
Computing Maximal Bisimulations

Alexandre Boulgakov, Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{alexandre.boulgakov, thomas.gibson-robinson, bill.roscoe}@cs.ox.ac.uk

Abstract. We present and compare several algorithms for computing
the maximal strong bisimulation, the maximal divergence-respecting de-
lay bisimulation, and the maximal divergence-respecting weak bisimula-
tion of a generalised labelled transition system. These bisimulation re-
lations preserve CSP semantics, as well as the operational semantics of
programs in other languages with operational semantics described by
such GLTSs and relying only on observational equivalence. They can
therefore be used to combat the space explosion problem faced in ex-
plicit model checking for such languages.

1 Introduction

Many different variations on bisimulation have been described in the literature
of process algebra, for example [1–5]. They are typically used to characterise
equivalences between nodes of a labelled transition system (LTS), but they can
also be used to calculated state-reduced LTSs that can represent equivalent pro-
cesses. They have the latter function in the CSP-based [6–8] refinement checker
FDR [9], of which the third major version FDR3 has recently been released [10].
The present paper sets out the approaches to bisimulation reduction taken in
FDR and especially FDR3.

FDR typically builds the transition system of a large process as the parallel
composition (closely related to Cartesian product) of those of component pro-
cesses, which are often sequential. One of the approaches it takes to the state
explosion problem is to supply a number of compression functions that attempt
to reduce the state spaces of these components. The set of compressions intro-
duced in [11], which included strong bisimulation, has been extended by several
other versions of bisimulation in the most recent versions of FDR.

The main purpose of this paper is to set out the bisimulation algorithms
used by FDR3 and compare them with alternatives. Our strong bisimulation
algorithm is related to Paige and Tarjan’s bisimulation algorithm [12,13], and is
compared with that. When more compression is needed, other tools frequently
use branching bisimulation [14] due to the existence of an efficient O(nt) algo-
rithm [15]. In contrast, FDR3 uses the even coarser delay and weak bisimulations;
we present innovative algorithms to compute these bisimulations based on dy-
namic programming. These latter algorithms were introduced because, although

they typically achieve slightly poorer compression than FDR’s existing compres-
sions, bisimulations are more widely applicable. In Section 5.2 we compare these
two classes of compressions.

2 Strong Bisimulation

FDR uses LTSs in which nodes sometimes have additional behaviours repre-
sented by labellings such as divergences or minimal acceptances.

Definition 1. A generalised labelled transition system (GLTS) is a tuple (N , Σ,
E , Λ, λ) where N is a set of nodes, Σ is a set of events, Στ = Σ ∪ {τ}, −→⊆
N ×Στ ×N is a labelled transition relation (with p

a−→ q indicating a transition
from p to q with action a), Λ is a set of labels, and λ : N → Λ is a total function
labelling each node. The following shorthand is used:

– initials(m) = {e | ∃n ·m e−→ n} denotes m’s initial events;

– afters(m) = {(e,n) | m e−→ n} denotes m’s directly enabled transitions;

– m ⇑ ⇔ ∃m0,m1, ... ·m0 = m ∧ ∀ i ·mi
τ−→ mi+1 denotes divergence, i.e. an

infinite cycle of internal τ actions corresponding to livelock.

Definition 2. A relation R ⊆ N × N is a strong bisimulation of a GLTS S if
and only if it satisfies all of the following, where n1,n2,m1,m2 ∈ N and x ∈ Στ :

∀n1,n2,m1 · ∀ x · n1R n2 ∧ n1
x−→ m1 ⇒ ∃m2 ∈ N .n2

x−→ m2 ∧m1R m2

∀n1,n2,m2 · ∀ x · n1R n2 ∧ n2
x−→ m2 ⇒ ∃m1 ∈ N .n1

x−→ m1 ∧m1R m2

∀n1,m1 · n1 R n2 ⇒ λ(n1) = λ(n2)

Two nodes are strongly bisimilar if and only if there exists a strong bisimu-
lation that relates them. The maximal strong bisimulation on a GLTS S is the
relation that relates two nodes if and only if they are strongly bisimilar. The
FDR function sbisim computes the maximal strong bisimulation on its input
GLTS and returns a GLTS with a single node bisimilar to each equivalence class
in the input. FDR has included the sbisim compression function since its early
days. However the algorithm has not been described in the literature in detail
(a brief outline is found in [8]) until now.

2.1 Näıve Iterative Refinement

The FDR2 implementation of sbisim first computes the desired equivalence
relation as a two-directional one-to-many map between equivalence class and
node identifiers. It then generates a new GLTS based on the input and the
computed equivalence relation. This final step is straightforward to implement
and dependent more on the internal GLTS format than the strong bisimulation
algorithm and will not be discussed in this paper. Furthermore, it is not specific
to strong bisimulation and can be used to factor a GLTS by an arbitrary relation.

It is computing the desired equivalence relation that requires the most effort both
on the part of the algorithm designer and on the part of the computer.

