Programming Research Group

QUANTUM MEASUREMENTS WITHOUT SUMS

Bob Coecke and Dusko Pavlovic

PRG-RR-06-02

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD



Oxford University Computing Laboratory,
Wolfson Building, Parks Road,
Oxford OX1 3QD, UK.
coecke@comlab.ox.ac.uk

Kestrel Institute,
3260 Hillview Avenue,
Palo Alto CA 94304, US.
dusko@kestrel.edu

Abstract

Sums play a prominent role in the formalisms of quantum mechanics, be it for
mixing and superposing states, or for composing state spaces. Surprisingly, a concep-
tual analysis of quantum measurement seems to suggest that quantum mechanics can
be done without direct sums, expressed entirely in terms of the tensor product. The
corresponding axioms define classical spaces as objects that allow copying and delet-
ing data. Indeed, the information exchange between the quantum and the classical
worlds is essentially determined by their distinct capabilities to copy and delete data.
The sums turn out to be an implicit implementation of this capabilities. Realizing
it through explicit axioms not only dispenses with the unnecessary structural bag-
gage, but also allows a simple and intuitive graphical calculus. In category-theoretic
terms, classical data types are f-compact Frobenius algebras, and quantum spectra
underlying quantum measurements are Filenberg-Moore coalgebras induced by these
Frobenius algebras.

1 Introduction

Ever since John von Neumann denounced, back in 1935 [29], his own foundation of
quantum mechanics in terms of Hilbert spaces, there has been an ongoing search for
a high-level, fully abstract formalism of quantum mechanics. With the emergence of
quantum information technology, this quest became more important than ever. The low-
level matrix manipulations in quantum informatics are akin to machine programming
with bit strings from the early days of computing, which are of course inadequate.’

A recent research thread, initiated by Abramsky and the first author [2], aims at
recasting the quantum mechanical formalism in categorical terms. The upshot of cate-
gorical semantics is that it displays concepts in a compositional and typed framework. In
the case of quantum mechanics, it uncovers the quantum information-flows [6] which are
hidden in the usual formalism. Moreover, while the investigations of quantum structures
have so far been predominantly academic, categorical semantics open an alley towards a
practical, low-overhead tool for the design and analysis of quantum informatic protocols,
versatile enough to capture both quantitative and qualitative aspects of quantum informa-
tion [2, 7, 10, 13, 30]. In fact, some otherwise complicated quantum informatic protocols

'But while computing devices do manipulate strings of 0s and 1s, and high-level modern programming
is a matter of providing a convenient interface with that process, the language for quantum information
and computation we seek is not a convenient superstructure, but the meaningful infrastructure.



become trivial exercises in this framework [8]. On the other hand, compared with the
order-theoretic framework for quantum mechanics in terms of Birkhoff-von Neumann’s
quantum logic [28], this categorical setting comes with logical derivations, topologically
embodied into something as something as simple as “yanking a rope”.?2 Moreover, in
terms of deductive machanism, it turns out to be some kind of “super-logic” as compared
to the Birkhoff-von Neumann “non-logic”.

The core of categorical semantics are T-compact categories, originally proposed in [2, 3]
under the name strongly compact closed categories, extending the structure of compact
closed categories, which have been familiar in various communities since the 1970es [22].
A salient feature of categorical tensor calculi of this kind is that they admit sound and
complete graphical representations, in the sense that a well-typed equation in such a
tensor calculus is provable from its axioms if and only the graphical interpretation of that
equation is valid in the graphical language.® Soundness and completeness of the graphical
language of t-compact categories, which can be viewed as a two-dimensional formalization
and extension of Dirac’s bra-ket notation [8], has been demonstrated by Selinger in [30].
Besides this reference, the interested reader may wish to consult [1, 18, 30] for methods
and proofs, and [8, 9] for a more leisurely introduction into f-categories.

An important aspect of the f-compact semantics of quantum protocols proposed in
[2, 7, 30] was the interplay of the multiplicative and additive structures of tensor products
and direct sums, respectively. The direct sums (in fact biproducts, since all compact
categories are self-dual) seemed essential for specifying classical data types, families of
mutually orthogonal projectors, and ultimately for defining measurements. The drawback
of this was that the additive types do not yield to a simple graphical calculus; in fact,
they make it unusable for many practical purposes.

The main contribution of the present paper is a description of quantum measurement
entirely in terms of tensor products, with no recourse to additive structure. The concep-
tual substance of this description is expressed in the framework of {-compact categories
through a simple, operationally motivated definition of classical objects. A classical ob-
ject, as a f-compact Frobenius algebra, equipped with copying and deleting operations,
also provides an abstract counterpart to GHZ-states. We moreover expose an intriguing
conceptual and structural connection between the classical capabilities to copy and delete
data, as compared to quantum [26, 32], and the mechanism of quantum measurement.
More precisely, we show how the classical interactions emerge as those morphisms which
commute with copying and deleting. While each classical object canonically induces a
non-degenerate quantum measurement, we show that general quantum measurements are
coalgebras for comonads induced by classical objects. Quite remarkably, this coalgebra
structure exactly captures von Neumann’s projection postulate in a resource sensitive
fashion. Furthermore, the irreversible probabilistic content of quantum measurements is
then captured using the abstract construction of completely positive maps, due to Selinger
[30]. With these conceptual components captured in a succinct categorical signature, we

2A closely related knot-theoretical scheme has been put forward by Kauffman in [20].
*Various graphical calculi have been an important vehicle of computation in physics [27, and subsequent
work], and a prominent research topic of category theory e.g. [21, 22, 18].



provide a purely graphical derivation of teleportation and dense coding.

