? — D is a tournament operation, then we will write (D, f) to represent the
corresponding tournament (i.e., the complete digraph on D with an arc from a to b if
and only if f(a,b) = a). For any B C D, we will write (B, f), or simply B, to represent
the subtournament (B, f|g2).

Two sets X,Y will be said to overlap if they intersect but neither is a subset of the
other.

Definition 6.1 ([21]) Given a tournament (D, f), a subset B C D is called a module
if for all c € D — B, and all a,b € B, f(a,c) = a if and only if f(b,c) = b. A module is
strong if no other module overlaps it.

The strong modules of a tournament (D, f) can be organized in a tree structure
(known as its modular decomposition) with root D, a leaf {a} for each a € D and
such that at each internal node A the children Ay, ..., A, of A form a partition of A [21].

Definition 6.2 In the modular decomposition of a tournament (D, f), a node A with
children Ai,..., A, is called
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e prime if VI C {1,...,r} such that 1 < |I| < r, U;c; Ai is not a module. (We say
that Ay,..., A, is a prime partition of A.)

e linear if there exists an ordering of {1,...,r} such that if I C {1,...,r} and
L < |I| <r, then ;c; Ai is a module if and only if the members of I are consecutive
in the ordering. (We say that Aq,..., A, is a linear partition of A.)

All tournaments have a unique modular decomposition in which each node is either
prime or linear. In fact, this decomposition can be found in O(|D|?) (and hence optimal)
time [43]. We denote this unique modular decomposition of a tournament (D, f) by
MD(D, f). Consider a strong module A of a tournament (D, f) such that |A] > 1. If
the subtournament (A, f) is strongly-connected, then the node A is prime, otherwise A
is linear and Aq,..., A, are its strongly-connected components. Any module A which is
strongly connected is necessarily strong and hence has a corresponding node in MD (D, f).

If Ay,..., A, are the children of A in the modular decomposition MD(D, f), then for
any 7,5 € {1,...,r} we have that for all a,b € A;, and all ¢,d € A, f(a,c) = a &
f(b,e) =b< f(b,d) =b. Hence f also defines a tournament operation on {Aj,..., A4, }.
We call this the tournament operation induced on {A;,...,A,} by f and we abuse
notation by writing f(A;, A;) = A; if Va € A;, Vb € A;, f(a,b) = a.

A set A C D is simple with respect to the tournament operation f : D> — D if there
is no non-trivial congruence class B of elements of A which all behave in the same way
with respect to the other elements A — B [6]. In other words, A is simple with respect to
f if and only if there is no module B of (A, f), with 1 < |B| < |A].

The following lemma summarises the discussion above.

Lemma 6.3 Let (D, f) be a tournament, let A be a module of (D, f) and suppose that
|A| > 1 and (A, f) is a strongly connected subtournament. Then

1. A is a prime node in the modular decomposition MD(D, f).

2. If Ay,..., A, are the children of A in MD(D, f), then {Ay,..., A} is simple and
strongly connected with respect to the induced tournament.

7 Cost functions with tournament pair multimorphisms

In this section we will show that any cost function with a tournament pair as a multimor-
phism has certain special properties. These results will be used in Section 8 to establish
the tractability of Imp(f,g) for any tournament pair (f,g).

A standard technique of constraint satisfaction is to eliminate values from the domains
of variables when these values can be shown to be inconsistent. We will adapt this
technique to valued constraint satisfaction by defining (partial) cost functions with a
reduced domain.

Definition 7.1 A function ¢ : Dy x ... x D, — R, is domain-reduced if, for each
i€{l,...,r}, and for each a € D; 3T € Dy X ... X D, such that T[i] = a and $(T) < co.
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In the literature on constraint satisfaction, a VCSP instance where every cost function is
domain-reduced is said to be generalized arc consistent in its underlying CSP [15, 17].

Definition 7.2 A function ¢ : D1 x Dy — {0,00} is called bijective if the set {{a1,a2) |
#(a1,a2) =0} is a bijection of D1 x Ds.

If ¢ : D1 x Dy — {0, 00} is bijective, then we will abuse notation and write ¢[a;] (for any
ay € D1) to represent the unique ay € Dy such that ¢(ai,as) = 0.

Definition 7.3 A bijective function ¢ : Dy x Dy — {0,00} is an isomorphism with
respect to the tournament operation f : D x D — D, (where Dy,Ds C D) if for all
a,b € Dy, f(a,b) =a < f(¢[a], p[b]) = ¢la].

Lemma 7.4 A bijective function ¢ : D1 x Dy — {0,00} has a symmetric tournament
pair (f,g) as a multimorphism if and only if ¢ is an isomorphism with respect to f (and
hence also g).