A coarse approximation of the equivalence relation is first computed by using
the first-step behaviour of each node, and each class in this relation is repeatedly
refined using the first-step behaviours of the nodes under the current approxi-
mation. This is related to the formulation of strong bisimulation given in [2] as
a series of experiments of increasing depth.

Initial Approximation. The initial approximation can most simply be com-
puted by identifying all nodes. However, FDR employs a finer initial approxi-
mation that saves time later on.

Unlike the afters of a node, whose equivalence depends on the current equiv-
alence relation, these are fixed labels and we can save time by only comparing
them once. We can compute an initial approximation by comparing the nodes’
labels and initials and need not look at the labels again. This is equivalent to
identifying all nodes and then performing one refinement using the nodes’ labels
and their afters’ equivalence classes.

Iteration. Assume that we have already separated the nodes into equivalence
classes, whether from the initial approximation or from a previous refinement
step. We will now attempt to refine these classes further. After computing the
afters of each node under the latest equivalence relation, we sort the afters for
the nodes in each class in order to reclassify them. A single in-order traversal
through the sorted lists allows us to reclassify the nodes in each class.

If any nodes have changed class during this pass, we must proceed to refine
the classes again. Otherwise, we are done. We can determine whether any nodes
have changed class during the final reclassification traversal with very little ad-
ditional work.

Construction. The final step is to construct the output GLTS. To do this,
we first create a node for each equivalence class. Next, we can use the already
computed afters to create the transition system, using an arbitrary representa-
tive from each class since the afters for each of the nodes in an equivalence class
are guaranteed to be equivalent (since the refinement phase has terminated).
Any node labels can also be copied from the representative directly as they are
guaranteed to be equivalent.

Complexity. The initial approximation takes up to a constant factor more
time than one iterative step and construction only requires a traversal of the
output of the iterative step, so the run time is dominated by the iteration.

Assume an input GLTS with n nodes and t transitions. In FDR’s representa-
tion, the transition set is sorted first by source and then by event, so recomput-
ing the afters is a relatively inexpensive operation requiring simply an in-order
traversal of the transition set and a random lookup per transition to compute
the equivalence class of its destination, taking O(t) time. The following sort can
take O(n log(n)) time in the worst case where the nodes are spread across few
classes, and the reclassification is done in O(n) time. Since we refine at least
one class on each iteration except the final one, there can be no more than n
iterations. The worst-case time complexity is therefore in O(nt + n2 log(n)).

2.2 Change-Tracking Iterative Refinement

We will now present an improvement on Näıve Iterative Refinement that is in-
cluded in FDR3. With some bookkeeping, we can determine which states’ afters
could not have changed after the previous iteration. The proposed algorithm uses
this information to avoid recomputing and sorting the afters for these states.

It is clear that in a process such as P(n) where

P(0) = STOP P(n) = a → P(n − 1)

näıve iterative refinement would first identify all the states except P(0), then
split off P(1), then P(2), and so on, recalculating the afters for all n + 1 nodes,
and sorting a list of n−i elements and i +1 lists of 1 element on the i th iteration.
However, we can note that only one node changes class on each iteration, so we
need only to recompute the afters for that node.

We can also use this knowledge to reduce the number of nodes that have to
be sorted. To do so, we must keep track of which nodes are affected by each node
(that is, a copy of the transition system with the transitions reversed and the
labels removed), and we must also keep track of which nodes change class on each
iteration. As FDR represents states as consecutive integers and the transitions
are stored in an array, we can easily construct a constant-time accessible map
from nodes to their predecessors.

We will maintain as running state a bit vector changed containing the nodes
whose equivalence class changed on the previous iteration, and a bit vector
affected containing the nodes that might be affected by those changes. affected
should be initialised with all nodes marked since we need to compute the afters
for all of the nodes initially.

Following this initialisation, on each iteration we will perform the following
sequence of actions. First, we will recompute the afters for each of the nodes in
affected . All nodes that are not marked for update get to keep their afters from
the previous iteration. Next, we compute the equivalence classes that contained
the affected nodes in the previous iteration; these are the equivalence classes
that might need to be refined, and this can be computed in linear time in the
number of nodes by iterating over affected . We must also clear changed for the
next step.

For each of the classes that we consider for refinement, we first separate the
nodes that have not changed class from those that have (which are in affected).
Next, we sort the nodes that are in affected and in this class in order to partition
this class. At this point, we can go through the sorted nodes and assign each
group a new class index. However, this does not perform well on examples like
R (with the LTS shown in Figure 1) where

R = (2
i∈{0..n}

b → b → Q(i)) 2 a → R′

R′ = 2
i∈{0..n}

a → Q(i)

Q(i) = a → STOP

R

Q0

Qi

Qn

R′

b

b

b

a

b

b

b

a

a

aa

a

a

Fig. 1: R′ has the same initials as each of the Qi , but is in a different equivalence
class from them. An initial classification based on initials would therefore place
them in the same equivalence class, but a future refinement would reclassify
either R′ or all of the Qi , which would change the afters of R only or all of the
b → Q(i), respectively.

