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Abstract

In previous work [27, 26] the author defined a notion of CSP-like
operational semantics whose main restrictions were the automatic pro-
motion of most τ actions, no cloning of running processes, and no
negative premises in operational semantic rules. He showed that ev-
ery operator with such an operational semantics can be translated into
CSP and therefore has a semantics in every model of CSP. In this pa-
per we demonstrate that a similar result holds for CSP extended by
the priority operator described in Chapter 20 of [26], with the restric-
tion on negative premises almost completely removed. However, since
priority is not compositional in most CSP models, the range of such
models that support operators with negative premises is limited.

1 Introduction

While other languages for concurrent systems are often defined in terms of
their operational semantics, the CSP approach [13, 22, 26] has always been
to regard behavioural models such as traces T and failures-divergences N
as at least equally important means of expression. Thus any operator must
make sense over these behavioural models in which details of individual linear
runs of the processes are recorded by an observer who cannot, of course, see
the internal action τ .

Nevertheless CSP has a well-established operational semantics first de-
scribed in SOS in [5, 7], and congruence with that is perhaps the main
criterion for the acceptability of any new semantic model.



Operational semantic definitions of languages have the advantage that
they are direct, understandable, and of themselves carry no particular obli-
gation to prove congruence results such as those alluded to above. On the
other hand definitions in abstract models, intended to capture the exten-
sional meaning of a program in some sense, have the advantage of “cleanli-
ness” and allow us to reason about programs in the more abstract setting.
The most immediate advantages of CSP models in this respect is that they
bring a theory of refinement which in turn gives refinement checking (with
low complexity at the implementation end, as in FDR1 as a natural vehicle
for specification and verification.)

In earlier work, the author created a class of CSP-like operational seman-
tic definitions that automatically map congruently onto definitions over the
whole class of CSP models, thereby giving both sets of advantages as well as
freeing the language designer from the need to prove congruence theorems.

In addition to a number of other restrictions on the full generality of
Structured Operational Semantic (SOS) definitions, CSP-like ones are not
permitted any negative premises: thus there can be no rule in which a given
action can fire only if one its arguments can not perform some (either one
or more) action(s).

There have been a number of different proposals for adding priority to
CSP. A relatively straightforward one, in part because it does not involve
building special semantic models or types of LTSs, was proposed in [26].
Pri≤(P), for a partial order on the events that processes perform, permits
P only to perform event x only when no higher priority event is possible for
P .2 With a few restrictions on how the invisible event τ and termination
signal tick fit into ≤, this adds very usefully to the expressive power of CSP,
for example by permitting the accurate description of real-time systems.

Pri≤(P) is certainly not CSP-like in the sense alluded to above, since
it requires negative premises. Indeed it does not have a semantics in most
CSP models, requiring the richest sort of model which potentially record an
acceptance/ready set before every visible event: essentially all behaviours
recordable in finite linear fashion by an external observer. In [26], this class3

of models is based on the version FL (standing for finite linear) that records
only finite behaviour. These models are sometimes termed “ready traces”.

1FDR[12, 10] is a model checker/refinement checker for CSP.
2For reasons that will be explained later, it is better to restrict ≤ to be an order without

any infinite ascending chains. In other words its reversal should be well-founded.
3This means models where the finite behaviours recorded of processes are those of the

model FL: there is some choice over what infinite behaviour if any is recorded: see [26].
We will give more details of FL later in this paper.
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This naturally begs the question of whether we can capture a notion of
Pri-CSP-like operational semantics which includes this operator and all of
which can be expressed in terms of CSP with it added. Establishing such a
notion is the job of the present paper.

In the next section, we remind ourselves about the CSP language and its
operational semantics. We then recall the definition of CSP-like operational
semantics and the outline of the expressiveness result involving it. Finally
we recall the definitions of Pri≤(·) in terms of operational semantics and
over FL.

In Section 3 we generalise the definition of CSP-like to what we expect
to be able to express with the addition of Pri≤(·). The main result of this
paper then follows, in which we show that any operator (or class of operators)
with such Pri-CSP-like operational semantics, can be simulated precisely in
CSP thus augmented. As with the previous result, the degree of precision
obtained by this simulation depends on whether or not the language involves
the CSP concept of termination, represented by the special event X.

Whereas CSP-like languages have semantics over all CSP models, Pri-
CSP-like ones can only, in general, be guaranteed to have semantics over
the FL class of models of programs to be verified on FDR provided it is
extended to cope with such models.

In Section 5 we discover that our generalised notion of combinator op-
erational semantics does not have a nice compositional property that the
original version does. We also explore extensions to the sorts of premises we
allow on processes, and discuss an alternative generalised form of Pri-CSP-
likeness which not only allows one to test negative premises, but also check
that a stable process can perform any of a set of events.

2 Background

2.1 The operational semantics of CSP

The standard operational semantics of CSP came along after the most com-
mon denotational semantics, in [5, 7]. Technically speaking, this is primarily
a paper about these operational semantics as extended by more recent de-
velopments. In common with other similar languages, CSP’s operational
semantics generate labelled transition systems (LTSs). For CSP, the action
labels come from Σ ∪ {τ,X}, where Σ is the alphabet, the set of actions
that are visible to and controllable by the external observer, τ is an invisible
and uncontrollable event such that whenever it is enabled and another event
does not happen quickly, it will. X is a signal representing the termination

3



of a process. It is observable, but it is generally better to think of it as
uncontrollable in the same sense as τ .

The whole class of closed (i.e., no free identifiers) CSP terms over a
given alphabet can be thought of as a large LTS. While tools like FDR can
only handle finite CSP terms over finite alphabets, from a theoretical point
of view we are happy to envisage infinite alphabets and infinitary terms
(though with well-founded syntax) created by infinite mutual recursions,
and infinite nondeterministic choice.

In this paper we permit, and indeed require in certain circumstances,
infinite alphabets, though aspects of it are easier for finite ones.

Given the process P , αP means its own set of Σ actions, which is usually
just the ones it uses, and when our process P appears in an alphabetised
parallel P X ‖Y Q it is invariably X . Hoare [13] makes such alphabets an
important part of his semantics of CSP. We, following [22, 26], use it as a
less formal notation.

The CSP language we use in this paper has two operators not seen until
relatively recently. These are the throw operator P ΘA Q [23] where if P
communicates a ∈ A this hands control to Q , and the priority operator
that is in some sense the main topic of this paper. Both of these operators
add significantly to the expressive power of CSP. We are studying that of
priority in this paper; the original motivation for ΘA can be found in [23].

Below we introduce the language, including ΘA, via SOS operational
semantics [19].

In SOS style we need rules to infer every action that each process can
perform when applied to its appropriate number of arguments. The con-
ditions that enable actions are always, so far as we are concerned, of three
sorts:

• Positive: Some other process can perform a specific action. This other
process is determined from the syntax of the process P whose tran-
sitions we are calculating. In our setting these other processes are,
except in the case of recursion, arguments of the operator whose se-
mantics we are defining.

• Negative: The same except the other process cannot perform a given
action.

