
Computing S
ien
eGENERALISING SUBMODULARITY AND HORN CLAUSES:TRACTABLE OPTIMIZATION PROBLEMS DEFINED BYTOURNAMENT PAIR MULTIMORPHISMSDavid A. Cohen,Dept. of Computer S
ien
e, Royal Holloway,University of London, UKdave�
s.rhul.a
.ukMartin C. Cooper,IRIT, University of Toulouse III, 31062 Toulouse, Fran
e
ooper�irit.frPeter G. Jeavons,Computing Laboratory, University of Oxford, UKPeter.Jeavons�
omlab.ox.a
.ukCS-RR-06-06
�Oxford University Computing LaboratoryWolfson Building, Parks Road, Oxford OX1 3QD



Abstra
tThe submodular fun
tion minimization problem (SFM) is a fundamental problemin 
ombinatorial optimization and several fully 
ombinatorial polynomial-time algo-rithms have re
ently been dis
overed to solve this problem. The most general versionsof these algorithms are able to minimize any submodular fun
tion whose domain is aset of tuples over any totally-ordered �nite set and whose range in
ludes both �niteand in�nite values.In this paper we demonstrate that this general form of SFM is just one exampleof a mu
h larger 
lass of tra
table dis
rete optimization problems de�ned by valued
onstraints. These tra
table problems are 
hara
terized by the fa
t that their valued
onstraints have an algebrai
 property whi
h we 
all a tournament pair multimor-phism. This larger tra
table 
lass also in
ludes the problem of satisfying a set ofHorn 
lauses (Horn-SAT), as well as various extensions of this problem to larger�nite domains.Keywords: dis
rete optimization, 
onstraint satisfa
tion problem, valued 
onstraintsatisfa
tion, tra
tability, submodularity, tournament operation, majority operation, mod-ular de
omposition.
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1 Introdu
tionIn this paper we study a generi
 dis
rete optimization problem known as the valued
onstraint satisfa
tion problem (VCSP) [49℄. This problem generalises the standard
onstraint satisfa
tion problem [22℄ by allowing di�erent 
osts to be asso
iated with dif-ferent solutions. It provides a very general framework whi
h in
ludes many standard
ombinatorial optimisation problems as spe
ial 
ases, in
luding Max-SAT [19℄, Max-CSP [11℄, Min-Ones SAT [19℄, and Min-Cost Homomorphism [29℄.The 
omplexity of the VCSP depends on the types of valued 
onstraints whi
h areallowed. For 
ertain types of valued 
onstraints an optimal solution 
an be obtained inpolynomial time; su
h 
onstraints are 
alled tra
table valued 
onstraints.In the spe
ial 
ase where ea
h variable has just 2 possible values, a 
omplete 
har-a
terization has been obtained of all tra
table 
lasses of valued 
onstraints with positivereal-valued or in�nite 
osts [8, 12℄. This result extends the earlier 
hara
terizations ofthe tra
table 
lasses for the SAT [48℄ and Max-SAT [19℄ problems.Over larger sets of possible values a 
omplete 
hara
terization of the tra
table 
asesis not yet known, but a number of examples have been identi�ed. Two important 
lassesof tra
table valued 
onstraints are submodular fun
tions (see Example 3.7) and Horn
lauses (see Example 2.4). In this paper we show that these two examples are members ofa large family of tra
table valued 
onstraint 
lasses whi
h 
an be treated in a uniform way.To obtain this generalisation, we introdu
e a 
lass of operations known as tournamentoperations, and show that any set of valued 
onstraints asso
iated with an arbitrarypair of tournament operations de�nes a tra
table optimization problem.The paper is organised as follows. In Se
tion 2 we de�ne the standard 
onstraint satis-fa
tion problem, and in Se
tion 3 we extend this de�nition to the more general frameworkof the valued 
onstraint satisfa
tion problem and de�ne the notion of a multimorphism.In Se
tion 4 we 
onsider multimorphisms de�ned by spe
ial kinds of operations knownas tournament operations. In Se
tion 5 we 
onsider the set of all feasible assignmentsto a valued 
onstraint satisfa
tion problem, and the set of all optimal assignments, andshow that in 
ertain 
ases these sets 
an be eÆ
iently represented. In Se
tion 6 we begina more detailed examination of tournament operations by 
onsidering de
ompositions ofthe asso
iated tournament graphs, and in Se
tion 7 we examine the stru
ture of valued
onstraints whi
h have a tournament pair multimorphism. Using these results we showin Se
tion 8 that all su
h valued 
onstraints give rise to tra
table optimisation problems,and then in Se
tion 9 we give some examples. Finally, in Se
tion 10 we suggest somedire
tions for future resear
h.2 Constraints and polymorphismsIn this se
tion we present the terminology and notation used to des
ribe the standard
onstraint satisfa
tion problem (CSP) and dis
uss the te
hniques whi
h have been usedto identify tra
table 
ases. In Se
tion 3 we extend these ideas to the valued 
onstraintsatisfa
tion problem. 2



De�nition 2.1 An instan
e of the 
onstraint satisfa
tion problem, CSP, is a tupleP = hV;D;Ci where:� V is a �nite set of variables;� D is a �nite set of possible values;� C is a set of 
onstraints. Ea
h element of C is a pair 
 = h�;Ri where � is atuple of variables 
alled the s
ope of 
, and R is a relation over D of arity j�j 
alledthe 
onstraint relation of 
.De�nition 2.2 For any CSP instan
e P = hV;D;Ci, an assignment for P is a map-ping s : V ! D.A solution to P is an assignment whi
h satis�es all of the 
onstraints. That is, forea
h h�;Ri 2 C, where � = hv1; v2; : : : ; vri, the tuple hs(v1); s(v2); : : : ; s(vr)i 2 R.Example 2.3 The standard problem of 
olouring the verti
es of a graphG with k 
oloursso that adja
ent verti
es are assigned di�erent 
olours 
an be viewed as a spe
ial 
aseof the CSP, where the 
onstraint relation of ea
h 
onstraint is the binary disequalityrelation, R6=, given by R6= = fha; bi 2 D2 j a 6= bg:For any given graph hV;Ei, we have the 
orresponding CSP instan
e hV;D;Ci, whereD = f1; 2; : : : ; kg and C = fhhvi; vji; R6=i j fvi; vjg 2 Eg.This problem is well-known to be NP-
omplete when k � 3. �Example 2.4 The propositional satis�ability problem for Horn 
lauses, Horn-SAT, 
anbe viewed as a spe
ial 
ase of the CSP, where the 
onstraint relations are relations overa 2-element set whi
h are spe
i�ed by Horn 
lauses. Su
h relations des
ribe the possiblesatisfying assignments for a parti
ular Horn 
lause; for example, the relationR:x_:y_z = fh0; 0; 0i; h0; 0; 1i; h0; 1; 0i; h0; 1; 1i; h1; 0; 0i; h1; 0; 1i; h1; 1; 1igdes
ribes the satisfying assignments for the Horn 
lause :x _ :y _ z, where the value 0
orresponds to false and the value 1 
orresponds to true.The problem of satisfying any set of Horn 
lauses 
an be solved in linear time [23℄. �If � is a set of relations over some �xed set D, we will write CSP(�) to denote the 
lassof all CSP instan
es where the 
onstraint relations of all 
onstraints lie in �.For 
ertain sets of relations � the problem CSP(�) is NP-
omplete. (For example,the set fR6=g, where R6= is the disequality relation over some set D with jDj � 3, asde�ned in Example 2.3.) For other sets of relations � the problem CSP(�) 
an be solvedin polynomial time. (For example, the set of all relations spe
i�ed by Horn 
lauses, asde�ned in Example 2.4.)A �nite set of relations � will be 
alled tra
table if there exists a polynomial-timealgorithm to solve CSP(�). An in�nite set of relations � will be 
alled tra
table if all�nite subsets of � are tra
table. 3



Many new tra
table sets of relations have been identi�ed by investigating 
ertaininvarian
e properties of relations, known as polymorphisms [7, 25, 37℄.De�nition 2.5 A fun
tion f : Dm ! D is a polymorphism of a relation R � Dr iffor all ha11; : : : ; a1ri; : : : ; ham1; : : : ; amri 2 R, we also havehf(a11; : : : ; am1); : : : ; f(a1r; : : : ; amr)i 2 R:If a relation R has a polymorphism f , then we will say that R is preserved by f .Example 2.6 The relations over the 2-element domain f0; 1g whi
h are spe
i�ed byHorn 
lauses are pre
isely the relations having the polymorphism min : f0; 1g2 ! f0; 1g,whi
h returns the minimum of its 2 arguments.For example, if we take any 2 tuples from the relation R:x_:y_z de�ned in Exam-ple 2.4, (su
h as h0; 1; 1i and h1; 0; 1i), and apply the operation min 
o-ordinatewise, thenwe obtain a new tuple, (h0; 0; 1i), whi
h is also a member of this relation.A binary operation, min, whi
h returns the minimum of its two arguments, 
an bede�ned on any �nite totally-ordered set D of arbitrary size. Hen
e, for ea
h su
h D thereis an obvious generalisation to the set, �min, 
onsisting of all relations over D whi
h arepreserved by the operation min. It has been shown [38℄ that CSP(�min) is tra
table forall �nite sets D. �Many other tra
table sets of relations have been identi�ed, or extended, thanks to thestudy of polymorphisms [3, 4, 6, 7, 37℄. In fa
t, it is known that the existen
e of a non-trivial polymorphism of a set of relations � is a ne
essary 
ondition for tra
tability ofCSP(�) [35℄.De�nition 2.7 A majority operation is a fun
tion f : D3 ! D satisfying8x; y 2 D; f(x; x; y) = f(x; y; x) = f(y; x; x) = xIt has been shown that having a majority operation as a polymorphism is a suÆ
ient
ondition for tra
tability of a set of relations [25, 36, 37℄. However, it is the followingmore spe
i�
 property of relations preserved by a majority operation whi
h is of moreinterest to us in this paper.De�nition 2.8 The proje
tion of a relation R of arity r onto a pair of positions iand j, whi
h we denote by �ijR, is the binary relation 
ontaining all pairs that 
an beextended to elements of R. That is,�ijR def= fhxi; xji j 9hx1; : : : ; xri 2 Rg:A relation R of arity r is said to be de
omposable into its binary proje
tions ifR = fhx1; : : : ; xri 2 Dr j 8i; j 2 f1; : : : ; rg; hxi; xji 2 �ijRg:4