In particular, the initial classification places R′ and each of the Q(i) into the
same equivalence class, but the next iteration reclassifies each of the Q(i). This
forces each of the b → Q(i) to be reclassified as well. However, when splitting
an equivalence class we are free to assign class indices in an arbitrary way; in
particular, rather than changing the indices of the Q(i), we could instead have
changed the index of the single node R′, which has the single predecessor R.
To do this algorithmically, once we have sorted the classes of all of the affected
nodes in a given class, we choose the largest sequence of nodes with the same
class to keep the original class index and assign new indices to the rest, rather
than picking the first such sequence. We must also record the nodes that had
new indices assigned in changed .

Once we have refined each of the classes that needed to be refined, we can
iterate through changed and add to affected each of their predecessors for the
next iteration. If changed is empty, we can conclude that we have reached a fixed
point, and we can terminate the algorithm, returning the bisimulation relation
we have computed implicitly in the equivalence class indices of the nodes.

2.3 Paige-Tarjan Algorithm

The algorithm outlined in [13] is an adaptation of Paige and Tarjan’s solu-
tion (described in Section 3 of [12]) to the relational coarsest partition problem
(which is equivalent to single-action strong bisimulation) that works with LTSs
by splitting with respect to each element of the alphabet in sequence whenever
the original algorithm would split a class. In summary, each time a class is split,
the resulting subclasses are recorded. Refinement is then performed with respect
to the initial classes (separating nodes with edges into each class from those

Näıve (s) Change-Tracking (s) P-T (s)

Total 186 40 55

1 22.51 3.38 4.32

2 22.03 2.89 3.84

3 21.99 2.84 3.68

4 21.80 2.70 3.56

5 17.10 2.69 3.07

Table 1: sbisim timings. Total runtime and the 5 longest invocations for each
algorithm (not necessarily corresponding to the same inputs).

without) and with respect to each split class (separating nodes with edges into
one subclass, the other, or both) using the inverse labelled transition relation.

Complexity. The worst-case time complexity for a graph with n nodes and
t transitions is in O(t log(n)). However, the cached in-counts (the info maps
in [13]) necessary to achieve this bound can be unwieldy to manipulate, raising
the implementation and runtime costs. In addition, as the algorithm requires
frequent construction and traversal of sets, there is a time or space penalty
depending on the set representation used.

2.4 Performance

We will now compare the performance of the three algorithms for sbisim on
several real-world and generated examples. The test system used contains a
medium-range CPU1 and 4 GiB of memory, running 64-bit Ubuntu 12.10.

FDR3 Test Suite. To ensure proper operation of FDR3, we have developed
a suite of regression and feature tests containing tests generated randomly at
runtime, examples from [7] and [8], and assorted test files. Since sbisim is applied
to all component processes by default, many of these tests exercise sbisim. There
are about 60,000 invocations of sbisim over the test suite, and they are a good
comparison of the algorithms’ performance on small leaf components typical in
a system that does not use sbisim explicitly. The move from näıve to change-
tracking iterative refinement affords a nearly five-fold speedup, as evidenced
by Table 1. The Paige-Tarjan algorithm is slightly slower than change-tracking
iterative refinement, but part of this might be due to the heavy optimisation that
our implementation of iterative refinement has gone through over the years.

Towers of Hanoi. The first example is a model of the classic Towers of Hanoi
puzzle. The puzzle consists of three rods and N disks of varying sizes, with an
invariant that the disks on any rod are arranged in ascending order. A move
consists of moving the topmost disk from one rod to another, while preserving
the invariant. The objective is to move all the disks from one rod to another.
There are 3N possible configurations, since each disk can be on any of the three

1 The CPU is a quad-core Intel R© CoreTM i5-750 with 8 MB of cache. The number of
cores is not relevant, since the strong bisimulation algorithm is single threaded.

rods at any time and its position on the rod is determined by the other disks
on the rod (due to the invariant). From each configuration, either two or three
others are reachable: if all the disks are on one rod, the two valid moves are to
move the topmost disk to either of the two remaining rods, and if not all the
disks are on one rod, the smallest of the topmost disks can be moved to either
of the two other rods and the second smallest to one rod. In our model, if all
the disks are on one rod, the system can also perform a completion event but
remain in the same configuration, resulting in 3N+1 transitions. We have hidden
(i.e., renamed to τ) all events except for one completion event (as one might do
when solving the puzzle using FDR) and applied sbisim to the result.

As we can see from Table 2, there is a significant speedup due to change-
tracking iterative refinement that grows even more pronounced as the problem
size grows. The Paige-Tarjan algorithm is consistently faster, likely due to the
small amount of branching.

Dining Philosophers. The next example is a model of the Dining Philoso-
phers problem with N right-handed philosophers. We hide all visible events
(so the states are now distinguished by how many events must occur before
the inevitable deadlock) and apply sbisim to the result. We also do the same
for two deadlock-free solutions (which therefore have a single state after hiding
and strong bisimulation, obtained in one step of iterative refinement). The first
solution involves introducing asymmetry by making one of the philosophers left-
handed. The second solution introduces a butler who ensures there are never
more than N − 1 of the philosophers seated.