Proof: Using ¢|[a] to represent the unique ¢ € Dy such that ¢(a,c) = 0, we have that ¢
has the multimorphism (f, g) if and only if for all a,b € Dy,

0 = ¢(a, ¢la]) + (b, 9[b]) = &(f(a,b), f(¢lal, #[b])) + ¢(g(a,b), g(#[a], H[b]))
This inequality holds if and only if f(a,b) = a precisely when f(¢[a], ¢[b]) = Pal. "

Lemma 7.5 Let ¢ : Dy x Dy — {0,00} be a domain-reduced crisp cost function with a
symmetric tournament pair (f,g) as a multimorphism.

If D1 and Dy are simple and strongly connected with respect to f, then ¢ is either the
constant function 0 or bijective.

Proof: Since Dy, Dy are simple and strongly connected with respect to f, and the
relation Feas(¢) = {(d1,da2) € D1 x Dy | ¢(d1,d2) = 0} is preserved by f (by Lemma
5.2), Proposition 30 of [6] (or the more general Lemma 3.5 of [5]) tells us that ¢ is either
constant 0 or bijective. [

Lemma 7.6 Let ¢ : D1 x Dy — {0,00} be a domain-reduced crisp cost function with a
symmetric tournament pair (f,g) as a multimorphism.

Let A be a module of (D1, f) and let B = {b € Ds|Ja € Dy, ¢p(a,b) = 0}. Then B is
a module of (Da, f).

Proof: Suppose, for a contradiction, that B is not a module of (D, f). Then 3b,b" € Do,
Jv € Dy — B such that f(v,b) = v and f(v,b') =b'. Since ¢ is domain-reduced, Ju € D,
such that ¢(u,v) = 0. Suppose, without loss of generality, that f(D; — A, A) = A, and
let a € A be such that ¢(a,b) = 0. Then ¢(u,a) = a and by the multimorphism property,

0 = é(u,v) + ¢la,b) > ¢(a,v) + ¢(u,b)
This implies that ¢(a,v) = 0 which contradicts our hypothesis that v ¢ B. "
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Definition 7.7 Let ¢ : D1 x Dy — R be a cost function and let (f,g) be a symmetric
tournament pair on a set D, where D1,Dy C D. Let Ay,..., A, and B1,...,Bs be prime
or linear partitions in the modular decomposition of (D1, f) and (Do, f), respectively.
The induced crisp cost function ¢ : {A1,..., A} x {B1,...,B,} — {0,00} is defined
by ¢(A;, Bj) = 0 if and only if Ja € A;, Ib € B; such that ¢(a,b) < oco.

Lemma 7.8 If f,g,¢,¢ are as in Definition 7.7, then ¢ € Imp(f,g) implies that ¢ €
Imp(f, g).

Proof: Suppose that ¢ ¢ Imp(f,g). Then, without loss of generality, there are A A
and By, B,, such that f(AZ,A]) = A;, f(Bg, Bn) = B, E(AzaBm): E(A],Bk) = 0 but
¢(Ai, By) # 0. But then 3a € A;,b € Aj,c € By,d € By, such that ¢(a,d) < oo,
#(b,c) < oo and ¢(a,c) = oco. Since f(a,b) = a and f(c¢,d) = ¢, we can deduce that

¢ & Imp(f, g). J

Definition 7.9 A cost function ¢ : Dy x ... x D, — R, is finite if $(T) < oo for all
T€ED X...XxD,.

Lemma 7.10 Let ¢ : Dy x Dy — Ry be a domain-reduced cost function with a symmetric
tournament pair (f,g) as a multimorphism.

If D1 and Dy are both strongly connected with respect to f, then either ¢ is finite, or
the induced crisp cost function ¢ on the prime partitions of Dy and Do is bijective.

Proof: By Lemma 6.3, both D; and Dy have prime partitions {4;,...,A,} and
{Bj,...,Bs} which are simple and strongly connected with respect to the induced tour-
nament. Hence, by Lemma 7.5, if ¢ is not bijective, then ¢ = 0. We will show that in
this case ¢(a,b) < oo for any a € Dy, b € Ds.