• Side conditions on the actions, alphabets etc that appear free in the
rule. In this paper we regard each instance of a rule for different such
free objects as a different rule, formally speaking.
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For us, therefore, a rule comes with set of action/alphabet etc parameters,
and appropriate positive and negative premises. We can think of a rule with
free parameters other than processes as a rule schema.

CSP is a language that consists of a few constant processes, a number
of operators which can be applied to one or more argument processes to
create another one, and recursive constructions. The operational semantics
of constants simply describe their actions directly. Thus STOP , which has
no actions, has no operational rules, and SKIP , the process which simply
terminates immediately, has the single rule

SKIP
X−→ Ω

A process does nothing after terminating. Ω is a “process” we see precisely
after X actions, essentially representing something we do not bother to look
at because the process is finished. In some ways it would be better to use

the notation P
X−→ rather than P

X−→ Q .
Other important constant processes are RUNA, which performs any se-

quence of events from A ⊆ Σ and never refuses one, ChaosA which is the
most nondeterministic non-divergent process on the events A which can al-
ways pick whatever subset it chooses of A to offer, and div which simply
diverges (i.e. performs an infinite unbroken series of τs).

There are two choices of how to handle recursive terms operationally,
which are summarised by the rules

µ p.P
τ−→ P [µ p.P/p]

(A)
P [µ p.P/p]

x−→ Q

µ p.P
x−→ Q

(B)

where µ p.P is the same as the recursive value calculated by the equation
p = P , for p a process identifier and P a process term in which p may be free.
Rule (A) introduces a τ every time a recursion is unwound, and Rule (B) does
not. Thanks to the CSP principle that the process τ.P (in CCS notation:
one that performs a τ before becoming P) is equivalent in all but operational
semantics to P there is no observable difference between the results of these
two rules, provided (B) is well defined. For a clean mathematical analysis
of operational semantics, (A) is better as the τ guards eliminate problems
caused by under-defined recursions (of which the simplest example is µ p.p),
which become more severe in the presence of the negative premises we will
be considering in this paper. We will give an example to illustrate this once
we have formally defined Pri≤(·).

On the other hand, without such an undefined recursion (one where the
first-step action s of a recursive body P [Q/p] are not independent of those
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of Q , or where the derivation of actions in an infinite mutual recursion is not
well founded, as with the recursion Pi = Pi+1 � a → STOP), such problems
do not arise and (B) gives a more efficient LTS representing any term. In this
paper, for simplicity (not only with negative premises) we generally assume
approach (A) in any case where it cannot be determined simply that every
recursive call is guarded by at least one action (which can be τ), and the
more efficient (B) otherwise. Parts of our later constructions rely on the use
of (B) for the obviously guarded processes used in simulations: with (A) our
simulations would not be as tight as claimed in the theorems.

The bulk of the operational semantics of CSP is concerned with operators
such as a → P (prefix) and P ‖

X
Q (parallel). The following clauses are taken

from [22, 26]. In each case the transitions on the bottom are enabled just
when all of the preconditions on the top are true, and the transitions of any
term are the minimal set consistent with the rules stated.

2.2 The transition rules of CSP operators

The main way communications are introduced into the operational semantics
is via the prefixing operation e → P . In general, e may be a complex object,
perhaps involving much computation to work out what it represents. The
prefix e may represent a range of possible communications and bind one or
more identifiers in P , as in the examples

?x : A→ P c?x?y → P c?x !e → P

We thus assume the existence of functions comms and subs.

• comms(e) is the set of communications described by e. For example,
d .3 represents {d .3} and c?x :A?y represents {c.a.b | a.b ∈ type(c), a ∈ A}.

• For a ∈ comms(e), subs(a, e,P) is the result of substituting the ap-
propriate part of a for each identifier in P bound by e. This equals P
if there are no identifiers bound (as when e is d .3). For example,

subs(c.1.2, c?x?y , d !x → P(x , y)) = d !1→ P(1, 2)

The transition rule for prefix is then easy to state:

e → P
a−→ subs(a, e,P)

(a ∈ comms(e))

It says what we might expect: that the initial events of e → P are
comms(e) and that the process then moves into the state where the effects
of any inputs in the communication have been accounted for.
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CSP nondeterministic choice is an operator that can take a τ action to
either of its arguments: it alone gets to choose which to act like.

P u Q
τ−→ P P u Q

τ−→ Q

This easily translates to a generalized notion of choiceuS over a non-empty
set S of processes:

uS
τ−→ P

(P ∈ S )

All the other operators have rules that allow us to deduce what actions a
process of the given form has from the actions of the sub-processes. Imagine
that the operators have some of their arguments ‘active’ and some ‘inactive’.
The former are the ones whose actions are immediately relevant, the latter
the ones which are not needed to deduce the first actions of the combination.
(All the arguments of the operators seen above are initially inactive.) This
idea comes across most clearly in the construct P ; Q (whose operational
semantics can be found below), where the first argument is active, but the
second is not as its actions do not become enabled until after the first has
terminated.

Both the arguments of external choice (�) are active, since a visible ac-
tion of either must be allowed. Once an argument is made active, it must be
allowed to perform any τ or X action it is capable of, since the argument’s
environment (in this case the operator) is, by assumption, incapable of stop-
ping them. There is, however, a difference between these two cases since a τ
action is invisible to the operator, which means that there are always rules
like the following

P
τ−→ P ′

P � Q
τ−→ P ′ � Q

Q
τ−→ Q ′

P � Q
τ−→ P � Q ′

which simply allow the τ to happen without otherwise affecting the process
state. (In some cases these rules are implied by more general ones.) These
rules simply promote the τ action of the arguments to τ actions of the
whole process. On the other hand, the X event is visible, so (as with other
visible actions) the operator can take notice and, for example, resolve a
choice. With �, there is no difference in how X and other visible events are
handled:

P
a−→ P ′

P � Q
a−→ P ′

(a 6= τ)
Q

a−→ Q ′

P � Q
a−→ Q ′

(a 6= τ)
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There is an additional and theoretically useful choice operator P . Q
which can be characterised as an “untimed timeout” or “sliding choice”. It
initially offers choices provided by P , and if a visible one occurs this resolves
the choice. But there is a τ action which will resolve the choice in Q ’s favour
if P does not quickly do this. P is initially active:

P
τ−→ P ′

P . Q
τ−→ P ′ . Q

Any visible action from P decides the choice in its favour

P
a−→ P ′

P . Q
a−→ P ′

(a 6= τ)

The said τ can resolve the choice in Q ’s favour:

P . Q
τ−→ Q

Of course, the place where X is most important is in the sequential
composition operator ; . Here, the first operand is necessarily active, while
the second is not. In P ; Q , P is allowed to perform any action at all, and
unless that action is X it has no effect on the overall configuration.

P
x−→ P ′

P ; Q
x−→ P ′; Q

(x 6= X)

If P does perform X, indicating it is terminating, this simply starts up Q ,
with the action itself being hidden from the outside – becoming τ .