So the present paper provides a purely multiplicative treatment of projective quantum
measurements. Selinger provides in [30] a multiplicative treatment of density matrices and
completely positive maps. Paquette and the first author provide in [10] a multiplicative
treatment of POVMs, a purely graphical proof of Naimark’s theorem, hence extending
the notion of measurement introduced in this paper. The fact that quantum theory
can be developed without the additive type constructors seems to shed new light on the
question of parallelism vs. entanglement. In the final sections of the paper, we show that
superposition too can be described as a purely tensorial phenomenon, in contrast with the
Hilbert space picture of entanglement as a special case of a superposition. There are also
clear structural connections with TQFT [4, 23, and references therein]. Will categorical
quantum semantics provide any physical insights about these mathematical structures?

2 Categorical semantics & graphical calculus

We present the mathematical structures of interest here both in the usual category-
theoretic form and in a purely graphical calculus; the reader can pick his favorite flavor
(and sort of ignore the other one).

f-compact categories. In a symmetric monoidal category [25] the objects form a
monoid with the tensor ® as multiplication and an object I as the multiplicative unit, up
to the coherent natural isomorphisms

M A~I®A pa:A~ARI aapc:A®BRC)~(A®B)®C.

The fact that a monoidal category is symmetric means that this monoid is commutative,
up to the natural transformation

oaB:A®B~B®A

coherent with the previous ones. We shall assume that « is strict, i.e. realized by identity,
but it will be convenient to carry A and p as explicit structure. Physically we interpret
the objects of a symmetric monoidal category as system types, e.g. qubit, two qubits,
classical data, qubit + classical data etc. A morphism should be viewed as a physical
operation, e.g. unitary, or a measurement, classical communication etc. The tensor cap-
tures compoundness i.e. conceiving two systems or two operations as one. Morphisms
of type I — A represent states conceived through their respective preparations, whereas
morphisms of the type I — I capture scalars e.g. probabilistic weights — cf. complex

* Coherence means that all diagrams composed of these natural transformations commute. In particu-
lar, there is at most one natural isomorphism between any two functors composed from ® and I [24]. As
a consequence, some functors can be transferred along these canonical isomorphisms, which then become
identities. Without loss of generality, one can thus assume that «, A and p are identities, and that the
objects form an actual monoid with ® as multiplication and I as unit. Such monoidal categories are
called strict. For every monoidal category, there is an equivalent strict one.



numbers ¢ € C are in bijective correspondence with linear maps C — C :: 1 — ¢. Details
of this interpretation are in [9].

A symmetric monoidal category is compact [21, 22] if each of its objects has a dual.
An object B is dual to A when it is given with a pair of morphisms n: I — B ® A and
e: A® B — I often called unit and counit, satisfying

(e®1p)o(la®@n)=14 and (1pRe)o(n®1p)=1p. (1)

It follows that any two duals of A must be isomorphic.> A representative of the iso-
morphism class of the duals of A is usually denoted by A*. The corresponding unit and
counit are then denoted n4 and € 4.

A symmetric monoidal t-category C comes with a contravariant functor (—)f : C? —
C, which is identity on the objects, involutive on the morphisms, and preserves the tensor
structure [30]. The image f! of a morphism f is called its (abstract) adjoint.

Finally, t-compact categories [2, 3] sum up all of the above structure, subject to the
additional coherence requirements that

e every natural isomorphism y, derived from the symmetric monoidal structure, must
be unitary, i.e. satisfies ' oy =1 and y o x' =1, and

[ ] ’)’]A*:&jLZO'A*AOT]A,

Since in a f-compact category €4 = nL* some of the structure of the duals becomes
redundant. In particular, it is sufficient to stipulate the units 7 : I — A*® A, which we call
Bell states, in reference to their physical meaning. Without the stepwise introduction of
the monoidal and the compact structure, f-compact categories thus allow a very succinct
presentation on their own [3, 7], as a symmetric monoidal category with

e an involution A — A*,
e a contravariant identity-on-objects ®-preserving involution f — fT,
e for each object a distinct morphism nq : I — A* ® A,

such that the diagram

T
~ Q1
A ~ oA Joa oA
14 lagA-oA (2)
A ARI AQA* R A
~ 14 ®na

°If 5,& make B dual to A, while 77, make B dual to A, then (13 ®¢e)o(n®1p) : B — B and
(Ip®e)o(n®1ls): B— B make B and B isomorphic.



commutes, and subject to the above stated additional coherences. In Hilbert space terms,
this definition mainly axiomatizes the Bell-states

M CoH @H 1Y |id),
el

where H* is the conjugate space to H. Surprisingly, this seemingly very weak axiomatics
comes with an amazing amount of typical Hilbert space mathematical machinery [3, 7,
10, 30], such as Hilbert-Schmidt inner-product, completely positive map and POVM, just
to mention some.