Lemma 2.9 ([36℄) Any relation whi
h is preserved by a majority operation is de
om-posable into its binary proje
tions.Finally, we will o

asionally make use of the following standard de�nitions from the�eld of 
onstraint satisfa
tion [22℄.De�nition 2.10 A partial assignment to a subset W of the variables of a CSP instan
eis 
onsistent if it satis�es all the 
onstraints whose s
opes are 
ontained in W .De�nition 2.11 A CSP instan
e is k-
onsistent if, for every subsetW of k�1 variablesand any other variable v 62W , every 
onsistent partial assignment to W 
an be extendedto a 
onsistent partial assignment to W [ fvg.De�nition 2.12 A CSP instan
e is strong k-
onsistent if it is j-
onsistent for allj � k.3 Valued 
onstraints and multimorphismsIn the 
onstraint satisfa
tion problem, the aim is simply to �nd an assignment to thevariables whi
h satis�es all of the 
onstraints. In other words, standard 
onstraint satis-fa
tion problems deal with feasibility rather than optimization. To provide a more generalframework, the notion of an all-or-nothing 
onstraint relation 
an be extended to the no-tion of a 
ost fun
tion whi
h assigns a spe
i�ed 
ost to ea
h possible assignment. Weuse R+to denote fu 2 R : u � 0g [ f1g.De�nition 3.1 For any set D, an order-r 
ost fun
tion on D is a fun
tion � : Dr !R+ whi
h assigns a 
ost f(a1; : : : ; ar) to ea
h 
ombination of values a1; : : : ; ar 2 Dr.De�nition 3.2 A 
ost fun
tion � is said to be 
risp if �(x1; : : : ; xr) 2 f0;1g for all
hoi
es of hx1; : : : ; xri.A 
onstraint relation 
an be modelled by a 
risp 
ost fun
tion whi
h assigns a 
ost of0 to permitted assignments and a 
ost of 1 to disallowed assignments.De�nition 3.3 An instan
e of the valued 
onstraint satisfa
tion problem, VCSP,is a tuple P = hV;D;Ci where:� V is a �nite set of variables;� D is a �nite set of possible values;� C is a set of valued 
onstraints. Ea
h element of C is a pair 
 = h�; �i where �is a tuple of variables 
alled the s
ope of 
, and � is a mapping from Dj�j to R+,
alled the 
ost fun
tion of 
. 5



In the original, more general, de�nition of the Valued Constraint Satisfa
tion Problem[49℄, 
osts were allowed to lie in any positive tomonoid S. Under the additional assump-tions of dis
reteness and the existen
e of a partial inverse operation, it has been shown[16℄ that su
h a stru
ture S 
an be de
omposed into independent positive tomonoids,ea
h of whi
h is isomorphi
 to a subset of R+ with the operator being either standardaddition, +, or bounded addition, +k, where a +k b = minfk; a + bg. The latter 
aseis of some interest, be
ause it 
an be used to model the pro
ess of bran
h and boundsear
h (k being the 
ost of the best solution found so far) [42℄. However, for the purposesof this paper we shall restri
t attention to the standard 
ase studied in Mathemati
alProgramming where all 
osts lie in R+ and are 
ombined using standard addition.De�nition 3.4 For any VCSP instan
e P = hV;D;Ci, an assignment for P is amapping s : V ! D. The 
ost of an assignment s, denoted CostP (s), is given by thesum of the 
osts for the restri
tions of s onto ea
h 
onstraint s
ope, that is,CostP (s) def= Xhhv1;v2;:::;vmi;�i2C �(s(v1); s(v2); : : : ; s(vm)):A solution to P is an assignment with minimal 
ost.Example 3.5 We 
an en
ode the sear
h for a minimum 
ut in a weighted dire
ted graphG as a VCSP instan
e P with a variable for ea
h node of G, domain f0; 1g, and a valued
onstraint hhi; ji; �wij i for ea
h dire
ted edge hi; ji of weight wij in G, where�w(x; y) = � w if (x; y) = (0; 1)0 otherwiseIf we impose unary 
onstraints on the sour
e and target nodes to ensure that they takethe values f0g and f1g, respe
tively, then any minimum 
ut in G 
orresponds to the setof dire
ted edges hi; ji whose 
orresponding variables are labeled (0; 1) in some solutionto P. �If � is a set of 
ost fun
tions � : Dr ! R+, for some �xed set D, we will writeVCSP(�) to denote the 
lass of all VCSP instan
es where the 
ost fun
tions of all thevalued 
onstraints lie in �. A �nite set of 
ost fun
tions � will be 
alled tra
table if thereexists a polynomial-time algorithm to solve VCSP(�). An in�nite set of 
ost fun
tions �will be 
alled tra
table if all �nite subsets of � are tra
table.To analyse the 
omplexity of problems of the form VCSP(�) for di�erent 
hoi
es of �we shall make use of a generalization of the notion of polymorphism whi
h is known as amultimorphism [12℄.De�nition 3.6 ([12℄) A list of fun
tions, hf1; : : : ; fmi, where ea
h fi is a fun
tion fromDm to D, is a multimorphism of a 
ost fun
tion � : Dr ! R+ if, for all ha11; : : : ; a1ri,: : :, ham1; : : : ; amri 2 Dr, we havemXi=1 �(fi(a11; : : : ; am1); : : : ; fi(a1r; : : : ; amr)) � mXi=1 �(ai1; : : : ; air) (1)6



Note that if hf1; : : : ; fmi is a multimorphism of a 
ost fun
tion �, then the average
ost of a set ofm assignments is lowered, or improved by applying the fun
tions f1; : : : ; fm
o-ordinatewise. This observation explains the following 
hoi
e of notation.Notation: The set of all 
ost fun
tions � : Dr ! R+ whi
h have hf1; : : : ; fmi as amultimorphism will be denoted Imp(f1; : : : ; fm).Example 3.7 A 
ost fun
tion � has the multimorphism hmin;maxi if and only if �satis�es the submodularity 
ondition8x; y 2 Dr �(x _ y) + �(x ^ y) � �(x) + �(y)where _ and ^ represent 
o-ordinatewise maximum and minimum operations respe
tively.Submodularity [26, 51℄ is usually de�ned over totally-ordered domains, but this de�ni-tion 
an be extended to the 
ase in whi
h the domain D has an arbitrary latti
e stru
ture,in whi
h 
ase _ and ^ represent 
o-ordinatewise join and meet operations respe
tively.Submodular fun
tion minimization (SFM) [26, 51℄ is a tra
table dis
rete optimizationproblem whi
h has appli
ations in su
h diverse areas as statisti
al physi
s [1℄ and thedesign of ele
tri
al networks [44℄. Well-known examples of submodular fun
tions are the
ut fun
tion of a graph [20℄ (see Example 3.5) or of a hypergraph [27℄, and the rankfun
tion of a matroid.The ellipsoid algorithm provides a polynomial-time algorithm for SFM in theory, butis not eÆ
ient in pra
ti
e [30℄. Re
ently, several more eÆ
ient polynomial-time algorithmshave been published to solve SFM [34, 50, 32, 33℄. The fa
t that these algorithms 
anbe applied to minimize a submodular fun
tion de�ned on a distributive latti
e [32℄ (alsoknown as a ring family [50℄) has been used to show that they 
an be applied to submodularfun
tions whi
h may take on both �nite and in�nite values over totally-ordered �nitedomains of arbitrary size [12℄. The 
omplexity of the fastest known algorithm for SFMis O((n4
 + n5)minflogM;n2 logng), where n is the number of variables, 
 is the timeto 
al
ulate the obje
tive fun
tion  and M is the maximum absolute value of  [33℄. �Example 3.8 Bisubmodular fun
tions were introdu
ed in [28℄. They are integer-valuedfun
tions on f0; 1; 2gr , and 
an be 
hara
terized [9, 12℄ as those fun
tions having the bi-nary multimorphism hmin0;max0i, where the fun
tions min0;max0 : f0; 1; 2g2 ! f0; 1; 2gare de�ned as follows:min0(a; b) = � min(a; b) if fa; bg 6= f1; 2g0 otherwisemax0(a; b) = � max(a; b) if fa; bg 6= f1; 2g0 otherwiseAn example of a bisubmodular fun
tion is the rank fun
tion of a delta-matroid [28℄.An integer-valued bisubmodular fun
tion  
an be minimized in O(n5 logM) timewhere M is the maximum value of the fun
tion  and n is the number of variables [28℄.� 7