P
X−→ P ′

P ; Q
τ−→ Q

It is semantically important that the second argument of ; and the process
argument of e → P are inactive, for if they were not, they would be allowed
to perform any τ actions so that if they could diverge, so could the overall
process. And the process STOP ; div (div being the divergent process de-
scribed earlier) could never get into a stable state even though it is supposed
to be equivalent to STOP . This shows that any argument which is active is
always one in which the operator is divergence-strict (i.e., maps immediately
divergent processes to immediately divergent processes).

The rules for hiding and renaming have much in common, since both
simply allow all the actions of the underlying process but change some of
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the names of the events. Any event not being hidden retains its own name
under \ B , but when this event is X we need a separate rule to respect our
convention that the result process is always then Ω.

P
x−→ P ′

P \ B
x−→ P ′ \ B

(x 6∈ B ∪ {X}) P
X−→ P ′

P \ B
X−→ Ω

Events in B are, on the other hand, mapped to τ .

P
a−→ P ′

P \ B
τ−→ P ′ \ B

(a ∈ B)

Renaming has no effect on either τ or X actions:

P
τ−→ P ′

P [[R]]
τ−→ P ′[[R]]

P
X−→ P ′

P [[R]]
X−→ Ω

Other actions are simply acted on by the renaming:

P
a−→ P ′

P [[R]]
b−→ P ′[[R]]

(a R b)

We here give the semantics of just one parallel operator, since others can
be deduced from it: P ‖

X
Q synchronises P and Q on all actions in X , lets

them communicate freely on other events, and terminates when they both
have. Both arguments are active

P
τ−→ P ′

P ‖
X

Q
τ−→ P ′ ‖

X
Q

Q
τ−→ Q ′

P ‖
X

Q
τ−→ P ‖

X
Q ′

There are three rules for ordinary visible events: two symmetric ones for
a 6∈ X

P
a−→ P ′

P ‖
X

Q
a−→ P ′ ‖

X
Q

(a ∈ Σ \X )

Q
a−→ Q ′

P ‖
X

Q
a−→ P ‖

X
Q ′

(a ∈ Σ \X )

and one to show a ∈ X requiring both participants to synchronize

P
a−→ P ′ Q

a−→ Q ′

P ‖
X

Q
a−→ P ′ ‖

X
Q ′

(a ∈ X )
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The parallel operator terminates when both its arguments have. There
are two approaches to this. The simple one is to assume that Xs can be syn-
chronised between the processes, but this contradicts the idea that X is an
uncontrollable signal. Therefore we have the operator watch its arguments
and terminate when both its arguments have:

The terminations of the two arguments are turned into τ ’s much as in
the first argument of P ; Q .

P
X−→ P ′

P ‖
X

Q
τ−→ Ω ‖

X
Q

Q
X−→ Q ′

P ‖
X

Q
τ−→ P ‖

X
Ω

Once one of its arguments has terminated and become Ω, all the rules above
for ‖

X
still apply, bearing mind that Ω itself has no transitions (being basically

equivalent to STOP) so that P ‖
X

Ω can only do those of P ’s actions not

in X . After the second argument has terminated the composition will have
become Ω ‖

X
Ω: it can now terminate using the following rule.

Ω ‖
X

Ω
X−→ Ω

Another view of the above rules for parallel termination is that we should
not regard Ω as a real observable process, but think of P ‖

X
Ω, Ω ‖

X
Q

and Ω ‖
X

Ω as a suggestive notation for two unary operators (on Q and P

respectively) and a constant, which happens to be equivalent to SKIP . The
latter is consistent with the view, which we will discuss later, that when a
process terminates it should disappear from whatever term succeeds it.

Other forms of CSP parallel are interleaving P ||| Q , equivalent to P ‖
∅

Q ,

and alphabetised parallel P A‖B Q which forces P to communicate all events
in B , and Q in C . Provided that P and Q do not attempt to communicate
outside A and B respectively it is equivalent to P ‖

A∩B
Q .

CSP provides two ways of getting one process to take over from another
without the first one actually terminating: interrupt P 4 Q allows P to run,
but at any time offers the initial events of Q . If one of the latter happens
then Q takes over. Both arguments are initially active.

P
τ−→ P ′

P 4 Q
τ−→ P ′ 4 Q

Q
τ−→ Q ′

P 4 Q
τ−→ P 4 Q ′
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If P terminates, so does the whole

P
X−→ P ′

P 4 Q
X−→ Ω

If P performs a ∈ Σ, then the possibility of interruption remains

P
a−→ P ′

P 4 Q
a−→ P ′ 4 Q

(a ∈ Σ)

If Q performs a ∈ Σ ∪ {X}, then it takes over as with �:

Q
a−→ Q ′

P 4 Q
a−→ Q ′

(a ∈ Σ ∪ {X})

The other is an operator which allows an event from P in the set A to
close it down and hand over to Q : the throw operator P ΘA Q . Only the
first argument is active:

P
τ−→ P ′

P ΘA Q
τ−→ P ′ΘA Q

If it terminates, so does the operator

P
X−→ P ′

P ΘA Q
X−→ Ω

It is allowed to perform a 6∈ A and carry on

P
a−→ P ′

P ΘA Q
a−→ P ′ΘA Q

(a 6∈ A)

whereas a ∈ A hands control to Q :

P
a−→ P ′

P ΘA Q
a−→ Q

(a ∈ A)

This completes our introduction to the language by the means of SOS
combinator operational semantics, except that we have not given the seman-
tics for the priority operator. This can be found in Section 2.4.
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2.3 CSP-like operational semantics

Note that all of the conditions (premises) above the line in the rules we have
seen are positive in the sense defined earlier.

They also have the following properties

• If an argument process performs an action P
x−→ P ′ in the premises,

and remains alive after the action that is being derived, then P has
become P ′ in the result.

• If an argument process has not performed an action in the premises,
then if it remains alive after the derived action it stays in its initial
state.

• If the argument process P appears in any of the premises of the op-
erator F (P , . . .) (i.e., the initial actions of F (P , . . .) depend on those
of P), and P

τ−→ P ′, then F (P , . . .)
τ−→ F (P ′, . . .). In other words,

if an argument of F is active in the sense discussed in defining the
SOS operational semantics above so that F can use its actions imme-
diately4, then P can perform a τ without otherwise changing the state
of F (P , . . .). We can regard this as F simply letting such τs happen
unobserved even by it. There are no other rules with τ as a premise.

• Under the same conditions, if P can perform X then F (P) can either
perform X to the special term Ω or perform τ to a term not involving
P .

• No argument process ever appears twice or more in the result of any
actions. Thus there are no rules such as

P
a−→ Q

F (P)
a−→ G(Q ,Q)

This is the no cloning property. This can in fact be breached in a way
by recursion: it is permissible to have recursions such as

H (Q) = (a → H (Q)) ‖
A

Q

which replicates Q . However, this cloning only replicates Q in its
original, unstarted form. CSP contains no way, recursive or otherwise,

4For technical reasons it may occasionally be necessary to count an argument as active
even though the operator makes no direct use of its visible actions: see Section 2.3.