As we can see in Table 2, change-tracking iterative refinement is signifi-
cantly faster than näıve iterative refinement for the deadlocking problem, and
increasingly so for larger numbers of philosophers, but somewhat slower for the
non-deadlocking variants. This is likely due to the fact that the additional book-
keeping it must perform does not have a chance to become useful – there is no
second iteration after all the nodes are identified. However, the slowdown is not
significant (less than twofold). The modified Paige-Tarjan algorithm is interme-
diate to the two variants of iterative refinement for the deadlocking cases and
slower than both for the non-deadlocking variants.

Matrix. The final example is a matrix of N + 1 by N + 1 nodes, each being
able to transition to the node on its right or the node below it with an event a.
This is process Q(N) where

P(0) = STOP

P(n) = a → P(n − 1)

Q(n) = P(n) ||| P(n)

It has (N + 1)2 states and 2N ∗ (N + 1) transitions, but sbisim can reduce
this to 2N + 1 states and 2N transitions, since each node simply performs a
number of as and deadlocks, and the number is no more than 2N , N from each
of the component P(N).

Summary. For most of our experiments, change-tracking iterative refinement
and the modified Paige-Tarjan algorithm both outperformed näıve iterative re-

Problem
States Transitions

Näıve CTIR P-T
Output Input Output Input

Hanoi N = 8 1,645 6,561 4,927 19,683 1.15 0.099 0.038

Hanoi N = 9 4,926 19,683 14,769 59,049 9.37 0.467 0.184

Hanoi N = 10 14,768 59,049 44,294 177,147 79.8 2.96 0.631

Hanoi N = 11 44,293 177,147 132,868 531,441 702 18.2 2.91

5 Phils (deadlock) 1,558 7,774 6,825 34,241 0.283 0.034 0.087

6 Phils (deadlock) 7,825 46,656 41,054 246,613 3.06 0.399 1.13

7 Phils (deadlock) 39,994 279,934 246,549 1,726,257 29.6 2.99 11.2

7 Phils (butler) 1 218,751 2 1,266,616 0.354 0.597 0.852

7 Phils (asymm) 1 266,604 2 1,641,653 0.454 0.759 1.126

Q(100) 201 10,201 201 20,201 1.03 0.064 0.024

Q(300) 601 90,601 601 180,601 66.1 1.77 0.418

Q(1000) 2,001 1,002,001 2,001 2,002,001 4540 60.2 16.3

Table 2: sbisim statistics. Times for Näıve Iterative Refinement, Change-
Tracking Iterative Refinement, and the Paige-Tarjan algorithm in seconds.

finement and exhibited similar performance. For problems where only a small
number of refinements were required, they were slightly slower due to bookkeep-
ing overhead, but not significantly so.

3 Divergence-Respecting Delay Bisimulation

While FDR has long supported strong bisimulation, it has only recently sup-
ported variants of weak bisimulation. This was because the weak bisimulation
of [2] is not compositional for most CSP models and because FDR already
had compressions (e.g., diamond and normal) that successfully eliminated τ ac-
tions. However the implementation of priority, Timed CSP, and semantic models
such as refusal testing in FDR created the need for further compressions, since
diamond is not compositional with these and normal is problematic. The first
compression introduced for this reason is dbisim (called wbisim when it was in-
troduced in FDR 2.94), which returns the maximal divergence-respecting delay
bisimulation (DRDB) of its input.

Given the transition relation −→ of a GLTS S , let us define a binary relation
=⇒ such that p =⇒ q if and only if there is a sequence p0, ..., pn (with n possibly

0) such that p = p0, q = pn , and ∀ i < n.pi
τ−→ pi+1. Let us further define a

ternary relation ↪→ with p
a
↪→ q for a ∈ Σ if and only if ∃p′.p =⇒ p′ ∧ p′

a−→ q ,

and p
τ
↪→ q if and only if p =⇒ q . We will refer to this relation as the delayed

transition relation, since the visible events are delayed by 0 or more τs.

Definition 3. A relation R ⊆ N×N is a divergence-respecting delay bisimulation
of a GLTS S if and only if it satisfies all of the following requirements, where
n1,n2,m1,m2 ∈ N and x ∈ Στ :

∀n1,n2,m1 · ∀ x · n1R n2 ∧ n1
x
↪→ m1 ⇒ ∃m2 ∈ N .n2

x
↪→ m2 ∧m1R m2

∀n1,n2,m2 · ∀ x · n1R n2 ∧ n2
x
↪→ m2 ⇒ ∃m1 ∈ N .n1

x
↪→ m1 ∧m1R m2

∀n1,n2 · n1 R n2 ⇒ λ(n1) = λ(n2)
∀n1,n2 · n1 R n2 ⇒ n1 ⇑ ⇔ n2 ⇑

Note that the definition is very similar to that of strong bisimulation. The
differences are the use of the delayed transition relation and the added clause
about divergence, which is necessary to make the compression compositional
for CSP. However, if we precompute divergence information and record it in
each node’s label, the requirement that n1 ⇑ ⇔ n2 ⇑ will be absorbed into the
requirement that λ(n1) = λ(n2).