Graphical calculus. With the above conditions, the structure of t-compact categories
becomes coherent, in the sense that it satisfies exactly those equations that can be proven
in the corresponding graphic language. This fact has been proven by Selinger in [30,
Thm. 3.9]. We briefly summarize a version of this graphic representation. The objects of
a f-compact category are represented by tuples of wires, whereas the morphisms are the
I/O-boxes. Sequential composition connects the output wires of one box with the input
wires of the other one. The tensor product is the union of the wires, and it places the
boxes next to each other. A physicist-friendly introduction to this graphical language for
symmetric monoidal categories is in [9]. But the main power of the graphical language lies
in its representation of duality. The Bell state (unit) and its adjoint (counit) correspond
to a wire from A returning into A*, with the directions reversed:

A A A A

Graphically, the composition of n4 and 4 = nL* as expressed in commutative diagram

(2) boils down to
A = ‘A A |A
A

Note that in related papers such as [8] a more involved notation

A N A
appears. The triangles witness the fact that in physical terms

Y A O

~ Y A

respectively stand for a preparations procedure, or state, or ket, and for the corresponding
bra, with an inner-product or bra-ket



=

then yielding a diamond shaped scalar (cf. [8]), while the wire itself is now a loop. In this
paper we will omit these special bipartite triangles.

Given a choice of the duals A — A*, one can follow the same pattern to define the
arrow part f — f* of the duality functor (—)* : C? — C by the commutativity of the
following diagram:

~ ]- *® T*
A* A @1 A 2B 4+ o B B
f* la® f® 1p«
B* I® B* A*® A® B*

Replacing f : A — B by f{ : B = A, we can similarly define f, : A* — B*, and thus
extend the duality assignment A — A* by the morphism assignment f +— f, to the
covariant functor (=), : C — C. It can be shown [2] that the adjoint decomposes in
every f-compact category as

ff=0" = (1)

with both (—)* and (—). involutive. In finite dimensional Hilbert spaces and linear
maps FdHilb, these two functors respectively correspond to transposition and complex
conjugation. The functor (=), : C — C will thus be called conjugation; the image f, is
a conjugate of f. Graphically, the above diagram defining f*, and the similar one for f,,

respectivelly become

The direction of the arrows is, of course, just relative, and we have chosen to direct the
arrows down in order to indicate that both f* and f, have the duals as their domain
and codomain types. We will use horizontal reflection to depict (—)! and Selinger’s 180°
rotation [30] to depict (—)., resulting in:

bt
P

Y Y



Scalars, trace, and partial transpose. One can prove that the monoid C(I,I) is
always commutative [22] and induces a scalar multiplication

80f:=k§10(8®f)o)\A:A—>B

which by naturality satisfies

(sefjo(teg)=(sot)e(fog) (sef)@(teg)=(sct)e(f®g). (3)

As already indicated above, we will depict these scalars by diamonds, and such scalars can

arise as loops [22, 1]. The equations (3) show that these diamonds capturing probabilistic
weights can be ‘freely moved in the pictures’.

A (1-)compact category also always comes with a canonical trace structure in the sense
of [19], defined by

T

~ ®1
B IoB 4P cvgceB
trg,B(f) 1c*®f
A I® A C'eC®A
~ ne®1a

for every f : C® A — C ® B. In a picture trg,B(f) is:

There also is a canonical partial transpose structure of type
Ptijg :C(C®A,D®B)— C(D*® A,C* ® B)

and which is defined by setting

~ le-®nh ®1
C*® B~ C*®1@ B 222 B e D 9 Do B

c,D
PtA,B(f) op+c*® f

D' A—D'@I® A D' C"eC® A

Ip~®@nc ® 14

given f: C ® A — D ® B. In a picture pti’g(f) is:



This partial transpose can also be seen as a variant on the swap-actions oc p o — and
— o o0¢,p, which rather than respectively swapping two output types or two input types,
swaps an input and an output type.

3 Sums, copying and bases in FdHilb

Before we start the abstract categorical and diagrammatic analysis of quantum measure-
ment, we provide a discussion of the key insights of this paper within the Hilbert space
quantum mechanical model. It are these insights which will be exploited in the proceeding
abstract development.

Sums in quantum mechanics. Sums occur in the Hilbert space formalism both as a
part of the linear structure of states, as well as a part of their projective (convex) structure,
through the fundamental theorem of projective geometry and Gleason’s theorem [28].
Viewed categorically, these structures lift, respectively, to a vector space enrichment and
a projective space enrichment of operators, typically yielding a C*-algebra. They appear
to be necessary because of the specific nature of quantum measurement, and the resulting
quantum probabilistic structure. The additive structure permeates not only states, but
also state spaces; it is crucial not only for adding vectors, but also for composing and
decomposing spaces. In fact, one verifies that operator sums arise from the direct sum:

(CEBn f +9g ‘ (CEBm
d dt
co" g COn o Cco®m g CO™
g

where d :: | i) — | i) @ | ) is the additive diagonal. As a particular case we have that the
vector sums arise from

e WD e
d df
CeC Con g COn
e - ©



where [1)),|¢) : C — CP" recalling that vectors |¢) € CP" are indeed, by linearity, in
bijective correspondence with the linear maps

C—C"™ 1w |y).

In addition to this, the direct sum canonically also defines bases (cf. the computational
base) in terms of the n canonical injections

C— C"" =1+ (0,...,0,1,0,...,0).