Example 3.9 The set of 
risp 
ost fun
tions over some �xed �nite totally-ordered do-main D whi
h all have the multimorphism hmin;mini 
orresponds to the tra
table setof relations �min de�ned in Example 2.6 whi
h generalise the Horn 
lause satis�abilityproblem.We 
an generalise this 
lass further by dropping the requirement for the 
ost fun
tionsto be 
risp. This gives a larger tra
table 
lass of 
ost fun
tions whi
h also allow arbitrarymonotone �nite-valued 
ost fun
tions on the same variables [9, 12℄. �We have previously shown [8℄ that a set of 
ost fun
tions over a Boolean domain istra
table if it has a non-trivial multimorphism and NP-
omplete otherwise. Over non-Boolean domains, the situation is more 
omplex, but it is known that the 
omplexityof any set of 
ost fun
tions over any �nite domain is 
hara
terized by 
ertain algebrai
properties whi
h 
an be seen as generalised multimorphisms [13℄.4 Tournament operationsIn this se
tion we fo
us on the properties of a parti
ular kind of operation, whi
h we 
alla tournament operation1.De�nition 4.1 A tournament operation is a binary operation f : D2 ! D with thefollowing properties:� f is 
onservative, that is f(x; y) 2 fx; yg, for all x; y 2 D.� f is 
ommutative, that is f(x; y) = f(y; x), for all x; y 2 D.The dual of a tournament operation f is the unique tournament operation g satisfyingx 6= y ) g(x; y) 6= f(x; y), for all x; y 2 D.Note that, by de�nition, a tournament operation is ne
essarily idempotent, that is,f(x; x) = x, for all x 2 D.De�nition 4.2 A tournament pair is a pair hf; gi, where f and g are both tournamentoperations. A tournament pair hf; gi is 
alled symmetri
 if g is the dual of f .We will show in Se
tion 8 that any set of 
ost fun
tions with a tournament pair asa multimorphism is tra
table. We �rst establish a partial 
onverse of this result: anytra
table set of 
ost fun
tions 
ontaining all unary 
ost fun
tions whi
h is 
hara
terisedby a binary multimorphism, must be 
hara
terised by a tournament pair multimorphism(assuming that P 6= NP ).Proposition 4.3 For any binary operations f; g, if Imp(f; g) 
ontains all unary 
ostfun
tions, then either hf; gi is a symmetri
 tournament pair or VCSP(Imp(f; g)) is NP-hard.1The reason for this 
hoi
e of terminology will be made 
lear in Se
tion 6, where we explain the
onne
tion between tournament operations and dire
ted graphs.8



Proof: Sin
e Imp(f; g) 
ontains all unary 
ost fun
tions, it is an easy 
onsequen
e ofDe�nition 3.6 that 8x; y 2 D ff(x; y); g(x; y)g = fx; yg (2)It follows that hf; gi is a symmetri
 tournament pair if f is 
ommutative.Consider now the 
ase in whi
h f is not 
ommutative, that is, f(a; b) 6= f(b; a) forsome a; b 2 D. De�ne the binary 
ost fun
tion �XOR : D2 ! R+ as follows.�XOR(x; y) = 8<: 1 if x; y 2 fa; bg and x = y0 if x; y 2 fa; bg and x 6= y1 otherwiseUsing Equation 2 it is easily veri�ed that �XOR 2 Imp(f; g). However, VCSP(f�XORg)
an be shown to be NP-hard by a polynomial-time redu
tion from the MAX-2-SATproblem restri
ted to the XOR predi
ate, whi
h is known to be NP-hard [18, 19℄. Hen
ein this 
ase VCSP(Imp(f; g)) is NP-hard.If we relax the 
onditions so that we require only 
risp unary fun
tions to be in
luded,then we 
an still show that any tra
table set of 
ost fun
tions 
hara
terised by a binarymultimorphism must have a tournament pair as a multimorphism.Proposition 4.4 For any binary operations f; g, if Imp(f; g) 
ontains all 
risp unary
ost fun
tions, then either Imp(f; g) � Imp(f 0; g0) for some tournament pair hf 0; g0i orVCSP(Imp(f; g)) is NP-hard.Proof: If Imp(f; g) 
ontains all 
risp unary 
ost fun
tions, then it is straightforward toverify that the fun
tions f; g must be 
onservative, and hen
e idempotent.For any a; b 2 D, denote the restri
tions of f; g on fa; bg by fab; gab. (In other words,fab is the fun
tion f jfa;bg�fa;bg : fa; bg2 ! fa; bg). Sin
e fab; gab are idempotent, thisleaves just four possibilities for ea
h of the fun
tions fab; gab. Out of these four, twoare 
ommutative and the other two are proje
tions (i.e., one of the fun
tions p1; p2 :fa; bg2 ! fa; bg su
h that for all u; v, p1(u; v) = u and p2(u; v) = v). If both fab andgab are proje
tions, then Imp(f; g) 
ontains all 
risp 
ost fun
tions � : Dr ! f0;1g su
hthat �(x) = 1 if x 62 fa; bgr , so Imp(f; g) is NP-hard, by a polynomial-time redu
tionfrom SAT.Consider now the 
ase in whi
h for ea
h a; b 2 D either fab or gab is 
ommutative (orboth). De�ne f 0; g0 : D2 ! D as followsf 0(a; b) = � f(a; b) if fab is 
ommutativeg(a; b) otherwiseg0(a; b) = � g(a; b) if gab is 
ommutativef(a; b) otherwiseClearly f 0; g0 are tournament operations. It remains to show that Imp(f; g) � Imp(f 0; g0).9



Consider an arbitrary 
ost fun
tion � : Dr ! R+ in Imp(f; g). For x; y 2 Dr, weuse f(x; y) to represent the ve
tor obtained by applying f 
oordinatewise to x and y.Applying the multimorphism property (Equation 1) twi
e gives�(x) + �(y) � �(g(x; y)) + �(f(x; y)) � �(p(x; y)) + �(q(x; y))where p(x; y) = f(g(x; y); f(x; y)) and q(x; y) = g(g(x; y); f(x; y)). Similarly,�(x) + �(y) � �(f(x; y)) + �(g(x; y)) � �(r(x; y)) + �(s(x; y))where r(x; y) = f(f(x; y); g(x; y)) and s(x; y) = g(f(x; y); g(x; y)). By another appli
a-tion of Equation 1,�(p(x; y)) + �(r(x; y)) � �(f(p(x; y); r(x; y))) + �(g(p(x; y); r(x; y)))and �(s(x; y)) + �(q(x; y)) � �(f(s(x; y); q(x; y))) + �(g(s(x; y); q(x; y)))Now it is tedious but simple (using the fa
t that f and g are 
onservative, and 
he
kingall 16 possibilities) to show that, for all x; y 2 Df(p(x; y); r(x; y)) = f 0(x; y)g(p(x; y); r(x; y)) = f 0(x; y)f(s(x; y); q(x; y)) = g0(x; y)g(s(x; y); q(x; y)) = g0(x; y)It follows that 2�(x)+2�(y) � 2�(f 0(x; y))+2�(g0(x; y)), and hen
e that � 2 Imp(f 0; g0).It is interesting to note that it is possible to have the stri
t in
lusion Imp(f; g) �Imp(f 0; g0) in the above result, as the next example shows.Example 4.5 Let D = f1; 2; 3g and let  : D2 ! f0;1g be given by  (x) = 0 ifx 2 fh1; 2i; h1; 3i; h2; 2ig and  (x) =1 otherwise. De�ne f; g : D2 ! D byf(a; b) = � a if a; b 2 f1; 2gmax(a; b) otherwiseg(a; b) = min(a; b)Then g0 = g and f 0 is given byf 0(a; b) = � min(a; b) if a; b 2 f1; 2gmax(a; b) otherwiseNow  2 Imp(f 0; g0) but  62 Imp(f; g) (sin
e  (2; 2) =  (1; 3) = 0 but  (f(h2; 2i; h1; 3i)) = (2; 3) =1). �10



5 The set of all feasible/optimal assignmentsFor any 
ost fun
tion � we de�ne the 
orresponding sets of feasible assignments andoptimal assignments in the following way.De�nition 5.1 For any 
ost fun
tion � : Dr ! R+, the set of feasible assignmentsfor �, denoted Feas(�), is de�ned as followsFeas(�) def= fx 2 Dr : �(x) <1gThe set of optimal assignments for �, denoted Opt(�), is de�ned as followsOpt(�) def= fx 2 Dr : 8y 2 Dr; �(x) � �(y)gLemma 5.2 If � : Dr ! R+ has the multimorphism hf1; : : : ; fmi, then the relationsOpt(�) and Feas(�) both have the polymorphism fi, for i = 1; 2 : : : ;m.Proof: Consider ha11; : : : ; a1ri; : : : ; ham1; : : : ; amri 2 Opt(�), and let � be the optimalvalue, i.e. � = �(a11; : : : ; a1r). It is 
lear that to satisfy the inequality in De�nition 3.6,we must have, for all i 2 f1; : : : ;mg,�(fi(a11; : : : ; am1); : : : ; fi(a1r; : : : ; amr)) = �The result for Opt(�) follows immediately. A similar argument gives the result forFeas(�).De�nition 5.3 If f; g are fun
tions from D2 to D, then we say that f absorbs g if8x; y 2 D, f(g(x; y); x) = f(g(y; x); x) = f(x; g(x; y)) = f(x; g(y; x)) = xExample 5.4 Let f be a tournament operation and g its dual. If g(x; y) = x thenf(g(x; y); x) = f(x; x) = x. Conversely, if g(x; y) = y then f(g(x; y); x) = f(y; x) = x(sin
e f and g are dual). Hen
e f absorbs g. A symmetri
 arguments shows that gabsorbs f . �Example 5.5 It is easy to verify that the binary fun
tions min and max are mutuallyabsorbing. In fa
t, by de�nition, any latti
e operations ^ and _ are mutually absorbing.�Example 5.6 Re
onsider the operations max0;min0 de�ned in Example 3.8. It is easy toverify that max0 absorbs min0, but min0 does not absorb max0 (sin
e min0(max0(1; 2); 1) =0 6= 1). �Lemma 5.7 Suppose that f; g : D2 ! D are idempotent and f absorbs g. If � : Dr ! R+has the multimorphism hf; gi, then the relations Feas(�) and Opt(�) are both preservedby a majority operation. 11