The FDR compression function dbisim computes the maximal DRDB on
its input GLTS and returns a GLTS with a single node DRD-bisimilar to each
equivalence class in the input. It is an important compression because it pre-
serves semantics in all CSP models, while potentially offering a significantly
higher amount of compression than strong bisimulation. FDR has included this
compression since version 2.94 as an effective compression for CSP models richer
than the failures model [16]. However the algorithm has not been described in
the literature until now.

3.1 Reduction to Strong Bisimulation

FDR2 employs an adaptation of the näıve iterative refinement discussed in 2.1
to compute a maximal DRDB. A näıve implementation can apply the algorithm
directly to an input with nodes containing divergence information, but for any
of the requested properties (initials or labels) consider the τ -closure of the node
(all nodes reachable from the given node by a sequence of τs) and allow the
behaviours of each of the nodes in the τ -closure for the given node.

For an input GLTS S , we can compute a GLTS Ŝ with a transition for each
delayed transition of the input and mark each node with divergence information
computed from S . Care is required not to introduce divergences not present in
S due to the τ self-loops introduced in Ŝ because the original node can take
an empty sequence of τs to itself. The maximal strong bisimulation of Ŝ is the
maximal DRDB of S by construction.

Complexity. A significant problem with this approach is the high worst-case
space complexity. Ŝ can have up to An2 transitions if the input has n nodes and
an alphabet of size A, even if S has o(An2) transitions. For example, a process
that performs N τs before recursing exhibits this worst-case behaviour. Since
all nodes are mutually τ -reachable, a transition system with N 2 transitions is
constructed. Figure 2 demonstrates this quadratic explosion for N = 4.

Construction of Ŝ can take a correspondingly significant amount of time.
For example, using an adaptation of the Floyd-Warshall algorithm [17] requires
O(n3) operations. The strong bisimulation step after this transformation takes
up to O(n3) operations since the number of transitions can grow to O(n2) and
dominate the n log(n) term.

τ τ

ττ

(a) The input, P(4), has only four tran-
sitions and four nodes.

(b) The output has sixteen transitions
for the same four nodes. Labels
have been omitted for clarity.

Fig. 2: The constructed LTS can be quadratically larger than the input.

3.2 Dynamic Programming Approach

Rather than constructing Ŝ and keeping it in memory (which is often the limiting
factor for such computations, since main memory is limited and the hard disk
is prohibitively slow given the random nature of the accesses required by parts
of the strong bisimulation algorithm), FDR3 instead recomputes the relevant
information using the original transition system on each refinement iteration.

Algorithm. First, noting that two nodes on a τ loop are both DRD-bisimilar
and divergent, we factor the input GLTS S by the relation that identifies nodes
on a τ loop. FDR has a function built in that does this, tau loop factor. We
will not discuss it in detail here, but it uses Tarjan’s algorithm for finding strongly
connected components [18] via a single depth-first search and runs in O(n + t)
time for a system with n nodes and t transitions. In addition to eliminating
τ loops, it marks each node as divergent or stable. Now that we have ensured
there are no τ loops, the τ -transition relation can be used to topologically sort
the nodes with another depth-first search [19], so that there are no upstream
τ -transitions.

The topological sort allows us to obtain the transitions of the Ŝ described
in Section 3.1 using a dynamic programming approach. The last node in this
topological sort has no outgoing τ transitions, so its new initials and afters are
precisely those in S with the addition of itself after τ . We then proceed upstream
and for each node compute the union of its own afters (with the inclusion of a
self-transition under τ) and the afters of each of the nodes it can reach under
a single τ transition. Of course, since we are doing this in a topological order,
these nodes have been processed already, so we have computed the union of the
afters of all τ -reachable nodes from the given node.

We can apply a modified Näıve Iterative Refinement (Section 2.1) to compute

the maximal strong bisimulation of Ŝ , which is itself never constructed. The
faster CTIR or modified Paige-Tarjan algorithms require the inverted transition
relation, and we have not found a way to do this dynamically. We compute the
initials and labels for the initial approximation using dynamic programming on
the topologically sorted nodes. For each refinement, we compute the equivalence
classes of the afters using the dynamic programming approach described above,
but keeping track of equivalence classes rather than node identifiers for each
after . For the construction step, we compute the equivalence classes of the afters
as above, but without inserting the τ self-transition.

Complexity. The space complexity for this algorithm is never significantly
higher than that of the explicit reduction, and can be significantly lower. The
only additional information we have is the transient DFS stack and bookkeeping
information, and the sorted node list. The afters we compute for each node take
no more space than the exploded transition system, and will take less if any
nodes are identified – and if the user is running the algorithm there is reason to
believe that they will be. In addition, since the afters are recomputed at each
iteration, the working set for each refinement iteration can be smaller than the
peak working set required by the final one. For example, for the process P(N)
portrayed in Figure 2, the initial classification will identify all nodes, and the
first afters computation will have a single after for each node: equivalence class
0 under τ .