No-Cloning and existence of a natural diagonal. The classic No-Cloning theorem
[32] states that there exists no unitary operation

Clone: HOH —>HIH = [¢) ®|0) = |¢) R |¢). (4)

On the other hand, using category-theoretic language, it is also well-known that there
exists no natural diagonal for the Hilbert space tensor product. Explicitly put, this means
that there exists no linear maps

Ay :H—->HOH,
(i.e. one for each choice of Hilbert space #) which make the diagram

H f H'

Ay Agy (5)

HOH —— H H
fef

commute for any of linear map f : H — H’'. In particular, for
S:H—->HQH 2 |i)w— |ii)

setting H :=C, H':=Ca&®C and f : 1 — |0) +]| 1) yields a counterexample. Assume now
that there is a cloning machine as in (4). Then define

Ay :=Cloneo (—®|0)) : H—=>HOH = |[¢p) — [¢) @ |¢h) .
Since [¢) is arbitrary in (4), we can take it to be |f(1))) resulting in

(A o F)([9)) = Au(lf () = f (@) @[f () = (f @ [)([¥) @)
= (f @ N(Axn($) = ((Ff @ f) o An)(|4))

i.e. we obtain commutation of diagram (5). The careful reader might have observed that
commutativity of (5) implies bases-independency of Ay, by conceiving the linear map f
as a change of base (e.g. [9]). In fact, for Hilbert spaces, category-theoretic naturality
of a mathematical concept can very much be thought of as bases-independency of that
mathematical concept.



Measurement and bases. Self-adjoint operators, which represent measurements in
quantum mechanics comprise two pieces of data, namely eigenvectors and corresponding
eigenvalues. For informatic purposes, the eigenvalues are merely token witnesses which
discriminate outcomes, so a non-degenerate measurement essentially corresponds to a
base, and a degenerate one can also be captured by a base, provided that we also provide

an equivalence relation on the base vectors. Now consider again the map |i) KN i ).5
While it copies base vectors it does not do so for other states

Wy =S"aliy & N elii) # ) ® ).

[ [

In fact, this map exactly captures the base {|i)};. Indeed,

5::Zci|i> — Zcﬁu),

i€l i€l

so we obtain a disentangled state under the action of § if and only if the index set [ is a
singleton i.e. if and only if ), ; ¢;| ) is itself a base vector. Conversely put, we recover
the base by taking the image of pure tensors under the map’

5T__{z‘7éj lij) — 8

else : |it) — i)

Since § is base-capturing it is of course not bases-independent, and hence not natural in
the categorical sense, but it is exactly this un-naturality which allows it to capture a
base. Moreover, if we restrict to vectors in this base, 0 is a genuine ‘classical’ copying
operation, although it drastically fails to be one on the whole Hilbert space. Hence,
instead of characterizing a classical measurement context by an explicit bases, we can
characterize it by an operation which faithfully copies the corresponding classical data,
and the base arises as the quantum states which are copy-able under this operation.

Vanishing of non-diagonal elements and deletion. Moreover, the map ¢ also en-
ables to capture the ‘formal decohering’ in quantum measurement i.e. the vanishing of
the non-diagonal elements in the passage the initial state represented as a density matrix
within the measurement base to the density matrix describing the resulting ensemble of
possible outcome states.® Indeed, non-diagonal elements get erased setting

o5t - i£g : |ij) —» 8 — 0
) else i i) = i) o |dd)

®This map, when assigning agents i.e. |4)a LN |i)4 ® |i)B, has appeared in the literature under the
name coherent bit, as a ‘between classical and quantum’-channel [11, 17].

"This operation 61 : H ® H — H has appeared in the quantum informatics literature under the name
fusion, providing a means for constructing cluster states [5, 31].

8See [15] for a discussion why we call this ‘formal decohering’.
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Note also that ¢’s adjoint 67 doesn’t delete classical data, but compares its two inputs
and only passes on data if they coincide. Deletion is

exli)y—1 that is I1@e:|ig) —|i).
What € and 67 do have in common is the fact that
Tod=(1®€ od:|i)r|ii)—]|i).

Also, since in Dirac-notation we have 6 = ) .|4)(ii|, the (base-dependent) isomor-
phism 6 :: |i) — (i| applied to the bra turns ¢ into the generalized GHZ-state ) |4ii)
[16] exposing that ¢ is ‘up to " symmetric in all variables.

Canonical bases. While all Hilbert spaces of the same dimension are obviously iso-
morphic, they are not all equivalent. Indeed, above we already mentioned that the direct
sum structure provides the Hilbert space C®" with a canonical base, from which it also
follows that it is canonically isomorphic to its conjugate space (C®")* = (C*)®", namely
for the isomorphism

CO 5 (CHP™ : (e1,... ) > (C1ye . v, Cn).

In fact, one should not think of C®™ as just being a Hilbert space, but as the pair consisting
of a Hilbert space H and a base {|i)}:=7, which by the above discussion boils down to the
pair consisting of a Hilbert space H and a linear map ¢ : H — H ® H satisfying certain
properties, in particular, its matrix being self-transposed in the canonical base. Below,
we will assume the correspondence between C¥" and its dual to be strict, something
which can always be established by standard methods. The special status of the objects
CP" in FdHilb, in category-theoretic terms, is due to the fact the direct sum is both a
product and a coproduct and C the tensor unit [2].

4 Classical objects

Consider a quantum measurement. It takes a quantum state as its input and produces
a measurement outcome together with a quantum state, which is typically different from
the input state due to the collapse. Hence the type of a quantum measurement should
be

M A= XA

where A is of the type quantum state while X is of the type classical data. But how do
we distinguish between classical and quantum data types?