Proof: By Lemma 5.2, Feas(�) and Opt(�) both have the polymorphisms f and g. Nowde�ne the ternary operation h : D3 ! D, for all x; y; z 2 D, as followsh(x; y; z) def= f(f(g(x; y); g(x; z)); g(y; z)):It is easy to verify that h is a majority operation (see De�nition 2.7), sin
eh(x; x; z) = f(f(x; g(x; z)); g(x; z)) = f(x; g(x; z)) = xh(x; y; x) = f(f(g(x; y); x); g(y; x)) = f(x; g(y; x)) = xh(x; y; y) = f(f(g(x; y); g(x; y)); y) = f(g(x; y); y) = yThe set of polymorphisms of any relation is 
losed under 
omposition [35℄, so Feas(�)and Opt(�) both have the polymorphism h.Corollary 5.8 If � : Dr ! R+ has the multimorphism hf; gi, then Opt(�) and Feas(�)are preserved by a majority operation in ea
h of the following 
ases:1. f; g are the meet and join operations of a latti
e.2. f; g are the operations max0;min0 de�ned in Example 3.8.3. f is a tournament operation and g is its dual.Proof: It is simple to verify that, in ea
h 
ase, f and g are idempotent and f absorbsg, as dis
ussed in Examples 5.4 to 5.6.When a relation is preserved by a majority operation, and hen
e de
omposable intobinary proje
tions, this provides a very 
ompa
t representation for the relation, by simplylisting the binary proje
tions.Proposition 5.9 If f; g : D2 ! D are idempotent binary fun
tions su
h that, for any
ost fun
tion � : Dn ! R+ 2 Imp(f; g) the minimum value of � 
an be 
omputed inO(T (n)) time, then ea
h binary proje
tion of Opt(�) 
an be 
omputed in O(jDj2T (n))time.Proof: Consider any � : Dn ! R+ 2 Imp(f; g). We denote by �abij the fun
tion on n� 2arguments obtained by �xing xi = a and xj = b, that is, we set�abij (x1; : : : ; xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xn) def=�(x1; : : : ; xi�1; a; xi+1; : : : ; xj�1; b; xj+1; : : : ; xn)Let �abij be the minimum value attained by �abij on Dn�2 and let � be the minimum valueattained by � on Dn. It follows that�ij[Opt(�)℄ = f(a; b) 2 D2 j �abij = �g:12



and thus the binary proje
tions of Opt(�) 
an be determined by 
al
ulating the valuesof � and �abij for all a; b 2 D.It follows dire
tly from De�nition 3.6 that if � has the multimorphism hf; gi, wheref and g are both idempotent, then �abij also has the multimorphism hf; gi. Hen
e all ofthese values 
an be 
omputed in O(jDj2T (n�2)+T (n)) time, and hen
e in O(jDj2T (n))time.Hen
e, in ea
h of the 
ases mentioned in Corollary 5.8, a 
ompa
t representation ofall minimizers for a given 
ost fun
tion 
an be found in polynomial time by using existingpolynomial-time algorithms to �nd the minimal value.Example 5.10 Consider the important spe
ial 
ase of submodular fun
tion minimisa-tion (SFM) over a Boolean domain, f0; 1g. In this 
ase the relations �ij [Opt(�)℄ areBoolean binary submodular relations. By exhaustion, it is easy to show that any su
hrelation 
an be represented as a 
onjun
tion of 0,1 or 2 of the following relations: Xi = 0,Xi = 1, Xj = 0, Xj = 1, Xi = Xj , Xi � Xj , Xi � Xj . It follows that the set Opt(�)of optimal solutions to an SFM problem over a Boolean domain 
an be represented by apartial order. Ekin et al. [24℄ established the same result for Feas(�). �6 Modular de
omposition of tournamentsIn this se
tion we introdu
e a number of ideas from graph theory whi
h will be used inSe
tion 7 to analyse the stru
ture of 
ost fun
tions with a tournament pair multimor-phism.First we note that there is a one-to-one 
orresponden
e between tournament opera-tions f and 
omplete digraphs G = hD;Ei given by (x; y) 2 E i� x 6= y and f(x; y) = y,for all x; y 2 D. Su
h 
omplete digraphs are usually known as tournaments. Hen
eevery tournament operation has an asso
iated tournament, and vi
e-versa.If f : D2 ! D is a tournament operation, then we will write hD; fi to represent the
orresponding tournament (i.e., the 
omplete digraph on D with an ar
 from a to b ifand only if f(a; b) = a). For any B � D, we will write hB; fi, or simply B, to representthe subtournament hB; f jB2i.Two sets X;Y will be said to overlap if they interse
t but neither is a subset of theother.De�nition 6.1 ([21℄) Given a tournament hD; fi, a subset B � D is 
alled a moduleif for all 
 2 D � B, and all a; b 2 B, f(a; 
) = a if and only if f(b; 
) = b. A module isstrong if no other module overlaps it.The strong modules of a tournament hD; fi 
an be organized in a tree stru
ture(known as its modular de
omposition) with root D, a leaf fag for ea
h a 2 D andsu
h that at ea
h internal node A the 
hildren A1; : : : ; Ar of A form a partition of A [21℄.De�nition 6.2 In the modular de
omposition of a tournament hD; fi, a node A with
hildren A1; : : : ; Ar is 
alled 13



� prime if 8I � f1; : : : ; rg su
h that 1 < jIj < r, Si2I Ai is not a module. (We saythat A1; : : : ; Ar is a prime partition of A.)� linear if there exists an ordering of f1; : : : ; rg su
h that if I � f1; : : : ; rg and1 < jIj < r, then Si2I Ai is a module if and only if the members of I are 
onse
utivein the ordering. (We say that A1; : : : ; Ar is a linear partition of A.)All tournaments have a unique modular de
omposition in whi
h ea
h node is eitherprime or linear. In fa
t, this de
omposition 
an be found in O(jDj2) (and hen
e optimal)time [43℄. We denote this unique modular de
omposition of a tournament hD; fi byMD(D; f). Consider a strong module A of a tournament hD; fi su
h that jAj > 1. Ifthe subtournament hA; fi is strongly-
onne
ted, then the node A is prime, otherwise Ais linear and A1; : : : ; Ar are its strongly-
onne
ted 
omponents. Any module A whi
h isstrongly 
onne
ted is ne
essarily strong and hen
e has a 
orresponding node in MD(D; f).If A1; : : : ; Ar are the 
hildren of A in the modular de
omposition MD(D; f), then forany i; j 2 f1; : : : ; rg we have that for all a; b 2 Ai, and all 
; d 2 Aj , f(a; 
) = a ,f(b; 
) = b, f(b; d) = b. Hen
e f also de�nes a tournament operation on fA1; : : : ; Arg.We 
all this the tournament operation indu
ed on fA1; : : : ; Arg by f and we abusenotation by writing f(Ai; Aj) = Ai if 8a 2 Ai, 8b 2 Aj, f(a; b) = a.A set A � D is simple with respe
t to the tournament operation f : D2 ! D if thereis no non-trivial 
ongruen
e 
lass B of elements of A whi
h all behave in the same waywith respe
t to the other elements A�B [6℄. In other words, A is simple with respe
t tof if and only if there is no module B of hA; fi, with 1 < jBj < jAj.The following lemma summarises the dis
ussion above.Lemma 6.3 Let hD; fi be a tournament, let A be a module of hD; fi and suppose thatjAj > 1 and hA; fi is a strongly 
onne
ted subtournament. Then1. A is a prime node in the modular de
omposition MD(D; f).2. If A1; : : : ; Ar are the 
hildren of A in MD(D; f), then fA1; : : : ; Arg is simple andstrongly 
onne
ted with respe
t to the indu
ed tournament.7 Cost fun
tions with tournament pair multimorphismsIn this se
tion we will show that any 
ost fun
tion with a tournament pair as a multimor-phism has 
ertain spe
ial properties. These results will be used in Se
tion 8 to establishthe tra
tability of Imp(f; g) for any tournament pair hf; gi.A standard te
hnique of 
onstraint satisfa
tion is to eliminate values from the domainsof variables when these values 
an be shown to be in
onsistent. We will adapt thiste
hnique to valued 
onstraint satisfa
tion by de�ning (partial) 
ost fun
tions with aredu
ed domain.De�nition 7.1 A fun
tion � : D1 � : : : � Dr ! R+ is domain-redu
ed if, for ea
hi 2 f1; : : : ; rg, and for ea
h a 2 Di 9x 2 D1 � : : :�Dr su
h that x[i℄ = a and �(x) <1.14