We still traverse the entire transition set a single time (split across nodes).
But now, for each node, we have to take the union of its afters and the ones
preceding it. Provided we keep these sorted, and use a merge sort for union, we
will have in the worst case O(Acn) operations for each node, where A is the size
of the alphabet, c is the number of classes in this iteration, and n is the number
of nodes, since Ac is the maximal number of afters a node could have and we
could have O(n) nodes following this one. This means an upper bound on the
overall worst-case runtime is O(An4).

However, in practice the time complexity is much lower. Removing τ loops
ensures that the graph is not fully connected and reduces the number of unions
for each node significantly. The number of classes c is often much less than
n. In addition, there are further optimisations that could be made to reduce
the runtime, the union operation can be made faster by keeping metadata that
allows us to avoid unioning duplicate afters sets. Section 5.2 demonstrates that
the dynamic programming approach is faster on many examples with a large
number of τs than the explicit reduction approach.

4 Divergence-Respecting Weak Bisimulation

FDR3 adds support for compression by an even weaker equivalence relation,
divergence-respecting weak bisimulation (DRWB).

Given the transition relation −→ of a GLTS S and the binary relation

=⇒≡ τ−→
∗
, let us define a ternary relation =⇒ with p

a
=⇒ q for a ∈ Σ if and

only if ∃p′, q ′.p =⇒ p′ ∧ p′
a−→ q ′ ∧ q ′ =⇒ q , and p

τ
=⇒ q if and only if p =⇒ q .

We will refer to this relation as the observed transition relation.

Definition 4. A relation R ⊆ N×N is a divergence-respecting weak bisimulation
of a GLTS S if and only if it satisfies all of the following requirements, where
n1,n2,m1,m2 ∈ N and x ∈ Στ :

∀n1,n2,m1 · ∀ x · n1R n2 ∧ n1
x

=⇒ m1 ⇒ ∃m2 ∈ N .n2
x

=⇒ m2 ∧m1R m2

∀n1,n2,m2 · ∀ x · n1R n2 ∧ n2
x

=⇒ m2 ⇒ ∃m1 ∈ N .n1
x

=⇒ m1 ∧m1R m2

∀n1,n2 · n1 R n2 ⇒ λ(n1) = λ(n2)
∀n1,n2 · n1 R n2 ⇒ n1 ⇑ ⇔ n2 ⇑

Note that the definition is very similar to that of divergence-respecting delay
bisimulation. The only difference is the use of the observed transition relation in
place of the delayed transition relation.

The FDR3 compression function wbisim computes the maximal DRWB on its
input GLTS and returns a GLTS with a single node DRW-bisimilar to each equiv-
alence class in the input. It is an important compression because, like sbisim

and dbisim it preserves semantics in all CSP models, while potentially offering
a higher amount of compression than dbisim. This compression is new in FDR3
and is the strongest implemented compression for CSP models richer than the
failures model.

4.1 Algorithm

We proceed in a manner similar to that described in Section 3.2. Noting that two
nodes on a τ loop are both DRW-bisimilar and divergent, we factor the input
GLTS by the relation that identifies nodes on a τ loop using tau loop factor.
We then topologically sort the nodes by the τ -transition relation.

The topological sort allows us to obtain the observed transitions using a two-
pass dynamic programming approach. One pass as in delay bisimulation is not
sufficient here since we need to determine the τ∗ afters of the visible afters of
each node, and these visible afters might not have been previously explored.
In the first pass, we compute the τ∗ afters of each node. The last node in this
topological sort has no outgoing τ transitions, so its only τ∗ after is itself. We
then proceed upstream and for each node compute the union of its own τ afters
(with the inclusion of itself) and the previously computed τ∗ afters of each of
the nodes it can reach under a single τ transition. The second pass computes
the visible observed transitions. For each node, these are the union of the τ∗

afters of its visible afters and the visible observed transitions of its τ afters. If
we proceed in topological order, the visible observed transitions of each node’s
τ afters will have already been computed by the time they are needed.

We can apply a modified Näıve Iterative Refinement to compute the maximal
strong bisimulation of the induced GLTS as in Section 3.2, removing the τ self-
transition from each node in the construction step.

Complexity. In the typical case this algorithm will require more space to
store the afters than the DRD-bisimulation algorithm since it must follow the

τ transitions after a visible event in addition to the ones tracked by the DRD-
bisimulation algorithm. However, the worst-case space complexity for this algo-
rithm is the same, since in the worst case all the nodes are mutually reachable
under both the delayed transition relation and the observed transition relation.
The time complexity is a constant factor greater since at each iteration two
passes through the topologically sorted nodes must be performed.

However, in practice we have found that wbisim is nearly as fast as dbisim,
and produces identical results on all example files other than ones we have con-
trived to prove that the two are in fact different.

5 Performance

5.1 Diamond Elimination

It is interesting to compare dbisim with alternatives available in FDR prior to
its introduction. The most widely used compression was sbisim(diamond(P)),
which we will call sbdia. In all the following examples sbdia is valid.