Suppose that a € A; and b € Bj. Since ¢ is domain-reduced, Jv € D, such that
¢(a,v) < co. Suppose that v € By. We claim that Jw € Bj such that ¢(a,w) < oo.
Assume that f(Bj, By) = By, (the argument for the case f(Bj, By) = Bj is symmetric).
Since {A1,..., A} is strongly connected, Im € {1,...,r} such that f(4;,4n) = An.
Now, since ¢ = 0, Ju € A,,, Iw € Bj such that ¢(u,w) < co. Applying the multimor-
phism property, we obtain

00 > ¢(a,v) + plu,w) = ¢(f(a,u), f(v,w)) + ¢(g(a, u), g(v,w))
= ¢(ua ’U) + ¢(aa ’LU)
Therefore ¢(a,w) < co.
Since {A4,..., A} and {By, ..., By} are strongly connected, 3h, [ such that f(A4;, 4;) =
A; and f(Bj, B) = By. Since ¢ =0, 3¢ € A;, Id € By, such that ¢(c,d) < co. Applying
the multimorphism property, we obtain
00 > Pla,w) + ¢lc,d) = ¢(f(a,c), f(w,d)) + d(g(a,c), g(w,d))
= ¢(a7 d) + ¢(Ca w)
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Therefore 3d € By, such that ¢(a,d) < oco. By a similar argument we can show that
Jde € A,, such that ¢(e,b) < co (where m is such that f(A;, A,) = Apn). Then applying
the multimorphism property gives

00 > Pla,d) + ¢(e;b) > @(f(ae), f(d,b)) + ¢(g(a,e), g(d, b))
= ¢(€, d) + ¢(av b)

Thus ¢(a,b) < co. [

Lemma 7.11 Let ¢ : Dy x Dy — R be a domain-reduced cost function with a symmetric
tournament pair (f,g) as a multimorphism.
If Dy is strongly connected with respect to f and Dy is acyclic with respect to f, then

¢ is finite.

Proof: If Dy is strongly connected, then it must contain a complete cycle with respect
to f, i.e., D1 = {ag,...,a,_1} such that f(a;,a;11) = a; (for i =0,...,7 — 1) with the
addition ¢ + 1 understood as being modulo r. Note that this complete cycle need not be
Hamiltonian, since we allow repeats (i.e. a; = a; for some i # j).

On the other hand, an acyclic tournament defines a total order. Thus Dy = {by,...,bs}
such that f(b;,b;) = b; if and only if i < j (and where, in this case, b; # b; if i # j).

Suppose, for contradiction, that ¢(a;,b;) = co. Since ¢ is domain-reduced, there
exists some k' such that ¢(aj,b;) is finite. Hence there must be some k such that
$(ak,bj) < ¢(ary1,bj) = oo, where the addition & 4 1 is again modulo r. For all h < j,
we have the following multimorphism inequality:

d(ak,bj) + dlagy1,bn) > Plag,by) + Pp(ags1,b5) = oo

from which we deduce that ¢(agi1,by) = oo. Since ¢ is domain-reduced, there exists
some m > j such that ¢(aky1,by,) is finite. For ¢ € {1,...,r}, let m(¢) be the smallest
integer such that ¢(ay, by,()) is finite. We have just shown that m(k+1) > j. If m(t) > j,
then for all A < j, ¢(as, by) = o0, so

P(at, b)) + dlat+1,bn) > dlat, bp) + Plart1, b)) = o0

and hence for all h < j, ¢(asr1,bp) = 0o, from which it follows that m(t + 1) > j. Thus
m(t) > j = m(t+1) > j (where the addition ¢ 4+ 1 is again modulo r). But then,
by induction through the integers £ + 1,k + 2,...,r — 1,0,1,...,k we can deduce that
m(k) > j, which contradicts ¢(ay, b;) < oo. n

We now extend Lemma 7.11 to any domain Dy which is not strongly connected.

Lemma 7.12 Let ¢ : Dy x Dy — R be a domain-reduced cost function with a symmetric
tournament pair (f,g) as a multimorphism.
If Dy is strongly connected with respect to f and Ds is not, then ¢ is finite.
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Proof: If |Dy| = 1 then ¢ is finite because it is domain-reduced. Otherwise, since
D, is not strongly connected, it has a partition By, By (with By, By # () such that
f(B1,Bs) = By. Let Ay,..., A, be the prime partition of Dy. Consider the induced crisp
cost function ¢ : {Ay,..., A} x {B,Bs} — {0,00}. From Lemma 7.11, we know that
¢ = 0. We will show that ¢(a,b) < oo for any a € A;, b € By. The proof for b € By is
entirely similar.