In the literature on 
onstraint satisfa
tion, a VCSP instan
e where every 
ost fun
tion isdomain-redu
ed is said to be generalized ar
 
onsistent in its underlying CSP [15, 17℄.De�nition 7.2 A fun
tion � : D1�D2 ! f0;1g is 
alled bije
tive if the set fha1; a2i j�(a1; a2) = 0g is a bije
tion of D1 �D2.If � : D1�D2 ! f0;1g is bije
tive, then we will abuse notation and write �[a1℄ (for anya1 2 D1) to represent the unique a2 2 D2 su
h that �(a1; a2) = 0.De�nition 7.3 A bije
tive fun
tion � : D1 � D2 ! f0;1g is an isomorphism withrespe
t to the tournament operation f : D � D ! D, (where D1;D2 � D) if for alla; b 2 D1, f(a; b) = a, f(�[a℄; �[b℄) = �[a℄.Lemma 7.4 A bije
tive fun
tion � : D1 � D2 ! f0;1g has a symmetri
 tournamentpair hf; gi as a multimorphism if and only if � is an isomorphism with respe
t to f (andhen
e also g).Proof: Using �[a℄ to represent the unique 
 2 D2 su
h that �(a; 
) = 0, we have that �has the multimorphism hf; gi if and only if for all a; b 2 D1,0 = �(a; �[a℄) + �(b; �[b℄) � �(f(a; b); f(�[a℄; �[b℄)) + �(g(a; b); g(�[a℄; �[b℄))This inequality holds if and only if f(a; b) = a pre
isely when f(�[a℄; �[b℄) = �[a℄.Lemma 7.5 Let � : D1 �D2 ! f0;1g be a domain-redu
ed 
risp 
ost fun
tion with asymmetri
 tournament pair hf; gi as a multimorphism.If D1 and D2 are simple and strongly 
onne
ted with respe
t to f , then � is either the
onstant fun
tion 0 or bije
tive.Proof: Sin
e D1;D2 are simple and strongly 
onne
ted with respe
t to f , and therelation Feas(�) = fhd1; d2i 2 D1 � D2 j �(d1; d2) = 0g is preserved by f (by Lemma5.2), Proposition 30 of [6℄ (or the more general Lemma 3.5 of [5℄) tells us that � is either
onstant 0 or bije
tive.Lemma 7.6 Let � : D1 �D2 ! f0;1g be a domain-redu
ed 
risp 
ost fun
tion with asymmetri
 tournament pair hf; gi as a multimorphism.Let A be a module of hD1; fi and let B = fb 2 D2j9a 2 D1; �(a; b) = 0g. Then B isa module of hD2; fi.Proof: Suppose, for a 
ontradi
tion, that B is not a module of hD2; fi. Then 9b; b0 2 D2,9v 2 D2 �B su
h that f(v; b) = v and f(v; b0) = b0. Sin
e � is domain-redu
ed, 9u 2 D1su
h that �(u; v) = 0. Suppose, without loss of generality, that f(D1 � A;A) = A, andlet a 2 A be su
h that �(a; b) = 0. Then �(u; a) = a and by the multimorphism property,0 = �(u; v) + �(a; b) � �(a; v) + �(u; b)This implies that �(a; v) = 0 whi
h 
ontradi
ts our hypothesis that v 62 B.15



De�nition 7.7 Let � : D1 �D2 ! R+ be a 
ost fun
tion and let hf; gi be a symmetri
tournament pair on a set D, where D1;D2 � D. Let A1; : : : ; Ar and B1; : : : ; Bs be primeor linear partitions in the modular de
omposition of hD1; fi and hD2; fi, respe
tively.The indu
ed 
risp 
ost fun
tion � : fA1; : : : ; Arg � fB1; : : : ; Bsg ! f0;1g is de�nedby �(Ai; Bj) = 0 if and only if 9a 2 Ai, 9b 2 Bj su
h that �(a; b) <1.Lemma 7.8 If f; g; �; � are as in De�nition 7.7, then � 2 Imp(f; g) implies that � 2Imp(f; g).Proof: Suppose that � 62 Imp(f; g). Then, without loss of generality, there are Ai; Ajand Bk; Bm su
h that f(Ai; Aj) = Ai, f(Bk; Bm) = Bk, �(Ai; Bm)= �(Aj ; Bk) = 0 but�(Ai; Bk) 6= 0. But then 9a 2 Ai; b 2 Aj; 
 2 Bk; d 2 Bm su
h that �(a; d) < 1,�(b; 
) < 1 and �(a; 
) = 1. Sin
e f(a; b) = a and f(
; d) = 
, we 
an dedu
e that� 62 Imp(f; g).De�nition 7.9 A 
ost fun
tion � : D1 � : : : � Dr ! R+ is �nite if �(x) < 1 for allx 2 D1 � : : : �Dr.Lemma 7.10 Let � : D1�D2 ! R+ be a domain-redu
ed 
ost fun
tion with a symmetri
tournament pair hf; gi as a multimorphism.If D1 and D2 are both strongly 
onne
ted with respe
t to f , then either � is �nite, orthe indu
ed 
risp 
ost fun
tion � on the prime partitions of D1 and D2 is bije
tive.Proof: By Lemma 6.3, both D1 and D2 have prime partitions fA1; : : : ; Arg andfB1; : : : ; Bsg whi
h are simple and strongly 
onne
ted with respe
t to the indu
ed tour-nament. Hen
e, by Lemma 7.5, if � is not bije
tive, then � = 0. We will show that inthis 
ase �(a; b) <1 for any a 2 D1, b 2 D2.Suppose that a 2 Ai and b 2 Bj . Sin
e � is domain-redu
ed, 9v 2 D2 su
h that�(a; v) < 1. Suppose that v 2 Bk. We 
laim that 9w 2 Bj su
h that �(a;w) < 1.Assume that f(Bj; Bk) = Bk (the argument for the 
ase f(Bj; Bk) = Bj is symmetri
).Sin
e fA1; : : : ; Arg is strongly 
onne
ted, 9m 2 f1; : : : ; rg su
h that f(Ai; Am) = Am.Now, sin
e � = 0, 9u 2 Am, 9w 2 Bj su
h that �(u;w) < 1. Applying the multimor-phism property, we obtain1 > �(a; v) + �(u;w) � �(f(a; u); f(v; w)) + �(g(a; u); g(v; w))= �(u; v) + �(a;w)Therefore �(a;w) <1.Sin
e fA1; : : : ; Arg and fB1; : : : ; Bsg are strongly 
onne
ted, 9h; l su
h that f(Ai; Al) =Ai and f(Bj; Bh) = Bh. Sin
e � = 0, 9
 2 Al, 9d 2 Bh su
h that �(
; d) <1. Applyingthe multimorphism property, we obtain1 > �(a;w) + �(
; d) � �(f(a; 
); f(w; d)) + �(g(a; 
); g(w; d))= �(a; d) + �(
; w)16



Therefore 9d 2 Bh su
h that �(a; d) < 1. By a similar argument we 
an show that9e 2 Am su
h that �(e; b) <1 (where m is su
h that f(Ai; Am) = Am). Then applyingthe multimorphism property gives1 > �(a; d) + �(e; b) � �(f(a; e); f(d; b)) + �(g(a; e); g(d; b))= �(e; d) + �(a; b)Thus �(a; b) <1.Lemma 7.11 Let � : D1�D2 ! R+ be a domain-redu
ed 
ost fun
tion with a symmetri
tournament pair hf; gi as a multimorphism.If D1 is strongly 
onne
ted with respe
t to f and D2 is a
y
li
 with respe
t to f , then� is �nite.Proof: If D1 is strongly 
onne
ted, then it must 
ontain a 
omplete 
y
le with respe
tto f , i.e., D1 = fa0; : : : ; ar�1g su
h that f(ai; ai+1) = ai (for i = 0; : : : ; r � 1) with theaddition i+ 1 understood as being modulo r. Note that this 
omplete 
y
le need not beHamiltonian, sin
e we allow repeats (i.e. ai = aj for some i 6= j).On the other hand, an a
y
li
 tournament de�nes a total order. ThusD2 = fb1; : : : ; bsgsu
h that f(bi; bj) = bi if and only if i � j (and where, in this 
ase, bi 6= bj if i 6= j).Suppose, for 
ontradi
tion, that �(ai; bj) = 1. Sin
e � is domain-redu
ed, thereexists some k0 su
h that �(ak0 ; bj) is �nite. Hen
e there must be some k su
h that�(ak; bj) < �(ak+1; bj) = 1, where the addition k + 1 is again modulo r. For all h < j,we have the following multimorphism inequality:�(ak; bj) + �(ak+1; bh) � �(ak; bh) + �(ak+1; bj) = 1from whi
h we dedu
e that �(ak+1; bh) = 1. Sin
e � is domain-redu
ed, there existssome m > j su
h that �(ak+1; bm) is �nite. For t 2 f1; : : : ; rg, let m(t) be the smallestinteger su
h that �(at; bm(t)) is �nite. We have just shown that m(k+1) > j. If m(t) > j,then for all h � j, �(at; bh) =1, so�(at; bm(t)) + �(at+1; bh) � �(at; bh) + �(at+1; bm(t)) = 1and hen
e for all h � j, �(at+1; bh) =1, from whi
h it follows that m(t+ 1) > j. Thusm(t) > j ) m(t + 1) > j (where the addition t + 1 is again modulo r). But then,by indu
tion through the integers k + 1; k + 2; : : : ; r � 1; 0; 1; : : : ; k we 
an dedu
e thatm(k) > j, whi
h 
ontradi
ts �(ak; bj) <1.We now extend Lemma 7.11 to any domain D2 whi
h is not strongly 
onne
ted.Lemma 7.12 Let � : D1�D2 ! R+ be a domain-redu
ed 
ost fun
tion with a symmetri
tournament pair hf; gi as a multimorphism.If D1 is strongly 
onne
ted with respe
t to f and D2 is not, then � is �nite.17