We will take a very operational view on this matter, and define classical data types
as objects which come together with a copying operation

(5(X):X—>X®X

and a deleting operation
€(Xx) : X =1,

11



counterfactually exploiting the fact that such operations do not exist for quantum data.
We will refer to these structured objects (X, §, €) as classical objects. The axioms which we
require the morphisms § and e to satisfy are motivated by the operational interpretation of
0 and e as copying and deleting operations of classical data. This leads us to introducing
the notion of a special t-compact Frobenius algebra, which refines the usual topological
quantum field theoretic notion of a normalised special Frobenius algebra [23].

Special {-compact Frobenius algebras. An internal monoid (X, uu, V) in a monoidal
category (C,®,1) is a pair of morhisms

Fox " g,

XX

called the multiplication and the multiplicative unit, such that

x—"  xex X
/: I ~ \J
o 1x ® p T T \§
X®X XXX I®X X®X X®I
w®1lx relyx Iy ®v
commute. Dually, an internal comonoid (X, 0,€) is a pair of morphisms
)
X@X X —° .1,
the comultiplication and the comultiplicative unit, such that
0
X X®X X
I NG
5 Iy ®46 by b} 3
X®X XXX I® X X®X X®I
0®1x e®1x Ix®e

commute. Graphically these conditions are:

A

When (C,®,I) is symmetric, the monoid is commutative iff p o ox x = p, and the
comonoid is commutative iff ox x o § = J, in a picture:

12



$-y

Note that the conditions defining an internal commutative comonoid are indeed what we
expect a copying and deleting operation to satisfy.

A symmetric Frobenius algebra is an internal commutative monoid (X, u, v) together
with an internal commutative comonoid (X, d, €) which satisfy

dop=(p®Ilx)o(ly ®9), (6)

X-1v

It is moreover special iff ;10§ = 1x, in a picture:

4

that is, in a picture:

In a symmetric monoidal f-category every internal commutative comonoid (X, 4, €) also
defines an internal commutative monoid (X, ¢t, '), yielding a notion of t-Frobenius alge-
bra (X, d,€) in the obvious manner. In such a J[ Frobenius algebra we have:

LA

that is, o€l : T — X ® X and eo 0’ : X ® X — T satisfy equations (1) of Section 2 and
hence canonically provide a unit 77 = § o e/ and counit & = € o §7 Wthh realizes X* = X
(cf. Section 2). In a picture this choice stands for:

A ¥

One easily verifies that the linear maps ¢ and € as defined in the previous section
indeed yield an internal comonoid structure on the Hilbert space C®" which satisfies the
Frobenius identity (6), and that 6 o ' is the Bell-state.

13



Definition 4.1 A classical object in a {-compact category is a special t-compact Frobe-
nius algebra (X, d, €) i.e. a special {-Frobenius algebra for which we choose nx = dx o e}
in order to realize X* = X.

So typical examples of classical objects are the ones existing in FdHilb which were
implicitly discussed in Section 3, namely

(C@” , 0 B O @ COM |7) — |i3) , ™ . o o C |z>»—>1>

Since the Frobenius identity (6) allows us to set X* = X we can now compare 0,0 :
X — X ® X, and also, €,,¢ : X — I, them having the same type. Recalling that in
FdHilb the covariant functor (—), stands for complex conjugation, the structure of a
t-compact Frobenius algebra guarantees the highly significant and crucial property that
the operations of copying and deleting classical data carry no phase information:

Theorem 4.2 For a classical object we have 0, = § and €, = €.

Before we prove this fact we will need to introduce some additional concepts.

Self-adjointness relative to a classical object. From now on we will denote classical
objects as X whenever it is clear from the context that we are considering the structured
classical data type (X,0,€) and not the unstructured quantum data type X. Given a
classical object X we call a morphism F : A — X ® A self-adjoint relative to X if the
diagram

A 4 X®A
Aa Ix @ Ff (7)
IT® A XRX®A
nx ®1a

commutes. In a picture, this is:

G-l

A morphism F : X®A — A is self-adjoint relative to X whenever F' is. Note furthermore
that in every monoidal category, the unit I carries a canonical comonoid structure, with
d=M=pr: ]l = 1I®land e =11 : I — I. In every {-compact category, this comonoid is in
fact a degenerate classical object. Self-adjointness in the usual sense of ff = f: 4 — A
corresponds to self-adjointness relative to I. For a general classical object X, a morphism
F:A— X ®A can be thought of as an X-indexed family of morphisms of type A — A.
Self-adjointness relative to X then means that each of the elements of this indexed family
are required to be self-adjoint in the ordinary sense. We abbreviate ‘self-adjoint relative

14



to X’ to ‘X-self-adjoint’. Below and in [10] there are some more analogous generalizations
of standard notions e.g. X-scalar, X-inverse, X-unitarity, X-idempotence, X-positivity
etc.

Proposition 4.3 Both the comultiplication § and the unit € of a classical object X are
always X -self-adjoint, that is, in a picture:

Proof: m ‘ : B
g SR

Note that X-self-adjointness of € is exactly e, = €, already providing part of the proof
of Theorem 4.2. In fact, given an internal commutative comonoid (X, 0, ¢) diagram (7)
implicitly stipulates that, of course X* = X, but also that this self-duality of X is realized
through 1 = § o €' since we have

]-1iy -

Hence it makes sense to speak of an X-self-adjoint internal comonoid in a f-compact
category. From X-self-adjointness we can straightforwardly derive many other useful
properties, including the Frobenius identity itself, hence providing an alternative charac-
terization of classical objects, and also 0, = 0, providing the remainder of the proof of
Theorem 4.2.