5.2 Timing

This section is primarily to compare the runtimes of sbdia and the algorithms
we have presented for dbisim and wbisim. We will use the same system as for
the sbisim tests, described in 2.4. Reduction to strong bisimulation has only
been implemented in FDR2 and the dynamic programming approach has only
been implemented in FDR3, so the timings are not directly comparable due to
differences in other components such as the compiler, which is single-threaded in
FDR2 and multi-threaded in FDR3. However, the examples have been designed
to heavily use dbisim, and most of the runtime will be due to dbisim rather
than these other components. We will use the same examples here as in the
sbisim tests, so section 2.4 should be consulted for more details.

Towers of Hanoi. As in the sbisim test, we have hidden all events except for
one completion event, resulting in a strongly connected network of τs, with a
single visible transition. dbisim reduces this to a system with one node and two
transitions in one iteration. However, FDR2 does not always reach this iteration –
4 GiB of RAM is not enough for an exploded transition system corresponding to
N > 8, and it uses 537 MiB for the N = 7 problem, while FDR3 uses only 700
MiB for the 729 times larger N = 13 problem and 1.9 GiB for the 2187 times
larger N = 14 problem. The situation is similar for the Dining Philosophers.

Matrix. The matrix example perhaps shows best the difference between the
two algorithms using P and Q as defined in 2.4 and R(n) = Q(n) \ a.

We have tested both Q(N) and R(N) for various values of N . The FDR2
algorithm, which explicitly constructs an LTS representing the delay transitions
performs better on Q , which doesn’t contain any τs (so the exploded transition
system is the same size as the original one), since the dynamic programming
approach performs unnecessary work at each iteration as well as at the start.

Problem States Transitions Explicit dbisim Dynamic dbisim wbisim sbdia

Hanoi (7) 2,187 6,561 13 0.03 0.05 0.04

Hanoi (8) 6,561 19,683 – 0.08 0.08 0.08

Hanoi (12) 531,441 1,594,323 – 2.49 2.49 2.49

Hanoi (13) 1,594,323 4,782,969 – 6.83 6.85 6.72

Hanoi (14) 4,782,969 14,348,907 – 24.1 26.21 24.1

Q(10) 2,601 5,101 0.01 0.01 0.01 0.01

Q(100) 10,201 20,201 1.29 2.05 2.18 0.10

Q(300) 90,601 180,601 27.5 109 109 2.28

R(10) 2,601 5,101 0.02 0.01 0.01 0.01

R(100) 10,201 20,201 69.4 0.03 0.03 0.02

R(300) 90,601 180,601 – 0.38 0.39 0.11

R(1000) 1,002,001 2,002,001 – 4.63 4.89 1.35

Table 3: dbisim, wbisim, and sbdia timings in seconds.

However, the FDR3 algorithm performs vastly better on R which has a lot of τ∗-
connectivity, but relatively few τ transitions (so the FDR2 algorithm constructs
an LTS withΘ(N 4) transitions, when the input only hasΘ(N 2)). We were unable
to obtain FDR2 timings for R(300) and R(1000) due to insufficient memory
(R(100) used 2.2 GiB), while FDR3 coped with these examples very well.

Summary. For computing dbisim, the explicit reduction approach is pro-
hibitively memory-intensive for large graphs with a high degree of τ -connectivity.
The dynamic programming approach, on the other hand, is somewhat slower
for problems with few τs. Little difference was observed between wbisim and
dbisim, both in terms of runtime and output. The latter is not surprising given
that delay bisimulation lies between weak and branching bisimulation, which are
known to frequently coincide in a non divergence-respecting context.

5.3 Amount of Compression

We will examine the performance and effectiveness of dbisim and sbdia on the
bully algorithm (the FDR implementation is outlined in Section 14.4 of [8]) with
5 processors and an implementation of Lamport’s bakery algorithm (Section
18.5 of [8]) with either 3 or 4 threads and integers ranging from 0 to 7. These
are typical examples composed of a variable number of parallel processes, with
many τs and symmetry that can be reduced by either dbisim or sbdia. We will
compress these processes inductively2 (as described in Section 8.8 of [8]); that is,
add them to the composition one at a time, compressing at every step. This is
a common technique that allows a large portion of the system to be compressed
while keeping each compression’s inputs manageable. Table 5 shows that sbdia
runs much faster than dbisim and Table 4 shows that it is more effective at
reducing state counts, but can add transitions, whereas dbisim cannot by design.

2 We used inductive compression to increase the time spent on the compressions. This
is not necessarily the most efficient approach to checking these systems in FDR.

Problem
States Transitions

Uncompressed dbisim sbdia Uncompressed dbisim sbdia

Bully 492,548 140,776 105,701 3,690,716 1,280,729 3,872,483

Bakery (3) 9,164,958 29,752 17,787 27,445,171 85,217 64,283

Bakery (4) – 1,439,283 716,097 – 5,327,436 3,408,420

Table 4: State and transition counts with no compression, dbisim, and sbdia.