12



of having a process P active (i.e., perhaps having performed actions
already) and then cloning it into two copies which can in any way be
run side-by-side or compared. This is hugely important to the style
of model and algebraic laws normally used for CSP, specifically ones
based on linear behaviours and including distribution properties over
nondeterministic choice.

Thus, though no standard CSP operator can copy any argument, op-
erators definable in CSP via recursion, like H (·) above, can make ar-
bitrarily many copies of a fixed, as yet unstarted, argument.

Note that the first and last principles here imply that no argument process
ever performs two or more actions, whether in sequence or independently,
in the premises of a single action.

In [27, 26], the author codified all of the above conditions together, in-
cluding the banning of negative premises, and described an operational se-
mantics all of whose operators obey these principles as CSP-like. The clear-
est way of doing this was creating a new notation for operational semantics
that is so constrained that it can only express CSP-like operators. This was
termed combinator operational semantics.

Before defining combinator operational semantics we remark the concept
of CSP-like operational semantics bears close comparison with simply WB
cool rules as defined in [11]. This is a restriction on SOS designed to ensure
that operators defined respect weak bisimulation (hence WB) in the same
way that we are aiming at CSP equivalences. We will perform a proper
comparison in Section 6, but for now remark that CSP-like is stronger than
simply WB cool by the addition of the no-cloning condition and other closely
related ones. In the present paper we adopt some of the nomenclature of [11],
even though this is different from that in [27, 26]. Specifically an argument
whose behaviour contributes to the first-step behaviour of an operator is
termed active, and inactive otherwise. [26, 27] termed these on and off
respectively. The rules which simply promote a τ action are termed patience
rules.

We define this form of semantics here so that we can later extend it to
handle negative premises.

In giving a combinator operational semantics for the operator F (P1, . . . ,Pn),
the first thing we need to identify is which of the Pi are initially active: which
of them appear in the premises of the SOS operational rules. The notation
we will use for an operator with active arguments P and inactive ones Q
in defining its combinator semantics will take the form FQ(P), emphasising
that the active ones are those that immediately relevant. (This is again
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different from [26, 27], the motivation being to make a greater distinction
between the immediately relevant active arguments, on which the combi-
nator acts, and ones with a delayed role.) In general we allow an infinite
number of components to Q, which we treat as a function from some index-
ing set I to processes. This case does arise in CSP, both thanks to taking the
nondeterministic choice of an infinite number of processes and, in the case
where the alphabet Σ is infinite, prefix constructs (such as c?x → · when
the type of c is infinite). However we only allow finitely many active argu-
ments since not only does the infinite case not arise in CSP, but it would be
theoretically problematic thanks to patience rules. In the definition below
we will suppose there are m active arguments.

Based on the operational semantics of CSP given above:

• All arguments of prefixing and nondeterministic choice are initially
inactive: the initial actions of these constructs depend only on the
construct itself. In each case the effect of such an initial action is to
activate one of the arguments.

• All arguments of external choice, parallel operators, hiding, renaming
and interrupt are active.

• The first arguments of P ; Q and P ΘA Q are active, and the second
inactive because their actions only become relevant after the respective
first argument has performed at least one. We get the same pattern
for sliding choice P BQ , but this time because Q only starts up after
a τ introduced by the operator itself independently of P .

Like SOS, a combinator operational semantics takes the form of a col-
lection of rule schemas, with events, sets of events etc varying under side
conditions to create sets of rules for individual operators. An individual rule
takes the form of a triple, sometimes abbreviated to a pair.

• The first component is a tuple with one component for each active
argument. The members of this m-tuple (x1, . . . , xm) are taken from
Σ∪{X, ·}. The meaning of this tuple is that all active arguments whose
component is not “·” perform the relevant action, in a synchronised
fashion, for the rule to fire. (We will often put quotes like this around ·
in text to help distinguish it.) Note that in some CSP operators m = 0,
which simply says that all of the operator’s actions are unconditional
on arguments’ actions. In these cases we write the now null premises
as . There are special conditions on tuples with X actions, which we
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will discuss below. Note that τ is not permitted in these tuples: we
will discuss this below.

• The second component is an action y in Σ ∪ {X, τ} which represents
the result action of the rule: the one that the operator performs when
the active arguments perform the components of the first. The CSP
hiding operator gives a case where a visible action is turned into τ ,
hence the possibility of y being τ . Thus we do not allow our operator
to observe the τs that active arguments perform as xi , but do allow it
to generate its own τs or turn a synchronisation of argument actions
into τ .

• The third component represents the syntax that the process becomes
after the action. There are three possibilities here:

1. The result of the action does not change the process’s shape: it
is still the same operator applied to the same arguments, the
only change being that those active arguments that have partic-
ipated in the action have moved forward according to respective
component actions. This is a common case, and applies to all
actions not involving Xs of parallel, hiding and renaming opera-
tors, and combinations of these. In this case the third component
is omitted, so the combinator becomes a pair. We will term such
combinators homogeneous.

2. The result action is X, Since, by convention, the result action
of X is always Ω, there is no need to record it, and so the final
component is again omitted.

3. In any other case we do need to record the state that the process
moves into. This will always be a piece of syntax with place-
holders for the active and inactive arguments. The form of this
syntax has to be restricted so as to prevent either the cloning or
suspension of the active arguments of the original operator. The
syntax can, however, do what it likes with the inactive arguments,
and discard any argument it likes.

We discuss the allowable forms of syntax below.

It was observed by Hoare that one of the properties that most charac-
terises CSP is distributivity over nondeterministic choice: all non-recursive
CSP operators have, in each argument individually, the property that F (P u
Q) = F (P) u F (Q). It has long been recognised that this is intimately con-
nected to the no-cloning property of its operational semantics, because if
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F ’s argument could be cloned, it is likely that we could tell the difference
between the behaviour of F (P u Q), in which the choice between P and Q
can be delayed until after cloning by F , and F (P) u F (Q), where it can
not. This is because F running one copy of P and one or Q could easily
show a behaviour that it cannot when running one copy of each.5

Notice here that we make no restrictions about how many times an
inactive argument of F can be used. This is perhaps as well, since we
should observe that constructs such as H (P) defined earlier copy inactive
arguments.6

The way we want combinators to build the syntax of successor processes
can be defined by specifying that they must treat active arguments, if they
are retained at all, in a way that keeps them active and follows the principles
of distributivity.

This is a piece of syntax T (made up from CSP and CSP-like con-
structs) in which each argument (active and inactive) is represented by
some standardised identifier. For us these are bold-face indices drawn from
{1, . . . ,m} ∪ I , so 1 represents the first active argument, and so on. The
result state is now T with the substitutions:

• An index i ∈ {1, . . . ,m} is replaced by Pi or P ′i such that Pi
xi−→ P ′i

depending on whether xi = · or xi ∈ Σ. If xi is X then i may not
appear in T .

• An index i ∈ I is replaced by Qi .

To follow the principles above we have to impose conditions on T :

• No active index i ∈ {1 . . . ,m} can appear more than once in T .