Proof: If jD2j = 1 then � is �nite be
ause it is domain-redu
ed. Otherwise, sin
eD2 is not strongly 
onne
ted, it has a partition B1; B2 (with B1; B2 6= ;) su
h thatf(B1; B2) = B1. Let A1; : : : ; Ar be the prime partition of D1. Consider the indu
ed 
risp
ost fun
tion � : fA1; : : : ; Arg � fB1; B2g ! f0;1g. From Lemma 7.11, we know that� = 0. We will show that �(a; b) < 1 for any a 2 Ai, b 2 B2. The proof for b 2 B1 isentirely similar.Sin
e � is domain redu
ed, 9u 2 Ak (for some k 2 f1; : : : ; rg) su
h that �(u; b) <1.Sin
e D1 is strongly 
onne
ted, 9j 2 f1; : : : ; rg su
h that f(Aj ; Ak) = Ak. Sin
e � = 0,9v 2 Aj , 9w 2 B1 su
h that �(v; w) < 1. Applying the multimorphism property, weobtain 1 > �(u; b) + �(v; w) � �(f(u; v); f(b; w)) + �(g(u; v); g(b; w))= �(u;w) + �(v; b)Therefore 9v 2 Aj su
h that �(v; b) <1. By an easy indu
tive proof, we 
an show that8h 2 f1; : : : ; rg; 9z 2 Ah su
h that �(z; b) <1 (3)sin
e for all h, there is a 
hain i1; : : : ; ip su
h that i1 = h, ip = k and f(Aij ; Aij+1) = Aij+1(j = 1; : : : ; p� 1).Now, sin
e � is domain redu
ed, 9
 2 D2 su
h that �(a; 
) < 1. Assume thatf(
; b) = 
 (the proof for the 
ase f(
; b) = b is entirely similar). Sin
e D1 is strongly
onne
ted, 9m 2 f1; : : : ; rg su
h that f(Ai; Am) = Am. By Equation (3) above, 9d 2 Amsu
h that �(d; b) <1. Applying the multimorphism property gives1 > �(d; b) + �(a; 
) � �(f(d; a); f(b; 
)) + �(g(d; a); g(b; 
))= �(d; 
) + �(a; b)Therefore �(a; b) <1.We 
an 
ombine Lemmas 7.10 and 7.12 into the following proposition.Proposition 7.13 Let � : D1 � D2 ! R+ be a domain-redu
ed 
ost fun
tion with asymmetri
 tournament pair hf; gi as a multimorphism, where D1 is strongly 
onne
tedwith respe
t to f .Then either D2 is strongly 
onne
ted with respe
t to f and the indu
ed 
risp 
ostfun
tion on the prime partitions of D1 and D2 is bije
tive, or � is �nite.The �nal result we shall need shows that in some 
ir
umstan
es 
ost fun
tions 
anbe expressed as the sum of 
ost fun
tions with smaller arity. We �rst extend to 
ostfun
tions the de�nition of proje
tion given for relations in De�nition 2.8.De�nition 7.14 Given a 
ost fun
tion � : D1 � : : : � Dr ! R+, and a set of indi
esI = fi1; : : : ; ipg, the proje
tion of � onto I is the fun
tion �I(�) : Di1� : : :�Dip ! R+de�ned by �I�(x1; : : : ; xp) def= minfz2D1�:::�Drjz[ij ℄=xj (j=1;:::;p)gf�(z)g18



For notational 
onvenien
e, unary and binary proje
tions will be denoted by �i(�) and�ij(�) rather than �fig(�) and �fi;jg(�).Note that if hf1; : : : ; fmi is a multimorphism of �, then it is also a multimorphism of�I(�) [12℄.Lemma 7.15 Let � : D1�: : :�Dr ! R+ be a 
ost fun
tion with a symmetri
 tournamentpair hf; gi as a multimorphism.If D1 is strongly 
onne
ted with respe
t to f and ea
h binary proje
tion �1j(�) is �nite,for j = 2; : : : ; r, then � = �1+�2 where �1 : D1 ! R+ is unary and �2 : D2� : : :�Dr !R+ belongs to Imp(f; g).Proof: We prove the result by indu
tion on the arity of �. The result trivially holds if� is unary. Suppose that it holds for 
ost fun
tions of arity less than r and 
onsider a
ost fun
tion � of arity r > 1.If D1 is strongly 
onne
ted, then it must 
ontain a 
omplete 
y
le with respe
t to f ,i.e., D1 = fa0; : : : ; ar�1g su
h that f(ai; ai+1) = ai (for i = 0; : : : ; r�1) with the additioni+ 1 understood as being modulo r.Let y = hy3; : : : ; yri 2 D3 � : : : � Dr. (If r = 2, then y = hi is just the tuple oflength zero.) Consider the 
ost fun
tion  y : D1 � D2 ! R+ de�ned by  y(u; v) =�(u; v; y3; : : : ; yr). Choose an arbitrary pair a; b 2 D2, and assume without loss of gen-erality that f(a; b) = b. Sin
e � 2 Imp(f; g), the following inequalities follow from thede�nition of a multimorphism and the duality of f and g. y(a0; a) +  y(a1; b) �  y(a0; b) +  y(a1; a) y(a1; a) +  y(a2; b) �  y(a1; b) +  y(a2; a)... y(ar�1; a) +  y(a0; b) �  y(ar�1; b) +  y(a0; a)Consider �rst the 
ase in whi
h  y is �nite. By summing the above r inequalities we 
ansee that they are only 
ompatible when there is equality throughout.Consider now the 
ase in whi
h  y is not �nite. Without loss of generality supposethat  y(ai; a) = 1. By the hypothesis that �1j(�) is �nite for all j > 1, and sin
eFeas(�) is de
omposable into its binary proje
tions (by Corollary 5.8), we must have�2k(�)(a; yk) = 1 (for some k 2 f3; : : : ; rg) or �jk(�)(yj ; yk) = 1 (for some j; k 2f3; : : : ; rg). In both 
ases, there is equality in all r of the above inequalities, as both sidesare in�nite.Hen
e, in all 
ases, for all u; v 2 D1, and all x; y 2 D2, y(u; x) +  y(v; y) =  y(u; y) +  y(v; x)Any binary 
ost fun
tion satisfying an identity of this form is 
alled modular.It is known that a binary modular 
ost fun
tion 
an be expressed as the sum of twounary 
ost fun
tions [9, 12℄. Therefore,  y(u; v) =  1y(u)+ 2y(v) for some unary fun
tions 1y : D1 ! R+, and  2y : D2 ! R+. It follows that �(u; v; y3; : : : ; yr) =  1(u; y3; : : : ; yr) +19



 2(v; y3; : : : ; yr), where  1(u; y3; : : : ; yr) =  1y(u) and  2(v; y3; : : : ; yr) =  2y(v) are (r�1)-ary 
ost fun
tions. Moreover, it is straightforward to verify that we 
an take  1 =�f1;3;:::;rg� 2 Imp(f; g) and  2 = � �  1. By the indu
tive hypothesis,  1 = �1 +  3where �1 : D1 ! R+ is unary and  3 : D3 � : : :�Dr ! R+ belongs to Imp(f; g). Hen
e� = �1+�2 where �2 =  3+ 2. Moreover, �2 : D2� : : :�Dr ! R+ belongs to Imp(f; g)sin
e �� �1 2 Imp(f; g) for any unary fun
tion �1.8 Tournament pair multimorphisms give tra
tabilityWe will �rst show that any set of 
ost fun
tions with a symmetri
 tournament pairmultimorphism is tra
table by showing that it is possible to 
onstru
t a reordering of thedomains of ea
h of the variables whi
h 
onverts the 
orresponding VCSP instan
e to aninstan
e of submodular fun
tion minimisation (SFM).It is known that every tournament hD; fi admits a perfe
t fa
torizing permuta-tion, that is, a linear ordering of D su
h that all modules are intervals in the ordering [43℄.In fa
t, this total ordering 
an be obtained by modifying f in the following way.De�nition 8.1 Let f : D2 ! D be a tournament operation. A total ordering derivedfrom f is a tournament operation f 0 : D2 ! D su
h that1. for all a; b 2 D, if it is not the 
ase that a 2 Ai and b 2 Aj (j 6= i) where A1; : : : ; Arare the 
hildren of a prime node in MD(D; f), then f 0(a; b) = f(a; b).2. for all prime nodes in MD(D; f) with 
hildren A1; : : : ; Ar, the indu
ed tournamentf 0 : fA1; : : : ; Arg2 ! fA1; : : : ; Arg is a total order.Theorem 8.2 If hf; gi is a symmetri
 tournament pair, then Imp(f; g) is tra
table.Proof: Let � be a �nite subset of Imp(f; g), and let P = hV;D;Ci be any instan
e ofVCSP(�) and assume that V = fv1; v2; : : : ; vng.The proof pro
eeds in three stages. We �rst restri
t the domains of the variables of Pin su
h a way that every 
ost fun
tion is domain-redu
ed. Se
ond, we 
onstru
t a totalordering derived from f for ea
h of these restri
ted domains in polynomial time. Finally,we show that with these total orderings every 
ost fun
tion is submodular, and hen
e theminimal 
ost solution 
an be found in polynomial time.Stage 1: For the �rst step 
onsider the CSP instan
e obtained by repla
ing ea
hvalued 
onstraint h�; �i in C with the 
onstraint h�;Feas(�)i. By Corollary 5.8, all of therelations Feas(�) are preserved by a �xed majority operation, and hen
e by Lemma 2.9they are de
omposable into binary proje
tions. Sin
e � is �nite, the maximum arity of the
ost fun
tions in � is bounded by a 
onstant, so we 
an 
al
ulate the binary proje
tionsof Feas(�) for ea
h h�; �i 2 C in polynomial time in the size of P . Furthermore ea
hof these binary proje
tions is also preserved by the same majority operation, so we have
onstru
ted a CSP instan
e P 0 with binary 
onstraints where ea
h 
onstraint relation ispreserved by a �xed majority operation. 20