Problem
Compilation Time (s) Exploration Time (s)

Uncompressed dbisim sbdia Uncompressed dbisim sbdia

Bully 0.06 185.46 25.17 1.76 0.36 0.88

Bakery (3) 0.37 0.57 0.36 137.52 0.93 1.07

Bakery (4) – 105.88 9.54 – 3.63 1.64

Table 5: Timings with no compression, dbisim, and sbdia.

6 Conclusions

We have presented a number of GLTS compression algorithms, including novel
algorithms as well as ones that had been implemented previously, but not charac-
terised until now. Our change-tracking iterative refinement algorithm for sbisim
showed comparable performance to the Paige-Tarjan algorithm (the current state
of the art) and offered a significant improvement over the näıve iterative refine-
ment used by previous versions of FDR. We have shown that explicitly con-
structing a τ -closed transition relation for weak bisimulations, the current state
of the art, is prohibitively memory-intensive and provided an efficient alterna-
tive based on dynamic programming. Comparing dbisim and wbisim, we have
noticed that they produce identical output on all the real-world examples we
have tested, and exhibit a similar runtime.

Future Work. We plan to explore implementing DRD-bisimulation by reduc-
tion to strong bisimulation for FDR3 for those cases where this approach is more
efficient. We can provide the alternatives to the user, but we would like to find
and implement a heuristic that would allow FDR3 to automatically select of the
two algorithms the one that is likely to be faster for the given problem. We would
also like to find heuristics for deciding which compression to use, in particular
for inductively compressing large parallel compositions.

It would be interesting to come up with versions of the dynamic DRD-
bisimulation or DRW-bisimulation algorithms that use Change-Tracking Itera-
tive Refinement or The Paige-Tarjan Algorithm.3 This is challenging due to the
difficulty of inverting the delayed and observed transition relations dynamically.

Despite the multi-threaded core of FDR3, compressions are still single threaded,
though independent compressions can be run in parallel. Iterative refinement
consists of massively parallel afters computations and parallel sorts of a number

3 Since submitting the first version of the paper, the authors have developed such an
algorithm, and intend to publish results once it is characterised.

of afters lists of arbitrary size. Both phases could be sped up by a multi-threaded
implementation. The näıve parallelisation has the nice property that the transi-
tion set can be partitioned across threads and only the node to equivalence class
map needs to be shared. This could allow for an efficient GPU implementation.

References

1. D. Park, Concurrency and automata on infinite sequences. Springer, 1981.
2. R. Milner, “A modal characterisation of observable machine-behaviour,” in

CAAP’81, pp. 25–34, Springer.
3. R. J. van Glabbeek and W. P. Weijland, “Branching time and abstraction in bisim-

ulation semantics,” J. ACM, vol. 43, pp. 555–600, May 1996.
4. I. Phillips and I. Ulidowski, “Ordered SOS rules and weak bisimulation,” Theory

and Formal Methods, 1996.
5. D. Sangiorgi, “A theory of bisimulation for the π-calculus,” Acta informatica,

vol. 33, no. 1, pp. 69–97, 1996.
6. C. A. R. Hoare, Communicating Sequential Processes. Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1985.
7. A. W. Roscoe, The Theory and Practice of Concurrency. 1998.
8. A. W. Roscoe, Understanding Concurrent Systems. Springer, 2010.
9. A. W. Roscoe, “Model-Checking CSP,” A Classical Mind: Essays in Honour of

CAR Hoare, 1994.
10. T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe, “FDR3—A

Modern Refinement Checker for CSP,” 2014.
11. A. W. Roscoe, P. Gardiner, M. Goldsmith, J. Hulance, D.M.Jackson, and J. Scat-

tergood, “Hierarchical compression for model-checking CSP, or How to check 1020

dining philosophers for deadlock,” in Proceedings of TACAS 1995, BRICS.
12. R. Paige and R. E. Tarjan, “Three partition refinement algorithms,” SIAM Journal

on Computing, vol. 16, no. 6, pp. 973–989, 1987.
13. J.-C. Fernandez, “An implementation of an efficient algorithm for bisimulation

equivalence,” Science of Computer Programming, vol. 13, no. 2, pp. 219–236, 1990.
14. R. Van Glabbeek and W. Weijland, “Branching time and abstraction in bisimula-

tion semantics: extended abstract,” Rep./Centrum voor wiskunde en informatica.
Computer science; CS-R8911, 1989.

15. J. Groote and F. Vaandrager, “An efficient algorithm for branching bisimulation
and stuttering equivalence,” in Automata, Languages and Programming (M. Pa-
terson, ed.), vol. 443 of Lecture Notes in Computer Science, pp. 626–638, Springer
Berlin Heidelberg, 1990.

16. P. Armstrong, M. Goldsmith, G. Lowe, J. Ouaknine, H. Palikareva, A. W. Roscoe,
and J. Worrell, “Recent developments in FDR,” CAV 2012.

17. R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, pp. 345–,
June 1962.

18. R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on
computing, vol. 1, no. 2, pp. 146–160, 1972.

19. R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search,” Acta Infor-
matica, vol. 6, no. 2, pp. 171–185, 1976.