Since ¢ is domain reduced, Ju € A, (for some k € {1,...,r}) such that ¢(u,b) < oo.
Since D is strongly connected, 35 € {1,...,r} such that f(A;, Ax) = Ay. Since ¢ =0,
Jv € Aj, Jw € By such that ¢(v,w) < co. Applying the multimorphism property, we
obtain

00 > P(u,b) + dlv,w) = $(f(u,v), f(b,w)) + $(g(u,v), g(b,w))
= ¢(uv w) + ¢(Ua b)

Therefore Jv € A; such that ¢(v,b) < co. By an easy inductive proof, we can show that
Vh e {1,...,r}, 3z € A} such that ¢(z,b) < oo (3)

since for all h, there is a chain 4y, ... i, such that i; = h, i, = k and f(4;;,4;,,,) = A
(G=1,....,p—1).

Now, since ¢ is domain reduced, 3¢ € Dy such that ¢(a,c) < oco. Assume that
f(e,b) = ¢ (the proof for the case f(c,b) = b is entirely similar). Since D is strongly
connected, Im € {1,...,r} such that f(A;, Ay) = A,,. By Equation (3) above, 3d € A,,
such that ¢(d,b) < oco. Applying the multimorphism property gives

o0 > ¢(d,b) + ¢a,c) = ¢(f(d,a), f(b,c)) + d(g(d,a),g(b,c))
= ¢(da C) + ¢(aa b)

Therefore ¢(a,b) < oo. [

tj4+1

We can combine Lemmas 7.10 and 7.12 into the following proposition.

Proposition 7.13 Let ¢ : Dy x Dy — Ry be a domain-reduced cost function with a
symmetric tournament pair (f,g) as a multimorphism, where Dy is strongly connected
with respect to f.

Then either Do is strongly connected with respect to f and the induced crisp cost
function on the prime partitions of D1 and Do is bijective, or ¢ is finite.

The final result we shall need shows that in some circumstances cost functions can
be expressed as the sum of cost functions with smaller arity. We first extend to cost
functions the definition of projection given for relations in Definition 2.8.

Definition 7.14 Given a cost function ¢ : D1 x ... x D, — Ry, and a set of indices
I ={i1,...,ip}, the projection of ¢ onto I is the function II;(¢) : D;; x ... x D;, — Ry

defined by
def

Orp(z,...,zp) = min {6(2)}

{z€Dy % .. x D, |zlij|=x; (j=1,...p)}
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For notational convenience, unary and binary projections will be denoted by II;(¢) and
Hij(qﬁ) rather than H{Z} (¢) and H{i,j} (¢)
Note that if (f1,..., fi) is a multimorphism of ¢, then it is also a multimorphism of

17 (¢) [12].

Lemma 7.15 Let ¢ : Dy x...xD, — R, be a cost function with a symmetric tournament
pair (f,g) as a multimorphism.

If Dy is strongly connected with respect to f and each binary projection I1;(¢) is finite,
forj=2,...,r, then ¢ = ¢ + ¢po where ¢y : Dy — R is unary and ¢y : Do X ... X Dy —
R, belongs to Imp(f,g).

Proof: We prove the result by induction on the arity of ¢. The result trivially holds if
¢ is unary. Suppose that it holds for cost functions of arity less than r and consider a
cost function ¢ of arity r > 1.

If Dy is strongly connected, then it must contain a complete cycle with respect to f,
ie., D; ={ag,...,a,—1} such that f(a;,a;+1) =a; (fori =0,...,r—1) with the addition
it + 1 understood as being modulo r.

Let ¥ = (y3y...,yr) € D3 x ... x D,. (If r = 2, then 5§ = () is just the tuple of
length zero.) Consider the cost function 45 : Dy x Dy — Ry defined by ty(u,v) =
d(u,v,y3,...,yr). Choose an arbitrary pair a,b € Dy, and assume without loss of gen-
erality that f(a,b) = b. Since ¢ € Imp(f,g), the following inequalities follow from the
definition of a multimorphism and the duality of f and g.

@by(ag,a) + %(alvb) wg(ag,b) + w?(alva)
wy(alva) + I/Iy(CLQ,b) w?(alvb) + @bg(ag,a)

IN N

Yylar—1,a) + YPylag,b) < ylar—1,b) + ylag,a)

Consider first the case in which 1)y is finite. By summing the above r inequalities we can
see that they are only compatible when there is equality throughout.

Consider now the case in which 15 is not finite. Without loss of generality suppose
that ¢y(a;,a) = oco. By the hypothesis that IT;;(¢) is finite for all j > 1, and since
Feas(¢) is decomposable into its binary projections (by Corollary 5.8), we must have
ok (@) (a,yx) = oo (for some k € {3,...,7}) or ILjx(¢)(yj,yx) = oo (for some 7,k €
{3,...,7}). In both cases, there is equality in all r of the above inequalities, as both sides
are infinite.