• Such active indexes only appear at immediately distributive (ID) places
in T , (i.e., where the operational semantics we can derive for T makes
a process argument placed here initially active). This is easy to define
by structural recursion:

5For example, if F (P) clones P and interleaves it with itself, then F (a → STOP u
b → STOP) could perform the trace 〈a, b〉, which is not possible for F (a → STOP) or
F (b → STOP).

6For completeness we might note that it is also possible to define operators in CSP,
such as G(P) = P ||| P ||| (a → G(P)) where it is possible for an argument to be initially
active several times over and also be present in an inactive form. We do not provide direct
support for this type of construct in combinator operational semantics, but note that if
one did desire to use one, one could equally define an operator in which all active instances,
and a single inactive one, were separate, and apply this to multiple instances of the same
process. Here it would be G ′(P ,P ,P), where G ′(P ,Q ,R) = P ||| Q ||| (a → G ′(R,R,R)).
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– The appearance of i in the simple term i is ID.

– If i appears ID in the term T , then it appears ID in
⊕

(. . . ,T , . . .),
where the place T occurs at an active place in the arguments of
the CSP-like operator

⊕
.

– No other appearance of i, including any in a recursive definition,
is ID.

It is important to note that once an argument is active, it must stay
active as long as it is present in the term. In CSP terms this is because
CSP provides no mechanism that can suspend and re-start a process,
at least in terms of its ability to perform τ actions. (One can use
a regulator to stop Σ actions and then take away the restriction, but
there is no way of stopping it performing τs in the same way other than
throwing it away permanently). Also, if a process were suspended,
becoming inactive, copying it would breach the no-cloning principle.
There is therefore no way in which we can write a rule in which Q
performing an action leads it to the state P ; Q ′.

However we could do this if we had an alternative version of the sequen-
tial composition operator in which both arguments count as active. It
is for this reason that we might occasionally want an operator where
an argument is counted as active even though its visible actions are
not immediately relevant.

It is worth remarking that the pieces of syntax T above can contain
arbitrary closed CSP processes at any point without restriction7. In
other words, either the whole expression or any argument to any oper-
ator can be any process term that does not depend on process variables
representing arguments or anything else.

Drawing from examples already seen above, the hiding operator P \ X has
rules (a, a)[a 6∈ X ] and (a, τ)[a ∈ X ], using the convention that for operators
like this one with a single active argument, we write a rather than (a) for
a tuple of actions from each. In this case the result of P \ X processing
an action P

a−→ P ′ is always P ′ \ X , so we can use the combinator form
without a result process. On the other hand, the resolution of P � Q does
change the process structure, so its rules are

((a, ·), a,1) and ((·, a), a,2)

7In fact it is easy to show that any LTS at all is the operational semantics of such a
process, using a straightforward potentially infinite mutual recursion and hiding to create
any τs.
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indicating that either side can perform any action in Σ which resolves the
choice, eliminating the �. These rules have exactly the same meaning as
the SOS ones for Σ actions in � given above.

Comparing these rules against the SOS operational semantics given ear-
lier, there are two omissions: the rules using active arguments’ τs and Xs.
The first of these is very simple to solve: there is no need to write down
patience rules (any τ by an active argument becomes a τ of the operator
without changing the state other than progressing the argument to its post-
τ state) since they always apply. Thus any specification of a combinator
operational semantics assumes that patience rules apply without the need
to write them down.

The rules with a X premise that generate the event X were dealt with
above as one of the cases where no third component is necessary. In fact
the rules for hiding and � all fall into this category: (X,X) for hiding and
((X, ·),X) plus ((·,X),X) for �.

We present X rules in a very similar format, but where necessarily the
tuple of actions upon which the rule depends contains one X and all other
components are “·”. All such rules whose result action is X appear as a
pair, following the above convention, for example the X rules of P � Q seen
above.

Recall that we stated above that a process that contributes a X to an
action is in any case not present in the successor process. This is naturally
because the operator knows that the said argument is finished. We make
some more stipulations about the role of X, which are present to implement
the assumption that X is an observable action but not one that can be
controlled by external observers or by extension the operator itself.

• If a component of the tuple of premises is X, it is the only non-“·”
component. This says that Xs can’t be synchronised with other actions,
even other Xs, because synchronisation implies the ability to delay until
partner actions are available.

• The only result actions y possible from such a tuple are τ and X. We
cannot turn an uncontrollable action into a controllable one, since do-
ing so implies we would have to control the X when obliged to control
the Σ-event it contributes to. Thus we can only have the third compo-
nent T in the case where y = τ , which represents the case where one
of the active arguments has closed down but there is still more for the
process to do. The most obvious instance of this is in sequential com-
position, where a X of the first argument becomes τ and starts up the
second. identifier representing the second argument, and a → P has
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the combinator ( , a,p) where p is the index of the inactive argument
P .

A good example to study is the distributed termination of P ‖
X

Q :

note that the SOS semantics given earlier are consistent with the above
provided we take the approach that a process in parallel with Ω is a
unary operator on it, needing separate combinators.

Thus P ; Q has the combinator (X, τ,q), where q is the index to the
inactive second argument.

Complete combinator operational semantics for CSP can be found in [26].

Definition 1 An operator (language) is CSP-like if and only if it (all its
operators) can be given a combinator operational semantics.

CSP, naturally, is CSP-like but CCS[16] is not because of the way in
which τ resolves +. However the version of π-calculus [17] presented in [29]
can be shown to be CSP-like [25] because of the way it localises the use of
+.

The justification for this definition is the following theorem.

Theorem 1 Every CSP-like operator F has a translation to CSP which we
write FCSP such that, for any collection of arguments (P,Q), the operational
semantics of FQ′(P′); SKIP and FQ

CSP (P) are strongly bisimilar, where
P′ and Q′ are formed by replacing each component P by the semantically
equivalent process P ; SKIP.

The reason for this slight alteration to the arguments and result with SKIP
is that CSP does not contain the mechanisms for marshalling X events that
it does for others. Note that if P is a process that never performs X then
P and P ; SKIP are themselves strongly bisimilar, so that if none of the
arguments terminates the transformation from (P,Q) to (P′,Q′) is to all
intents and purposes the identity.

Therefore any CSP-like operator has a fully compositional semantics over
any model of CSP.

The proof of this result can be found in [27, 26]. Though not quite all
the cases are covered, the proof of the main theorem of the present paper
provides a model for a slightly different proof of Theorem 1, if the bits about
negative premises are removed.

Much to the author’s surprise, Tom Gibson-Robinson (then a final year
undergraduate) actually implemented the translation from CSP-like F to
FCSP in a tool called TYGER [9].
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2.4 Priority

While there have been a number of versions of CSP with priority, for exam-
ple [15, 14, 8] the one we use in this paper is that introduced in [26]. This
is conceptually simple, because it does not require any re-interpretation of
LTS’s or CSP models as entities where one action has priority over another.
Instead Pri≤(P) inputs an ordinary LTS and the result is another ordinary
one. This is an operator whose definition is most naturally cast in terms
of operational semantics, though these are definitely not CSP-like. The pa-
rameter ≤ is a partial order on events Σ∪{τ,X} which is subject to several
conditions that we will state below, The SOS operational semantics are easy
to state

P
x−→ P ′ ∧ ∀ y .y > x ⇒ ¬P

y−→
Pri≤(P)

x−→ Pri≤(P ′)

In other words P performs actions that are not strictly lower under ≤ than
some other action that P can perform from the same state. In the above, x
and y range over the whole of Σ ∪ {τ,X}.8

Though the above definition makes perfect sense operationally whatever
order is used, in order to make it consistent with the basic tenets of CSP we
need to respect the ideas that τ and X are not controllable and that every
process is equivalent to the one where a single τ precedes it. To protect
these properties we insist that

• τ and X are both maximal in ≤: they are not dominated by any other
event.