We now establish strong 3-
onsisten
y in the CSP instan
e P 0 in O(n3jDj3) time us-ing standard 
onstraint-pro
essing te
hniques [31, 14℄. The resulting CSP instan
e P 00has restri
ted domains D1;D2; : : : ;Dn for the variables v1; v2; : : : ; vn, respe
tively, andpossibly some new binary 
onstraints. By Theorem 3.5 of [36℄, the instan
e P 00 is strongn-
onsistent, so ea
h value in ea
h restri
ted domain 
an be extended to a 
ompletesolution. This means that ea
h of the 
ost fun
tions in P are domain-redu
ed whenlimited to these restri
ted domains, whi
h 
ompletes the �rst stage of the proof. Theextended VCSP instan
e with all the original valued 
onstraints of P , the restri
ted do-mainsD1;D2; : : : ;Dn, and binary 
risp 
ost fun
tions 
orresponding to all the 
onstraintsof P 00 will be denoted bP . Note that Cost
P = CostP but we have introdu
ed redundantbinary 
onstraints in bP in order to render expli
it exa
tly those assignments to pairs ofvariables that 
annot be extended to a 
omplete solution of �nite 
ost.De�ne Feasij : Di �Dj ! f0;1g to be the expli
it 
risp 
ost fun
tion on variablesvi; vj , i.e. Feasij(a; b) = 0 i� (a; b) is a 
onsistent assignment to variables (vi; vj) in P 00.Stage 2: For the se
ond stage of the proof we need to 
onstru
t a total orderingf 0 derived from f . In stage 3 of the proof, we will show that every 
ost fun
tion of bP isan element of Imp(f 0; g0), where g0 is the dual of f 0. Sin
e we allow ea
h Di to have itsown individual ordering, we will simplify notation by assuming, in the following, that thesets D1; : : : ;Dn are disjoint subsets of D. We 
an then de�ne f 0jDi separately for ea
hi 2 f1; : : : ; ng.By De�nition 8.1, to de�ne f 0jDi we need to 
hoose some total ordering for ea
h ofthe prime partitions in the modular de
omposition of hDi; fi. Let A be a prime node inMD(Di; f), let B = fb 2 Dj j9a 2 A su
h that Feasij(a; b) < 1g and let FeasAij denotethe restri
tion of Feasij to A�B. Now FeasAij : A�B ! R+ is domain-redu
ed sin
e ea
hvalue in A 
an be extended to a 
omplete solution of P 00. Sin
e A is prime, A is strongly
onne
ted with respe
t to f , so by Proposition 7.13, there are two possible 
ases: either(1) FeasAij = 0 or (2) B is strongly 
onne
ted with respe
t to f and there is a bije
tivebinary 
onstraint between the prime partitions of A and B. In the se
ond 
ase, B is astrongly 
onne
ted module (by Lemma 7.6) and hen
e, by Lemma 6.3, B is a prime nodein MD(D2; f). In this 
ase, let FeasAij represent the 
orresponding bije
tive indu
ed 
risp
ost fun
tion on the prime partitions of A and B.We use only these bije
tive fun
tions FeasAij to de�ne f 0. We repeat the followingsteps until f 0 has been de�ned on all the prime partitions in the modular de
ompositionof ea
h domain. Choose some prime node A in MD(Di; f) for some i, su
h that f 0 has notyet been de�ned on the prime partition fA1; : : : ; Arg of A. Choose an arbitrary orderingof A1; : : : ; Ar. For ea
h j su
h that FeasAij 6= 0: let fB1; : : : ; Bsg be the prime partition ofB = fb 2 Dj j9a 2 A su
h that Feasij(a; b) <1g; 
hoose the only possible ordering f 0 offB1; : : : ; Bsg su
h that the bije
tive fun
tion FeasAij is an isomorphism with respe
t to f 0.Be
ause we ensured that P 00 was strong n-
onsistent, we 
an 
hoose the ordering for oneprime partition in one domain Di arbitrarily, and then propagate this 
hoi
e to all primepartitions of other domains whose ordering is now determined, without en
ountering any
ontradi
tions.We repeat this arbitrary 
hoi
e of ordering and propagation until we have fully de�ned21



the total ordering f 0. At every step we simply 
hoose an ordering for a prime partition ofsome domain, examine the binary 
onstraints to neighbouring variables, and propagateas ne
essary. Sin
e there is no ba
ktra
king involved, this pro
ess 
an be 
ompleted inpolynomial time in the size of P, and this 
ompletes the se
ond stage of the proof.Stage 3: It remains to show that every 
ost fun
tion � of bP is an element ofImp(f 0; g0), where g0 is the dual of f 0. Without loss of generality, assume that � : D1 �D2 � � � � �Dk ! R+ and that � is domain-redu
ed.We need to show that the multimorphism inequality in De�nition 3.6 (Equation 1)holds for the tournament pair hf 0; g0i for arbitrary x; y 2 D1 � : : : � Dk. Sin
e thisinequality trivially holds if �(x) or �(y) is in�nite, we assume in the following that �(x)and �(y) are both �nite.We know that this multimorphism equality holds for the tournament pair hf; gi (be-
ause � 2 Imp(f; g)), so we only need to 
onsider the 
ase where f 0(x; y) di�ers fromf(x; y). In other words, when there is some j 2 f1; : : : ; kg su
h that x[j℄ and y[j℄ belongto distin
t 
hildren of some prime node of MD(Dj ; f). Hen
e, we shall assume in the fol-lowing, without loss of generality, that x[1℄ 2 A11 and y[1℄ 2 A12 where A11; A12 are distin
t
hildren of the prime node A1 in MD(D1; f).Let A11; : : : ; A1s be the prime partition of A1. Without loss of generality, suppose thatx[1℄,y[1℄ lie in the distin
t parts A11,A12 (respe
tively) of this prime partition. Now seta11 = x[1℄, a12 = y[1℄ and sele
t an arbitrary element a1i from A1i for ea
h i = 3; : : : ; s.Sin
e � is domain-redu
ed, 8i 2 f3; : : : ; sg, 9ai = ha1i ; : : : ; aki i 2 D1 � � � � �Dk su
h that�(ai) <1. Set a1 = x and a2 = y. Re
all that �(x) and �(y) are also �nite.Let �0 denote the 
ost fun
tion � restri
ted to domains D01 � � � � � D0k where D0j =faji ji = 1; : : : ; sg (j 2 f1; : : : ; kg). Note that �0 is domain-redu
ed, sin
e �0(ha1i ; : : : ; aki i) <1 (i = 1; : : : ; s). Also noti
e that D01 is strongly 
onne
ted, sin
e fA11; : : : ; A1sg isstrongly 
onne
ted with respe
t to the indu
ed tournament. Furthermore, the modularde
omposition MD(D01; f) 
onsists of a single prime node D01 with prime de
ompositionfa11g; : : : ; fa1sg. Sin
e x; y 2 D01 � � � � �D0k, it is suÆ
ient to show that �0 2 Imp(f 0; g0).Now 
onsider the binary proje
tions �01j = �1j(�0), for j 2 f1; : : : ; kg. Sin
e D01 isstrongly 
onne
ted, for ea
h j = 2; : : : ; k, it follows from Proposition 7.13 that either(a) �01j is �nite or (b) the indu
ed 
risp 
ost fun
tion �01j is bije
tive. Without loss ofgenerality, suppose that �01j is bije
tive for j = 2; : : : ; l and �01j is �nite for j = l+1; : : : ; k.By Lemma 7.4, D0j (j = 1; : : : ; l) are all isomorphi
 to D01 (with a single prime node D0jwith de
omposition faj1g; : : : ; fajsg in MD(D0j ; f)).It follows that �0 
an be expressed as the sum of the 
risp binary bije
tive 
ostfun
tions �01j (j = 2; : : : ; l) and a 
ost fun
tion  : D01�D0l+1� � � � �D0k ! R+. Hen
e itis suÆ
ient to show that (a) �01j 2 Imp(f 0; g0) for j 2 f2; : : : ; lg and (b)  2 Imp(f 0; g0).We will �rst show that �01j 2 Imp(f 0; g0) for j 2 f2; : : : ; lg. We know that A1 isstrongly 
onne
ted, sin
e it is a prime node of MD(D1; f). Consider some j 2 f2; : : : ; lgand let Aj = fb 2 Dj j9a 2 A1 su
h that Feas1j(a; b) < 1g. By Lemma 7.6, Aj is amodule. Re
all that FeasA11j denotes the restri
tion of Feas1j to A1 � Aj. Now FeasA11j
annot be �nite, sin
e when restri
ted to domainsD01�D0j it be
omes bije
tive. Therefore,22