Hence, in all cases, for all u,v € Dy, and all z,y € Do,

¢§(uvx) + %(vay) = %(uay) + ¢§(vvx)

Any binary cost function satisfying an identity of this form is called modular.
It is known that a binary modular cost function can be expressed as the sum of two
unary cost functions [9, 12]. Therefore, ¢y(u,v) = Qp%(u) +¢%(v) for some unary functions

@b% : Dy — R, and @b% : Dy — Ry It follows that ¢(u,v,ys,...,4r) = PV1(w, Y3, ..., y:) +
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Ya(v,ys,...,yr), where 1 (u,ys,...,yy) = Qp%(u) and 2 (v, y3,...,yr) = zp%(v) are (r—1)-
ary cost functions. Moreover, it is straightforward to verify that we can take i =
M1 3,19 € Imp(f,g) and 2 = ¢ — 4p1. By the inductive hypothesis, 11 = ¢1 + 93
where ¢y : D1 — R, is unary and 43 : D3 x ... x D, — R, belongs to Imp(f, g). Hence
¢ = ¢1+ o where g = 1p3 +1po. Moreover, ¢o : Dy X ... x D, — R, belongs to Imp(f, g)
since ¢ — ¢ € Imp(f, g) for any unary function ¢. n

8 Tournament pair multimorphisms give tractability

We will first show that any set of cost functions with a symmetric tournament pair
multimorphism is tractable by showing that it is possible to construct a reordering of the
domains of each of the variables which converts the corresponding VCSP instance to an
instance of submodular function minimisation (SFM).

It is known that every tournament (D, f) admits a perfect factorizing permuta-
tion, that is, a linear ordering of D such that all modules are intervals in the ordering [43].
In fact, this total ordering can be obtained by modifying f in the following way.

Definition 8.1 Let f : D?> — D be a tournament operation. A total ordering derived
from f is a tournament operation f': D> — D such that

1. for all a,b € D, if it is not the case that a € A; and b € A; (j # 1) where Ay,..., A,
are the children of a prime node in MD(D, f), then f'(a,b) = f(a,b).

2. for all prime nodes in MD(D, f) with children Ay,...,A,, the induced tournament
fri{A,... A2 = {Ay, ..., A} is a total order.

Theorem 8.2 If (f,g) is a symmetric tournament pair, then Imp(f,g) is tractable.

Proof: Let I' be a finite subset of Imp(f, g), and let P = (V, D,C) be any instance of
VCSP(I') and assume that V = {v,va,...,v,}.

The proof proceeds in three stages. We first restrict the domains of the variables of P
in such a way that every cost function is domain-reduced. Second, we construct a total
ordering derived from f for each of these restricted domains in polynomial time. Finally,
we show that with these total orderings every cost function is submodular, and hence the
minimal cost solution can be found in polynomial time.

Stage 1: For the first step consider the CSP instance obtained by replacing each
valued constraint (o, ¢) in C' with the constraint (o, Feas(¢)). By Corollary 5.8, all of the
relations Feas(¢) are preserved by a fixed majority operation, and hence by Lemma 2.9
they are decomposable into binary projections. Since I is finite, the maximum arity of the
cost functions in I' is bounded by a constant, so we can calculate the binary projections
of Feas(¢) for each (o,¢) € C in polynomial time in the size of P. Furthermore each
of these binary projections is also preserved by the same majority operation, so we have
constructed a CSP instance P’ with binary constraints where each constraint relation is
preserved by a fixed majority operation.
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We now establish strong 3-consistency in the CSP instance P in O(n?®|D|?) time us-
ing standard constraint-processing techniques [31, 14]. The resulting CSP instance P”
has restricted domains Dy, Do, ..., D, for the variables vy, vs,...,v,, respectively, and
possibly some new binary constraints. By Theorem 3.5 of [36], the instance P” is strong
n-consistent, so each value in each restricted domain can be extended to a complete
solution. This means that each of the cost functions in P are domain-reduced when
limited to these restricted domains, which completes the first stage of the proof. The
extended VCSP instance with all the original valued constraints of P, the restricted do-
mains Dy, Dy, ..., Dy, and binary crisp cost functions corresponding to all the constraints

of P" will be denoted P. Note that Cost/75 = Costp but we have introduced redundant

binary constraints in P in order to render explicit exactly those assignments to pairs of
variables that cannot be extended to a complete solution of finite cost.

Define Feas;; : D; x Dj — {0,000} to be the explicit crisp cost function on variables
v, vj, i.e. Feas;;(a,b) = 0 iff (a,b) is a consistent assignment to variables (v;,v;) in P".