• If a < b for any actions a and b, then a < τ and a < X.

The need for these conditions is further explained in [26].
Even with these restrictions, this is not a CSP-like operator because it

has negative premises in its operational semantics. This is emphasised by the
fact that it is not compositional over most established CSP models such as
traces and failures-divergences. For example the processes (a → STOP) u
(b → STOP) and (a → STOP) � (b → STOP) have the same traces
semantics, but any ≤ where a < b leaves the former process unchanged but
turns the latter into one equivalent to b → STOP .

It is only the richest CSP models that give Pri≤(P) any hope of being
compositional. Of those discussed in Chapters 10, 11 and 12 of [26], the only

8Earlier we stated that the order ≤ should not have any infinite ascending chains. This

is because if a1 < a2 < a3 < . . ., then the process Pri≤({�{ai → STOP | i ∈ N}) could

not perform any action at all, which seems unnatural.
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models which guarantee compositionality for the full range of permitted ≤
are the FL class of models, whose basic behaviours are traces extended by
one of the following before each event and after the last:

• The symbol •, indicating that the state from which the next event
happened, or which applies at the end of the trace, has not been
observed to be stable (i.e., a state where no τ or X is possible).

• Where stability has been observed, the exact set of events that the
state offers.

Thus a typical behaviour looks like 〈A0, a1,A1, . . . ,An−1, bn ,An〉 with the
bi being drawn from Σ. and the Ai being drawn from {•} ∪ P(Σ) (The
construction of the model assumes that the observer has no obligation to
observe stability even when the process is stable, therefore for any recorded
behaviour with a proper acceptance set, there is another which is the same
except for replacing that set by •.) Additionally there are behaviours of the
form 〈A0, a1,A1, . . . ,An−1, bn , •,X〉, meaning that any X is the final thing
observed, and the state preceding it cannot be stable.

The semantics of Pri≤(P) over this model are as follows, quoted from [28]
and extended to cover the case of X:

With respect to FL, the semantics of Pri≤(P) are the behaviours :

{〈A0, b1,A1, . . . ,An−1, bn ,An〉 | 〈Z0, b1,Z1, . . . ,Zn−1, bn ,Zn〉 ∈ P}
∪

{〈A0, b1,A1, . . . ,An−1, bn , •,X〉 | 〈Z0, b1,Z1, . . . ,Zn−1, bn , •,X〉 ∈ P}

where for each i one of the following holds:

• bi is maximal under ≤ and Ai−1 = • (so there is no condition on Zi−1

except that it exists).

• bi is not maximal under ≤ and Ai−1 = • and Zi−1 is not • and neither
does Zi−1 contain any c > bi .

• Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬ ∃ b ∈ Zi .b > a},

• and in each case where Ai−1 6= •, bi ∈ Ai−1.

In [26] it is incorrectly stated that Pri≤(P) is compositional in refusal
testing models (see [18, 26]). This is true for restricted classes of ≤ as
demonstrated in [28], specifically ones with no three members of Σ such
that c < a, a and b are incomparable but c 6< b. However since the uses
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of priority we will see in this paper will frequently have such triples, we will
disregard refusal testing models in this paper.

FDR implements a prioritise operator which is the same as the one pre-
sented here, except that it restricts the partial order to ones presentable as
a series of subsets of Σ with successively lower priority, with all events not
included in these sets being incomparable to all of them as well as {τ,X}.
One does not lose any generality through this restriction, since Pri≤(P) for
any allowable partial order can be generated (at least for finite alphabets)
by one or more nested instances of the FDR version. The reason for priori-
tise taking this different form is that it is a lot simpler than requiring the
programmer to create a suitable representation of a general member of our
restricted class of partial orders. At the time of writing we are discussing
adding a full version of Pri≤(·) as an advanced alternative to prioritise.

We remarked earlier that priority posed an additional challenge in the
presence of under-defined recursions. We can now demonstrate this. Con-
template the definition µ p.Pri≤(p[[b/a]] � a → STOP), where a < b. Un-
der recursion rule (A), given that we have specified a < τ , this definition
simply delivers an infinite stream of τs. Under (B) it is contradictory, since
no τs now appear, and p can perform an a if and only if it cannot perform
a b, but it can perform b if and only if it can perform a.

Since priority is not a CSP-like operator, we really need a new name for
the language that includes it: we will call it Pri-CSP.

It is interesting to note that prioritise is implemented in FDR as a sepa-
rate operator on LTSs. It cannot be folded into the main implementation of
CSP in FDR, via supercombinators (described, for example, in [26]), which
is no surprise because there is a very close relation between supercombina-
tors and the combinator operation semantics which we know prioritise does
not have.

3 What can we express in Pri-CSP?

Having demonstrated a strong expressibility result for CSP, the question
arises as to whether we can find a similar characterisation when we add our
priority operator. This operator shares some of the qualities of CSP-like
operators, for example

• It has the patience property, since τ actions are never blocked.

• It cannot clone its argument.
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Indeed the only one it obviously does not have is the use of negative premises
in its SOS operational semantics. It is tempting to hope that we can simply
extend Theorem 1 to encompass operational semantics that do have negative
premises, and the proof of a version of this is our main result.

To characterise what can be expressed in Pri-CSP we extend the ex-
pressive power of combinator operational semantics to encompass negative
premises. Recall that the first component of a combinator, representing its
premises, is a tuple of actions from the active processes. We can extend this
by turning the components of this tuple into pairs. The first component is
either an action in Σ that the corresponding process should perform or “·”
if it does not perform one in the action. The second component is a set of
events, which if non-empty contains τ and X (if not written down they are
assumed implicitly), that the process must not be able to perform if the rule
is to fire. To suggest its meaning, we annotate such sets of negative premises
S with the negation symbol ¬, so it is written ¬S . Any negative premise
requires that the corresponding argument process be stable before it can be
satisfied.

We will be liberal with the way we write down such pairs: where one
or other component is trivial (i.e., · or ∅ (rather than {X, τ})) we will just
write the other, and if both are trivial we will just write “·”.

There is no difference in the structure of the second component of com-
binators. However issues that we will discuss in Section 5.1 mean that we
choose to be a lot more restrictive in the syntax of the allowed third compo-
nent syntax T . Specifically we restrict the third component to be any one
of

• One of the argument processes by itself (a common case in CSP): this
can be an inactive or inactive one in the original state.

• Any constant CSP process (one that does not refer to any argument)

• Any Pri-CSP operator application where each active argument of the
original operator, if it appears at all, appears in exactly one place
amongst the active arguments of the new operator.