Lemma 4.4 The comultiplication of an X -self-adjoint commutative internal monoid sat-
isfies the Frobenius identity (6), is partial-transpose-invariant ptf()’(X(é) =0, and is self-
dual 6, = 6 (or 8* = 61). The latter two depict as:

-

Proof: For the Frobenius identity, apply X-self-adjointness to the lefthandside, use asso-
ciativity of the comultiplication, and apply X-self-adjointness again, for partial-transpose-
invariance apply X-self-adjointness twice, and for self-duality apply X-self-adjointness
three times. O

15



Theorem 4.5 A classical object can equivalently be defined as a special X -self-adjoint
internal commutative comonoid (X, 0,€).

GHZ-states as classical objects. Analogously to the Hilbert space case (cf. Section
3), each classical object X induces an abstract counterpart to generalized GHZ-states,
namely

GHZx = (1x ®0)on: 1> XX ®X.

-1y

The unit property of the comonoid structure, together with the particular choice for the
unit of compact closure € = € o §T become pleasingly symmetric:

¢

The same is the case for commutativity of the comonoid structure, together with partial-

transpose-invariance:

Extracting the classical world. If C comes with a f-structure then any internal
comonoid yields an internal monoid. But there is a clear conceptual distinction between
the two structures, in the sense that the comultiplication and its unit admit interpretation
in terms of copying and deleting. We wil be able to extract the classical world by defining
morphisms of classical objects to be those which preserve the copying and deleting op-
erations of these classical objects, or, in other words, by restricting to those morphisms
with respect to which the copying and deleting operations become natural (cf. Section 3).
Given a f-compact category C, we define two new categories of which the objects are
the classical objects. The first one, Cy, is spanned by the morphisms preserving both §
and e structures, and the second one, Cgpep, by the morphisms that preserve e, but not
necessarily §. So Cy embeds into Cgep, and both have a forgetful functor into C, i.e.

In a picture that is:

¥

>

Cyx = Csoern = C.
In FdHilb, a linear map f : C®™ — C®" preserves (™) if it is a stochastic operator

ie. Z;i? i = 1 for all 4, and it preserves 6 if f;;f;; = fi; and fijfir. = 0 for j # k,
hence, there is a function ¢ : m — n such that
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So FdHilb, = FSet, the latter being the category of finite sets and functions, while
FdHilb,,., = FStoch, the latter being the category of finite sets and stochastic maps.
Hence morphisms in Cy are to be conceived as deterministic manipulations of classical
data while morphisms in Cg,e, are probabilistic manipulations, i.e. while C represents
the quantum world, C« and Cg;p, represent the classical world. The canonical status of
Cy is exposed by the following result due to Fox [14].

Theorem 4.6 Let C be a symmetric monoidal category. The category Cy of its commu-
tative comonoids and corresponding morphisms, with the forgetful functor C, — C, is
final among all cartesian categories with a monoidal functor to C, mapping the cartesian
product X to the monoidal tensor ®.

5 Quantum spectra

Given a classical object X, a morphism F : A — X ® A is idempotent relative to X, or
shorter, X -idempotent, if

j:

A X®A

F Ix @ F

X®A XX®A
0®1y

commutes. In a picture that is:

-y

Continuing in the same vein, an X -projector is a morphism P : A — X ® A which is both
X-self-adjoint and X-idempotent. The following proposition shows that an X-projector
is not just an indexed family of projectors.

Proposition 5.1 A C¥"-projector in FdHilb ezactly corresponds to a family of mutually
orthogonal projectors {P;};, hence Z:ilf P; <lcen.

Proof: One easily verifies that from X-idempotence follows idempotence P? = P; and
mutual orthogonality P;oP;-; = 0, and that from X-self-adjointness follows orthogonality
of projectors P;r =P;. O

Definition 5.2 A morphism P: A — X ® A is said to be X-complete if

AMio(e®1a)oP =1y.
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In a picture that is:

A morphism P : A - X ® A is a projector-valued spectrum if it is an X-projector for
some classical object X, and if it is moreover X-complete.

Theorem 5.3 Projector-valued spectra in FAHilb ezxactly correspond to complete fami-
lies of mutually orthogonal projectors {P;};, i.e. Zilf P; = 1con.

Each classical object (X, u,€) canonically induces a projector-valued spectrum p : X —
X ® X since associativity of the comultiplication coincides with X-idempotence and the
defining property of the comultiplicative unit coincides with completeness. Having in
mind the characterization of classical objects of Theorem 4.5, mathematically, projector-
valued spectra consitute a generalization of classical objects by admitting degeneracy.

Coalgebraic characterization of spectra. Recall that the internal commutative
(co)monoid structures over an object X in a monoidal category C are in one-to-one
correspondence with commutative (co)monad structures on the functor X ® —: C — C.
Hence we can attribute a notion of (co)algebra to internal commutative (co)monoids.

Theorem 5.4 Let C be a T-compact category. Its projector-valued spectra are exactly the
X -self-adjoint Filenberg-Moore coalgebras for the comonads X @ —: C — C canonically
induced by some classical object X .

Proof: The requirements for Eilenberg-Moore coalgebras with respect to the monad
(X ® —) are exactly X-idempotence and X-completeness. o

We can now rephrase all the above as follows.

Theorem 5.5 X -self-adjoint coalgebras in FdHilb exactly correspond to complete fam-
ilies of mutually orthogonal projectors {P;};.