Stage 2: For the second stage of the proof we need to construct a total ordering
f! derived from f. In stage 3 of the proof, we will show that every cost function of P is
an element of Imp(f’,¢'), where ¢’ is the dual of f’. Since we allow each D; to have its
own individual ordering, we will simplify notation by assuming, in the following, that the
sets D1,..., D, are disjoint subsets of D. We can then define f’|p. separately for each
ie{l,...,n}.

By Definition 8.1, to define f'|p, we need to choose some total ordering for each of
the prime partitions in the modular decomposition of (Dj;, f). Let A be a prime node in
MD(D;, f), let B = {b € D;|3a € A such that Feas;;(a,b) < oo} and let Feasf} denote
the restriction of Feas;; to A x B. Now Feasflj : Ax B — R is domain-reduced since each
value in A can be extended to a complete solution of P”. Since A is prime, A is strongly
connected with respect to f, so by Proposition 7.13, there are two possible cases: either
(1) Feas{} = 0 or (2) B is strongly connected with respect to f and there is a bijective
binary constraint between the prime partitions of A and B. In the second case, B is a
strongly connected module (by Lemma 7.6) and hence, by Lemma 6.3, B is a prime node

in MD(D, f). In this case, let Feasf; represent the corresponding bijective induced crisp
cost function on the prime partitions of A and B.

We use only these bijective functions Feasz-Aj to define f’. We repeat the following
steps until f’ has been defined on all the prime partitions in the modular decomposition
of each domain. Choose some prime node A in MD(D;, f) for some 7, such that f’ has not
yet been defined on the prime partition {A;,..., A, } of A. Choose an arbitrary ordering
of Ai,..., A,. For each j such that Feas{} # 0: let {Bi,..., Bs} be the prime partition of
B = {b € Dj|3a € A such that Feas;;(a,b) < co}; choose the only possible ordering f’ of

{B4i,...,Bs} such that the bijective function Feasflj is an isomorphism with respect to f'.
Because we ensured that P” was strong n-consistent, we can choose the ordering for one
prime partition in one domain D; arbitrarily, and then propagate this choice to all prime
partitions of other domains whose ordering is now determined, without encountering any
contradictions.

We repeat this arbitrary choice of ordering and propagation until we have fully defined
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the total ordering f’. At every step we simply choose an ordering for a prime partition of
some domain, examine the binary constraints to neighbouring variables, and propagate
as necessary. Since there is no backtracking involved, this process can be completed in
polynomial time in the size of P, and this completes the second stage of the proof.

Stage 3: It remains to show that every cost function ¢ of P is an element of
Imp(f’,g'), where ¢’ is the dual of f'. Without loss of generality, assume that ¢ : Dy X
Dy x --- x D}, — Ry and that ¢ is domain-reduced.

We need to show that the multimorphism inequality in Definition 3.6 (Equation 1)
holds for the tournament pair (f’,¢') for arbitrary Z,7 € D; X ... X Dj. Since this
inequality trivially holds if ¢(Z) or ¢(7) is infinite, we assume in the following that ¢(7)
and ¢(y) are both finite.

We know that this multimorphism equality holds for the tournament pair (f,g) (be-
cause ¢ € Imp(f,g)), so we only need to consider the case where f'(Z,7) differs from
f(Z,7). In other words, when there is some j € {1,...,k} such that Z[j] and y[j] belong
to distinct children of some prime node of MD(Dj, f). Hence, we shall assume in the fol-
lowing, without loss of generality, that Z[1] € A} and 7[1] € A} where A}, Al are distinct
children of the prime node A' in MD(Dy, f).

Let Al,..., Al be the prime partition of A'. Without loss of generality, suppose that
Z[1],5[1] lie in the distinct parts A}, AL (respectively) of this prime partition. Now set
al = 7[1], a} = Y[1] and select an arbitrary element a; from A} for each i = 3,...,s.
Since ¢ is domain-reduced, Vi € {3,...,s}, 3a; = (a},...,a¥) € Dy x -+ x Dy such that
#(a;) < oo. Set a1 =T and az = 7. Recall that ¢(7) and ¢(y) are also finite.

Let ¢’ denote the cost function ¢ restricted to domains D} x -+ x D} where D} =

{ag|i =1,...,s} (j €{1,...,k}). Note that ¢' is domain-reduced, since ¢'({a},...,ak)) <
>~ (i = 1,...,8). Also notice that D/ is strongly connected, since {Al,..., Al} is
strongly connected with respect to the induced tournament. Furthermore, the modular
decomposition MD(D/, f) consists of a single prime node D} with prime decomposition
{al},...,{al}. Since 7,7 € D} x -+ x D}, it is sufficient to show that ¢/ € Imp(f’,¢').