This restriction applies to all the combinators (even those with no negative
premises) in any operational semantics involving any combinator involving
negative premises. In practice this is not a huge restriction, since in every
operator semantics the author is aware of, the above restrictions hold.

There is again the assumption of a patience rule for each active argument,
and a homogeneous n-combinator is one in which the third component is
omitted because the result has the same structure as the initial process.
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Exactly the same restrictions apply as before to rules with X events
as premises, with the additional restriction that no negative premises are
permitted in such rules.

Any such combinator that has a negative premise will be termed an n-
combinator, and an n-combinator operational semantics is one in terms of
these and ordinary combinators. A positive combinator semantics is one
with only ordinary combinators.

Pri≤(·)’s operational semantics can itself be expressed in n-combinators,
noting that it has a single active argument: if has the X rule (X,X), the im-
plicit patience rule and, for each a ∈ Σ maximal in ≤ the simple combinator
(a, a). For non-maximal a it has the n-combinator ((a,¬{x ∈ Σ ∪ {τ,X} |
a < x}), a), where we note that the set of negative premises always includes
τ and X thanks to the restrictions placed on ≤ in the definition of the prior-
ity operator, which mean that the similar restrictions we placed on negative
premises are also satisfied.

Recall that the operator P ΘA Q closes down P and starts Q whenever
P communicates an element in A. We can think of this as P throwing an
exception. With n-combinators we could build an operator in which any
deadlock in P was caught and starts Q : with the active argument P it
would simply need the combinators (a, a) for a ∈ αP and (X,X), plus the
n-combinator (¬αP , τ,q) where q points to the inactive argument Q . Once
we have discussed the implementation of general negative premises later, it
will be obvious how this construct can be simulated in Pri-CSP.

As another example, consider an “angelic choice” operator which behaves
like P � Q except that it does not behave nondeterministically when P
and Q have the same initial action. Rather both perform the action and
wait for the choice to be resolved later. The author knows two distinct
operational semantics for versions of this operator. The first is a complex
one �P with a completely positive operational semantics in which when
one of the argument performs an event, the other is allowed to follow it,
and subsequent events later. Its combinator operational semantics is given
in detail in Chapter 9 of [26], and comes as one of an infinite family of
operators in representing the case where either argument is an arbitrary
non-terminated trace ahead. Unless the two processes have performed the
same trace, the one that is behind is only allowed to perform τ (via the
patience rule), X (which becomes an external τ and resolves the choice in
favour of the other process), or the first catch-up event (which becomes an
external τ and reduces the deficit.)

There is a simpler and more natural definition �N that involves nega-
tive premises, and defines a subtly different operator both at the levels of
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operational semantics and abstract ones. This simply says that when one of
P and Q can perform an event in Σ that the other cannot, this resolves the
choice. The n-combinators for this version are

• ((X, ·),X) and ((·,X),X): if either argument terminates then so does
the combination.

• ((a, a), a) for each a ∈ Σ: if both arguments perform the same Σ-
action then they do so lockstep and the choice between them is delayed.

• ((a,¬{a, τ,X}), a,1) ((¬{a, τ,X}, a), a,2) for a ∈ Σ: if one argument
can perform an action but the other can neither do it nor X nor τ ,
then it resolves the choice.

The biggest difference between the two versions shows up when one of
the arguments is divergent. Every trace of P is one of P �P div (div being
the simply divergent process alluded to earlier), but P �N div only has the
empty trace unless P has the trace 〈X〉, in which case it has that too: P
cannot proceed with a ∈ Σ because div can always perform a τ .

It is not immediately obvious that �N can be implemented in Pri-CSP,
but it can be done. Ignoring termination, which makes it more complex, we
can achieve this by enlarging Σ by further copies a1, a2, a3 and a4 of each a
in the original Σ, which we will now refer to as Σ0, with Σi for i > 0 being
the copies. The implementation of P �N Q is then

(((Pri≤1((P [[R′]] ||| RUNΣ2)) ‖
Σ0∪Σ1∪Σ2

Pri≤2(Q [[R′′]] ||| RUNΣ1)) ‖
Σ

Reg))[[CR]]

where

• R′ maps each a ∈ Σ0 to a, a1 and a3

• R′′ maps each a ∈ Σ0 to a, a2 and a4

• CR maps each a and ai to a.

• Reg initially permits any event in Σ0 ∪Σ1 ∪Σ2, but once an a1 occurs
then only members of Σ3 may occur thereafter, and likewise once an
a2 occurs then only members of Σ4 are allowed thereafter.

• ≤1 places all a2 events below all members of Σ0.

• ≤2 places all a1 events below all members of Σ0.

The interpretation of these events is:
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• a is the event representing joint progress by the two processes, leaving
the choice unresolved.

• a1 is an event which P performs when Q cannot perform the same
one.

• a2 is an event which Q performs when P cannot perform the same
one.

• a3, unsynchronised with Q , is an event that P can perform when the
choice has already been resolved in its favour.

• a4, unsynchronised with P , is an event that Q can perform when the
choice has already been resolved in its favour.

You can regard a2 as performed by Pri≤1(P [[R′]] ||| RUNΣ2) as saying
that P cannot perform the corresponding a thanks to ≤1. Thus when Q
synchronises a2 with this process it means that the choice has been resolved
in Q ’s favour. In understanding the simulation’s behaviour when in one of
these two modes it is important to note that, whichever of P and Q has
been left behind in favour of the other, is necessarily in a stable state (if not
an a1 or a2 could not have happened), so blocking its visible actions means
it does nothing at all thereafter.

This construction9 was far from simple, but does begin to show how an
operator which conceptually has nothing to do with priority can be imple-
mented using it together with the rest of CSP.

This construction motivates the following definition:

Definition 2 An operator has Pri-CSP-like operational semantics if its op-
erational semantics can be given according to the above conventions in terms
of combinators and n-combinators.

We will show in the next section that all Pri-CSP-like operators are
implementable in Pri-CSP.

In Section 5 we will show how to liberalise the definition of Pri-CSP-like
to encompass yet further types of premise.

9It is interesting to note that using it, P �N Q is always a finite-state process if P and
Q are, something that is not true of P �P Q . If P is any process with an infinite trace
then P �P Q is infinite state.
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4 Expressibility theorem

The following is the central result of this paper.

Theorem 2 Suppose the operator FQ(P) is Pri-CSP-like together with all
other operators reachable (transitively) through the T third components of its
combinators. Then for any arguments P and Q, FQ(P) is expressible in Pri-
CSP in the sense that the simulation is strongly bisimilar to FQ′(P′); SKIP
where P′ and Q′ are defined as previously by replacing each component P
by P ; SKIP.

This of course implies that such operators have a compositional semantics
over the FL family of models.

As in [27, 26], our proof will be to construct the CSP representation. This
is, of course, even more complex than the one without negative premises.
For the issues in common with the earlier result, the constructions we use
have a lot in common, though we do find several simplifications.