Proof: We also rephrase the proof. From the Eilenberg-Moore commuting square we
obtain idempotence P? = P; and mutual orthogonality P;oP;4; = 0, from the Eilenberg-
Moore commuting triangle we obtain completeness and from X-self-adjointness follows
orthogonality of projectors P;r =P;. O

6 Quantum measurements

Given projector-valued spectra we are very close to having an abstract notion of quantum
measurement. In fact, the type A — X ® A which we attributed to the spectra is
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indeed the compositional type of a (non-demolition) measurement. But what is even more
compelling is the following. The fact that a spectum is X-idempotent, or equivalently,
that it satisfies the coalgebraic Eilenberg-Moore commuting square, i.e.

Measure

A - X®A
Measure 1x ® Measure
XA XX®A
Copy @14

exactly captures von Neumann’s projection postulate, stating that repeating a measure-
ment is equivalent to copying the data obtained in its first execution. Note here in
particular the manifest resource sensitivity of this statement, accounting for the fact that
two measurements provide two sets of data, even if this data turns out to be identical.

However, what we get in FdHilb is not yet a quantum measurement. For X, A :~ H,
a non-demolition non-degenerate measurement M : A — X ® A in the computational
base yields

1) = S 1) i a —2 e S (i) ® i )a)
13 13

where |i)x € X is the measurement outcome, |i)4 € A is the resulting state of the
system for that outcome, and the coefficients (i|) in the sum capture the respective
probabilities for these outcomes i.e. |(i|1)|?. This however does not reflect the fact that
we cannot retain the relative phase factors present in the probability amplitudes. In
other words, the passage from physics to the semantics is not fully abstract. But as is
well-known, the operation which erases these relative phases does not live in FdHilb but
is quadratic in the state, hence lives in CPM(FdHilb), the category of Hilbert spaces
and completely positive maps. Fortunately, Selinger provided an abstract counterpart
for the passage from FdHilb to CPM(FdHilb), as a construction which applies to any
T-compact category [30].

The CPM-construction. This construction takes a {-compact category C as its input
and produces an ‘almost inclusion’ (it in fact kills redundant global phases) of C into
a bigger one CPM(C). While C is to be conceived as containing pure operations with
those of type I — A being the pure states, CPM(FdHilb) consists of mixed operations
with those of type I — A being the mixed states. Explicitly we have the t-compact
functor

Pure: C— CPM(C) :: f — [ ® f«.

where

CPM(C)(4, B) = {(13 ®nh. ®1p)o (F®f) | £ A—>B®C}

and the T-compact structure on CPM(C) covariantly inherits its composition, its tensor,
its adjoints and its Bell-states from C. In a picture the morphisms of CPM(C) are:
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Note in particular that the two copies of each C-morphism in these CPM(C)-morphisms
is also present in Dirac’s notation when working with density matrices. However, in Dirac
notation one considers the pair of a ket-vector |1) and its adjoint (¢ | resulting in the
action of an operation being

1) | = flp) | fF

for an ordinary operation, while it becomes

)| = f(lo @ )@ ])fF

for a completely positive map. What we do here is quite similar but now we consider
pairs | 9) ® | 1), allowing for more intuitive covariant composition

|9 @ |¥)s = (f @ L) (|9) @ | 9)s)
for an ordinary operation, while it becomes
[4) @ 9 = (1p @0 ® 15-)(f ® £)(14) ® | ).)

for a completely positive map. The most important benefit of this covariance is 2-
dimensional display-ability i.e. it enables graphical calculus.

Formal decoherence. Given a classical object X in a f-compact category C we define
the following morphism

Iy :=(lx ®n ®1x) o (6§ ®§) € CPM(C)(X, X).

In a picture that is:

Proposition 6.1 In T-compact category with X a classical object we have
Iy=000: X®X 5 X®X
so in particular is I'x itdempotent.

Proof: Using the Frobenius identity we have
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where the highlighted part expresses the use of X-self-adjointness. O

In particular in FdHilb we have
> aiali) @ 7).
]

5k) & §k)

> | G
ai&jﬁi) ® [77)+ &
ij

Leon ® W(Jrc@n ® Lean
Zdijai&j|i> R |j>* _ Zal@l|l> ® |Z>*
ij -

i.e. we obtain the desired effect of elimination of the relative phases. Hence, given a
projector-valued spectrum now represented in CPM(C) through the functor Pure, which

depicts as

we obtain a genuine quantum measurement by adjoining I'x as in
Meas = (1 ®@T'x ® 1) o (M @ M,),

which in a picture becomes:

Demolition measurements. As compared to the type A — X ® A of a non-demolition
measurement, a demolition measurement has type A — X. We claim that the demolition
analogue to a projector-valued spectrum M : A — X ® A is the adjoint to an isometry
mt : X = A, ie. mom! = 1x — or equivalently put in our X-jargon, a normalized
X-bra. Indeed, setting

Mm::(1X®mT)050m:A—>X®A
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we exactly obtain a projector-valued spectrum since M,, is trivially X-self-adjoint, and
mom! = 1y yields X-idempotence. In a picture M,, is:

The corresponding demolition measurement arises by adjoining I'x i.e.
DeMeas :=T'x o (m®@ms,),

that is, in a picture:

Such a demolition measurement is non-degenerate iff m is unitary.

7 Quantum teleportation

The notion of measurements proposed in this paper abstracts over the structure of classi-
cal data, and we will show that we can describe and proof correctness of the teleportation
protocol without making the classical data structure explicit, nor by relying on the carte-
sian structure of Cy.