Now consider the binary projections ¢; = II;;(¢'), for j € {1,...,k}. Since Dj is
strongly connected, for each j = 2,...,k, it follows from Proposition 7.13 that either
(a) #); is finite or (b) the induced crisp cost function ¢T] is bijective. Without loss of
generality, suppose that qﬁT] is bijective for j = 2,...,l and gb’lj is finite for j = 14+1,... k.
By Lemma 7.4, D} (j = 1,...,1) are all isomorphic to D} (with a single prime node D
with decomposition {a{}, .. {al} in MD(D3, f)).

It follows that ¢ can be expressed as the sum of the crisp binary bijective cost
functions ¢, ( =2,...,1) and a cost function ¢ : D} x D}, x - x D} — R.. Hence it
is sufficient to show that (a) ¢}; € Imp(f’,¢') for j € {2,...,1} and (b) ¢ € Imp(f’,d’).

We will first show that ¢); € Imp(f’,¢') for j € {2,...,l}. We know that Al is
strongly connected, since it is a prime node of MD(Dy, f). Consider some j € {2,...,1}
and let A7 = {b € Dj|Fa € A® such that Feas;;(a,b) < oo}. By Lemma 7.6, A7 is a
module. Recall that Feas‘f‘j1 denotes the restriction of Feas;; to A' x A7, Now Feas‘flj1
cannot be finite, since when restricted to domains D] x D;- it becomes bijective. Therefore,
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by Proposition 7.13, A7 is strongly connected and the induced crisp cost function Feasf‘j1
on the prime partitions of A' and A/ is bijective. Furthermore, by Lemma 6.3, A7 is a

prime node in MD(D;;, f). It follows that Feasf‘j1 is an isomorphism of f’, by the definition

of f' in stage 2. Since ¢’1j is also bijective, and D/ contains exactly one element from

each of the parts of the prime partition of A', 1; must also be an isomorphism of f.
Thus, by Lemma 7.4, ¢}; € Imp(f’,g").

Next we consider the function +. Since each binary projection II;;(1)) is finite, for
j=1+1,...,k, we can deduce, by Lemma 7.15, that ¢ = 11 + 1o where ¢y : D} — R, is
a unary function and 45 : D}, x ... x D}, = Ry is a (k —I)-ary domain-reduced function
in Tmp(f, ).

Now we know that 11 € Tmp(f’, ¢'), since all unary cost functions belong to Imp(f’, ¢').
The cost function 9 satisfies all of the relevant properties of ¢, but has a lower arity.
Hence, by repeating the argument, as necessary, we can continue to reduce the arity until

we obtain the result. n

Theorem 8.3 If (f,g) is a tournament pair, then Imp(f,g) is tractable.

Proof: Consider P € VCSP(Imp(f,g)). Let Feas(P) denote the CSP instance ob-
tained from P by replacing each cost function ¢ by the constraint relation Feas(1)). By
Lemma 5.2, the constraint relations of Feas(P) all have the polymorphisms f and g. For
each variable v of Feas(P), and each value d € D, let Feas(P),—q denote the CSP instance
Feas(P) with the additional constraint ((v),{(d)}) (i.e., the variable v must be assigned
the value d). Each such additional constraint also has the polymorphisms f and g.

Any class of CSP instances where all relations have a conservative commutative poly-
morphism can be solved in polynomial time [5]. For each variable v and for each value d,
if Feas(P),—q4 has no solution, then we eliminate d from the domain of v. Let P’ denote
the resulting VCSP instance. Clearly P’ € VCSP(Imp(f, g)).

Suppose that the domain of the ith variable in P’ contains a pair of values a,b such
that f(a,b) = g(a,b) = b. Let % (respectively Z°) represent an optimal solution to P’
such that Z[i] = a (respectively Z[i] = b). Let ¢ denote Costp, the function obtained by
summing all the cost functions of P’. By construction of P, $(Z%) < oo and ¢(Z’) < .
Let 7 = f(z% %) and Z = ¢(T% Z°), where f and g are applied componentwise. Since ¢
has the multimorphism (f, g), we have

6@ + 6z < @) + ¢

Now 3[i] = f(a,b) = b and Z[i] = g(a,b) = b. Thus, by definition of Z°, $(Z°) < ¢(7) and
$(@°) < $(Z). Therefore 2¢4(z°) < p(T*) + ¢(Z°). Hence, since ¢(z°) is finite, we have
(z%) < ¢p(Z%). It follows that the value a for the ith variable is unnecessary in the search
for a single optimal solution to P’.