by Proposition 7.13, Aj is strongly 
onne
ted and the indu
ed 
risp 
ost fun
tion FeasA11jon the prime partitions of A1 and Aj is bije
tive. Furthermore, by Lemma 6.3, Aj is aprime node in MD(Dj ; f). It follows that FeasA11j is an isomorphism of f 0, by the de�nitionof f 0 in stage 2. Sin
e �01j is also bije
tive, and D01 
ontains exa
tly one element fromea
h of the parts of the prime partition of A1, �01j must also be an isomorphism of f 0.Thus, by Lemma 7.4, �01j 2 Imp(f 0; g0).Next we 
onsider the fun
tion  . Sin
e ea
h binary proje
tion �1j( ) is �nite, forj = l+1; : : : ; k, we 
an dedu
e, by Lemma 7.15, that  =  1+ 2 where  1 : D01 ! R+ isa unary fun
tion and  2 : D0l+1� : : :�D0k ! R+ is a (k� l)-ary domain-redu
ed fun
tionin Imp(f; g).Now we know that  1 2 Imp(f 0; g0), sin
e all unary 
ost fun
tions belong to Imp(f 0; g0).The 
ost fun
tion  2 satis�es all of the relevant properties of �, but has a lower arity.Hen
e, by repeating the argument, as ne
essary, we 
an 
ontinue to redu
e the arity untilwe obtain the result.Theorem 8.3 If hf; gi is a tournament pair, then Imp(f; g) is tra
table.Proof: Consider P 2 VCSP(Imp(f; g)). Let Feas(P) denote the CSP instan
e ob-tained from P by repla
ing ea
h 
ost fun
tion  by the 
onstraint relation Feas( ). ByLemma 5.2, the 
onstraint relations of Feas(P ) all have the polymorphisms f and g. Forea
h variable v of Feas(P), and ea
h value d 2 D, let Feas(P)v=d denote the CSP instan
eFeas(P) with the additional 
onstraint hhvi; fhdigi (i.e., the variable v must be assignedthe value d). Ea
h su
h additional 
onstraint also has the polymorphisms f and g.Any 
lass of CSP instan
es where all relations have a 
onservative 
ommutative poly-morphism 
an be solved in polynomial time [5℄. For ea
h variable v and for ea
h value d,if Feas(P)v=d has no solution, then we eliminate d from the domain of v. Let P 0 denotethe resulting VCSP instan
e. Clearly P 0 2 VCSP(Imp(f; g)).Suppose that the domain of the ith variable in P 0 
ontains a pair of values a; b su
hthat f(a; b) = g(a; b) = b. Let xa (respe
tively xb) represent an optimal solution to P 0su
h that x[i℄ = a (respe
tively x[i℄ = b). Let � denote CostP 0 , the fun
tion obtained bysumming all the 
ost fun
tions of P 0. By 
onstru
tion of P 0, �(xa) <1 and �(xb) <1.Let y = f(xa; xb) and z = g(xa; xb), where f and g are applied 
omponentwise. Sin
e �has the multimorphism hf; gi, we have�(y) + �(z) � �(xa) + �(xb)Now y[i℄ = f(a; b) = b and z[i℄ = g(a; b) = b. Thus, by de�nition of xb, �(xb) � �(y) and�(xb) � �(z). Therefore 2�(xb) � �(xa) + �(xb). Hen
e, sin
e �(xb) is �nite, we have�(xb) � �(xa). It follows that the value a for the ith variable is unne
essary in the sear
hfor a single optimal solution to P 0.Therefore, we 
an eliminate all values a from the domain of a variable v su
h that thereexists b with f(a; b) = g(a; b) = b in the domain of the same variable. On these restri
teddomains hf; gi is a symmetri
 tournament pair, so the result follows from Theorem 8.2.23



9 Examples of new tra
table 
lassesIn this se
tion we will present examples of novel tra
table sets of 
ost fun
tion whi
h are
hara
terised by having a tournament pair multimorphism. Our �rst example is 
loselyrelated to the set of submodular fun
tions, but 
ontains 
ost fun
tions whi
h are notsubmodular under any permutation of the domain D.Example 9.1 Let D = f1; 2; 3g and 
onsider the tournament operation de�ned byf(1; 2) = 1, f(2; 3) = 2, f(3; 1) = 3, 
orresponding to a 
y
li
 tournament on D =f1; 2; 3g. Let g be the dual of f (i.e., g(1; 2) = 2, g(2; 3) = 3, g(3; 1) = 1)).The set Imp(f; g) 
ontains 3 types of 
ost fun
tions:1. all unary 
ost fun
tions � : D ! R+.2. the three binary 
y
li
 permutations �k : D2 ! R+ (k = 0; 1; 2) given by�k(x; y) = � 0 if y � x+ k (mod 3)1 otherwise3. 
ost fun
tions � su
h that Feas(�) � D1 � : : : � Dr with jDij � 2, for all i 2f1; : : : ; rg,Noti
e that no re-ordering of the domain 
an render �1 submodular. The proof ofTheorem 8.2 shows that (after establishing strong 3-
onsisten
y) any problem instan
eP 2 VCSP(Imp(f; g)) is equivalent to an instan
e P 0 with only these types of 
ost fun
-tions and su
h that the two subproblems on1. the set V3 of variables whose domains are of size 32. the set V2 of variables whose domains are of size 2 or lessform two independent optimization problems. The former is in fa
t a 
olle
tion of inde-pendent optimization problems on the 
onne
ted 
omponents of the graph whose nodesare the variables V3 with variables vi, vj joined by an edge if and only if there is a 
y
li
permutation 
onstraint between vi and vj in P 0. Ea
h of these optimization problemsare trivially solvable by exhaustion over at most 3 possible solutions. The asso
iated op-timization problem on V2 
an be transformed into a submodular fun
tion minimization(SFM) problem by renaming the domain value 1 in domains Di = f1; 3g. By renam-ing 1 as 4, the resulting 
ost fun
tions on the variables in V2 are submodular under theusual total order 1 < 2 < 3 < 4. The tra
tability of VCSP(Imp(f; g)) then followsfrom the tra
tability of SFM over non-Boolean domains [12℄ (whi
h is a straightforwardgeneralization of the tra
tability of SFM over Boolean domains [50, 34, 32℄). �Example 9.2 As an example of a tra
table 
lass of valued 
onstraints with a non-symmetri
 tournament multimorphism, 
onsider Imp(f; h) where f is given by f(1; 2) = 1,f(2; 3) = 2, f(3; 1) = 3 (as in Example 9.1) and h is the tournament operation given by24



h(1; 2) = 2, h(2; 3) = 2, h(3; 1) = 1. As shown in the proof of Theorem 8.3, after estab-lishing generalized ar
 
onsisten
y [46℄ (i.e., eliminating from domains values whi
h haveno �nite extension in some valued 
onstraint, this operation being repeated until 
on-vergen
e), we 
an eliminate the value 3 from any domain 
ontaining the values 2 and 3.The resulting VCSP instan
e is an instan
e of SFM over a 
olle
tion of 2-valued domains,whi
h again is tra
table. �10 Con
lusionIn this paper we have shown that it is possible to unify and extend the tra
table problemsof Horn 
lause satis�ability and submodular fun
tion minimization via the investigationof tournament multimorphisms.Over Boolean domains, there remain two other important tra
table 
onstraint 
lasses,
orresponding to 2-SAT and linear equations [8, 12℄. These 
lasses 
an both be 
hara
-terised by having ternarymultimorphisms. Therefore an obvious avenue of future resear
his the extension of tournament multimorphisms to ternary multimorphisms. Bulatov hasalready shown [4℄ that if � is a tra
table 
lass of 
risp 
ost fun
tions 
ontaining all unaryrestri
tions, then � � Imp(f; g; h) for some ternary multimorphism hf; g; hi. It is an openquestion whether this generalizes to arbitrary (non-
risp) 
ost fun
tions.On a more pra
ti
al level, it is known that SFM over a Boolean domain 
an besolved in O(n3) time when the submodular fun
tion � satis�es one the following extra
onditions: � is symmetri
 [47, 45℄, � is 
ubi
 [2℄, or � is (0,1)-valued [18, 19, 40℄. Inthe 
ase of non-Boolean domains, a 
ubi
-time algorithm exists for SFM when � is thesum of binary submodular fun
tions [10℄ or when � is the sum of 
ertain 
lasses of (0,1)-valued fun
tions over a latti
e [11, 39, 41℄. In ea
h 
ase, the 
ubi
-time 
omplexity isobtained by a redu
tion to the Min-Cut problem. An obvious avenue of future resear
his to determine whi
h of these 
ubi
-time 
lasses generalizes to arbitrary tournament pairmultimorphisms.Referen
es[1℄ Angl�es d'Auria
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