Definition 7.1 Given a classical object X a morphism U : X ® A — B, and at the same
time U and U o ox,A, are unitary relative to X or X -unitary iff

(Ix@U)o(®14): X®A— X®B

is unitary in the usual sense i.e. its adjoint is its inverse. In a picture:

[

A trivial example of such a unitary morphismise® 14 : X ® A — A. One easily verifies
that the above graphically depicted condition is the same as:
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@1

Proposition 7.2 In FdHilb morphisms that are (C@",5(”))—unitary are in bijective cor-
respondence with n-tuples unitary operators of the same type.

Let the size of a classical object be the scalar

Sx ::n}onxzexoe&:l—ﬂ

«»::0:‘:

using in the last two steps respectively 6T 0§ = 1x and n = § o €l.

i.e. in a picture:

Proposition 7.3 The positive scalars in the scalar monoid C(1,1), i.e. those scalars
s : I — 1 that can be written as s = ! o) for some 1 : I — A, have self-adjoint
square-roots when enbedded in CPM(C) via Pure.

Proof: The image of a positive scalar s under Pure is s ® s,. For ¢t = 77,4* (P @1y) €
CPM(C)(I,I) which we depict in a picture as:

we have tot = s ® s, since

TV-4¢

follows from (f*® 1g)ong = (14 ® f)ona [2]. Self-adjointness follows from:

A A=V YV

Hence Pure(s) indeed has a scalar in CPM(C)(I,I) as a square-root. O

This implies that square-root /s : I — I of the dimension sy := nL on4 of an object

A always exist whenever we are within CPM(C). It can be shown that each f-compact
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category also admits a canonical embedding in another j-compact category in which all
scalars have inverses. For scalars
1 1

SA Vsa —
SA VSA

respectively we introduce the following graphical notations:

® ¢ O o

— the reversed symbols representing inverses needn’t be confused with the adjoint since
these scalar dimensions are always self-adjoint.

Definition 7.4 Let X be a classical object in a f-compact category. A (non-degenerate)
demolition Bell-measurement is a unitary morphism

1
DeMeaspey = NG opTAo (1x ®7]L) oUT®14): AR A X

which is such that ¢/ : X ® A — A is X-unitary.
The corresponding projector-valued spectrum is
Mpey = (DeMeasTBe” ®R1ly)odoDeMeasgey : AQA—-XRARA,

from which the corresponding non-demolition Bell-measurement arises by adjoining I x.
In a picture the demolition Bell-measurement and corresponding projector-valued spec-

trum are:
A
SRS -

and unitarity of DeMeasp,y is:

o#]: o#{:

that is, in formulae, respectively,

= . tr’)‘l(’X(LIJr oU) = DeMeaspe © DeMeasTBe” =1x (8)

and of course
DeMeas%e” o DeMeasgey = 1agA - (9)

Let us verify that Mgy is indeed a projector-valued spectrum. Using eq.(8) we obtain
X-idempotence:

24



§

and eq.(9) assures X-completeness:

4
oA -0

Finally, unitarity of DeMeaspey yields X ~ A ® A, so DeMeaspg,; can be conceived as
non-degenerate. We normalize the Bell-states of type A i.e.
1
VSA
Now we will describe the teleportation protocol and prove its correctness. For simplic-

ity we will not explicitly depict I' x since it doesn’t play an essential role in the topological
manipulations of the picture. Here it is:

Alice Baob

ena: > AR A.

Correction|

Q| 9

®

where the red box in Measurement is a unitary morphism U, : A* — A* ® X, hence the
red box in Correction is the unitary morphism i : X ® A — A, so the bottom red box
in the second picture is U* : X ® A — A, the adjoint to U,. The presence of the size
of X reflects the fact that sx scenarios have taken place, all leading to the same result.
But the reason these scenarios are all equivalent is that we didn’t retain the measurement
outcomes i.e. the unitary correction ‘consumed’ them. We could as well have copied the
result before consuming it, in which case the sx branches wouldn’t be the same, due to
the distinct remaining classical data in each of them:
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Alice Baob

Correction|

v

Note that we explicitly used X-self-adjointness. We can of course still choose to delete
this data at a later stage using e, nicely illustrating resource-sensitivity. Categorically we
can fully specify this protocol as”

1 DeM 1
A a®na)ors | gggrga DoMessan®la o oy

ff®1y

1X®((nx®1A)°(1X®UT))X®X®A‘ 5@ 14 o

X®A-~

The morphism e’ ® 14 together with commutation of this diagram specifies the intended
behavior, i.e. teleporting a state of type A with the creation of classical data as a bi-
product, while the other morphisms respectively are: (i) creation of a Bell-state n4; (ii)
a demolition Bell-base measurement DeMeasp.y; (iii) copying of classical data using o;
(iv) unitary correction using the X-adjoint to /. The above depicted graphical proof can
be converted in an explicit category-theoretic one.

8 Dense coding

We can also give a similar description and proof of dense coding.

Alice Bob

9The first specification of quantum teleportation as a commutative diagram is in [2].
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Note in particular that we rely on a very different property in this derivation than in
the derivation of teleportation: here we use (one-sided) unitarity of DeMeaspge; while
for teleportation we use X-unitarity of ¢/. Hence it follows that teleportation and dense
coding are not as closely related as one usually thinks: they are in fact aziomatically
independent.
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