Therefore, we can eliminate all values a from the domain of a variable v such that there
exists b with f(a,b) = g(a,b) = b in the domain of the same variable. On these restricted
domains (f,g) is a symmetric tournament pair, so the result follows from Theorem 8.2. m
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9 Examples of new tractable classes

In this section we will present examples of novel tractable sets of cost function which are
characterised by having a tournament pair multimorphism. Our first example is closely
related to the set of submodular functions, but contains cost functions which are not
submodular under any permutation of the domain D.

Example 9.1 Let D = {1,2,3} and consider the tournament operation defined by
f(1,2) =1, f(2,3) = 2, f(3,1) = 3, corresponding to a cyclic tournament on D =
{1,2,3}. Let g be the dual of f (i.e., g(1,2) =2, ¢(2,3) =3, ¢(3,1) = 1)).

The set Imp(f, g) contains 3 types of cost functions:

1. all unary cost functions ¢ : D — R,.

2. the three binary cyclic permutations mj, : D> — R, (k = 0,1,2) given by

(2, ) oo otherwise

{0 ify=xz+k (mod 3)

3. cost functions ¢ such that Feas(¢) C Dy x ... x D, with |D;| < 2, for all i €

{1,...,7},

Notice that no re-ordering of the domain can render m; submodular. The proof of
Theorem 8.2 shows that (after establishing strong 3-consistency) any problem instance
P € VCSP(Imp(f,g)) is equivalent to an instance P’ with only these types of cost func-
tions and such that the two subproblems on

1. the set V3 of variables whose domains are of size 3
2. the set V5 of variables whose domains are of size 2 or less

form two independent optimization problems. The former is in fact a collection of inde-
pendent optimization problems on the connected components of the graph whose nodes
are the variables V3 with variables v;, v; joined by an edge if and only if there is a cyclic
permutation constraint between v; and v; in P’. Each of these optimization problems
are trivially solvable by exhaustion over at most 3 possible solutions. The associated op-
timization problem on V5 can be transformed into a submodular function minimization
(SFM) problem by renaming the domain value 1 in domains D; = {1,3}. By renam-
ing 1 as 4, the resulting cost functions on the variables in V5 are submodular under the
usual total order 1 < 2 < 3 < 4. The tractability of VCSP(Imp(f,g)) then follows
from the tractability of SFM over non-Boolean domains [12] (which is a straightforward
generalization of the tractability of SFM over Boolean domains [50, 34, 32]). O

Example 9.2 As an example of a tractable class of valued constraints with a non-

symmetric tournament multimorphism, consider Imp( f, h) where f is given by f(1,2) =1,
f(2,3) =2, f(3,1) = 3 (as in Example 9.1) and h is the tournament operation given by
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h(1,2) =2, h(2,3) = 2, h(3,1) = 1. As shown in the proof of Theorem 8.3, after estab-
lishing generalized arc consistency [46] (i.e., eliminating from domains values which have
no finite extension in some valued constraint, this operation being repeated until con-
vergence), we can eliminate the value 3 from any domain containing the values 2 and 3.
The resulting VCSP instance is an instance of SFM over a collection of 2-valued domains,
which again is tractable. O

10 Conclusion

In this paper we have shown that it is possible to unify and extend the tractable problems
of Horn clause satisfiability and submodular function minimization via the investigation
of tournament multimorphisms.

Over Boolean domains, there remain two other important tractable constraint classes,
corresponding to 2-SAT and linear equations [8, 12]. These classes can both be charac-
terised by having ternary multimorphisms. Therefore an obvious avenue of future research
is the extension of tournament multimorphisms to ternary multimorphisms. Bulatov has
already shown [4] that if " is a tractable class of crisp cost functions containing all unary
restrictions, then I' C Imp(f, g, h) for some ternary multimorphism (f, g, h). It is an open
question whether this generalizes to arbitrary (non-crisp) cost functions.

On a more practical level, it is known that SFM over a Boolean domain can be
solved in O(n?) time when the submodular function ¢ satisfies one the following extra
conditions: ¢ is symmetric [47, 45], ¢ is cubic [2], or ¢ is (0,1)-valued [18, 19, 40]. In
the case of non-Boolean domains, a cubic-time algorithm exists for SFM when ¢ is the
sum of binary submodular functions [10] or when ¢ is the sum of certain classes of (0,1)-
valued functions over a lattice [11, 39, 41]. In each case, the cubic-time complexity is
obtained by a reduction to the MIN-CUT problem. An obvious avenue of future research
is to determine which of these cubic-time classes generalizes to arbitrary tournament pair
multimorphisms.
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