This will involve extending our original alphabet Σ0 in various ways. To
avoid confusion and ambiguity we assume that all the various directions we
extend it are disjoint from each other and Σ0. Σ will mean the alphabet in
use at any particular time, as extended.

1. First we consider the case of homogeneous combinators (no negative
premises), so that the result process is the same format as the original,
and where there is no termination. Thus we consider operators whose
combinators are all of the form (p, a), with p having no negative aspect
and no X in either p or a. In this case there is no point in consider-
ing inactive arguments, since this type of combinator is incapable of
activating them.

2. Next we consider how to add similarly restricted n-combinators. Clearly
this is the heart of the extension to the original construction.

3. The next step is to allow actions to throw away active arguments. One
cannot simply leave the process representing a discarded argument
running but blocked in a simulation like this: if it were still running
its patience rule would promote its τs, making the simulation a lot
less accurate, particularly because it could create a divergence that
was not present with the original operator.

4. We then allow non-homogeneous combinators, but only ones that use
the existing active arguments rather than inactive ones.
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5. The penultimate stage is to show how to use inactive arguments.

6. We finalise the construction by allowing termination.

At each stage the simulation we build takes the form of the parallel
composition of processes representing each argument that is active, plus ad-
ditional parallel components to regulate behaviour, and “zombie” processes
representing those that have been inactivated or have terminated. Both
the argument processes themselves and the top level are subject to a lot of
renaming, plus various other manipulations.

4.1 Homogeneous positive combinators with no termination

In this case (in a simplification from the construction in [27, 26]), the simu-
lation will take the form

(((‖n
i=1

(Ai ,Pi [[Ri ]]))) ∪A‖C RUNC )[[CR]] \ {Tau}

where P1, . . . ,Pn are the (all active) arguments of some operator F . Tau is
a member of Σ we introduce to model a combinator generating a τ action.
∪A is the union of the Ai .

Let C be the set of combinators for F . We add C into the alphabet and
can construct the renamings as follow

• Ri maps each event a of Pi to each combinator which requires the ith
argument to perform a.

• CR maps the combinator (p, a) to a if a ∈ Σ, and to Tau if a = τ .

• The alphabet Ai consists of all combinators c which have a proper
premise (i.e., not “·”) in position i .

• The final RUN process is necessary to provide a way in which combi-
nators with no active arguments can happen. It will later be replaced
by more elaborate regulator processes.

It should be clear that:

• Any Pi that can perform a τ can perform it in the simulation, with
the simulation state progressing exactly as we require in the patience
rule that F must have for its ith argument.
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• The event representing the combinator c can occur precisely when the
premises of c are met (i.e., each non-“·” component performs the ap-
propriate event). The renamed Pi can then synchronise to perform c,
which CR and the hiding of Tau combine to turn it into the event that
c generates. Again the successor state (with just the Pi that contribute
to c progressing) is exactly the one that simulates the state that the
combinator semantics will have reached under the same action.

• Every state reachable from F (P1, . . . ,Pn) in our restricted circum-
stances is of the form F (P ′1, . . . ,P

′
n) for P ′i some state of Pi , and

thanks to the above observations this state is strongly bisimilar – in-
deed isomorphic in the sense of transition systems – to the state

((‖n
i=1

(Ai ,P
′
i [[Ri ]])) ∪A‖C RUNC )[[CR]] \ {Tau}

of the simulation.

If the result event of a combinator were X, we would naturally expect
CR to rename that combinator to X. However CSP renaming is not
permitted to do this: X can neither be renamed nor can anything else
be renamed to it. We will see how to solve this problem in Section 4.6.

We have therefore completed the construction, and demonstrated the truth
of the theorem, in this first case.

When adding combinators to the alphabet, we will label each with the
operator it comes from. This labelling will only be needed in the later parts
of this construction.

4.2 Adding negation

Suppose for the moment that no combinator has both positive and negative
premises for the same active argument. Then we can get the argument
process if necessary to contribute one or other to the firing of the combinator.
We know how to achieve this for positive ones. For negative ones we take
a lesson from the definition of �N above: we can use priority to deliver an
event just when some set of actions is not possible.

For each set of events S ⊆ Σ that might (each together with {τ,X}) be
the negative premises for argument process P , let ¬S be a new event that
will represent P ’s inability to perform any of them. Let the set of such ¬S
for P (in the context it is placed) be negs(P).10 Then the process

Negate0(A,P) = Pri≤P (P ||| RUNnegs(P))

10Note that if the alphabet of P is countably infinite, then negs(P) is potentially un-
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where11 ¬S <P a if and only if a ∈ S , can perform ¬S when P is in a stable
state that cannot perform any member of S . This follows the approach
taken with events of the form a1 and a2 in the definition of �N . Just as
in that case we can check a negative premise on P by getting Negate0(P)
to perform an event as part of a combinator synchronisation whenever that
is appropriate. Thus the first component of a combinator now becomes
a tuple with components that are either a positive event a, a ¬S or the
absence “·” of that process’s involvement, and the renamings Ri on the
component processes of the simulation are extended so the ¬S is renamed
to each combinator c that has this as a component at the given process’s
place.

Note that the effects of priority are local to each argument process: in
particular, one process can be in a position to perform a ¬S even though
another one is not stable. This is important to preserve the proper simula-
tion of patience rules. The author attempted to find a solution in which a
single priority operator was applied at the top level in the simulation, but
this failed to work precisely because it sometimes prevented τ actions that
were required.

This deals with the situation where no argument has positive and neg-
ative premises in the same combinator. But such situations do arise, for
example the semantics of the priority operator itself need this: Pri≤(P) can
only perform non-maximal a if P itself can, but can not perform any higher
priority event.

To handle this we introduce yet further events: (a,¬S ) (with a 6∈ S )
means that the process can perform a while in a stable state where no
member of S can happen.

Whereas we needed the extra RUN process for the simple ¬S events, we
do not need it for (a,¬S ), since the correct way to handle this is to make it
a renamed copy of a. We therefore extend our previous manipulation of P
to

Negate(P) = Pri≤P (P [[NegR]] ||| RUNNeg(P))

countable! While CSP makes sense over an uncountable alphabet, this is a little em-
barrassing, though restricting to the set of negative premises that are actually used in
the usually countably many combinators for a countable alphabet will then avoid such a
blow-up.

11In describing this and later partial orders on events, the order being defined will have
no more pairs than are implied by transitivity and our postulates about the behaviour of τ
and X in priority orders. So in particular the one described here has exactly the orderings
mentioned, under the assumption that the S of ¬S implicitly contains τ and X.
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where NegR maps each event a in P ’s alphabet to both itself and the (a,¬S )
we introduced above, and ≤P is extended so that (a,¬S ) is given the same
priority as ¬S . Thus (a,¬S ) can happen just in those stable states where
a can be performed by P but no member of S can be.

The extension of the simulation is obvious: the renaming Ri is extended
so that each event of the form (a,¬S ) is mapped to every combinator c
which has this particular pair of premises for its ith argument.

This clearly maintains our isomorphism.
We have had to do quite a lot to the original simulation to allow for

negative premises, not least introduce a lot of extra events. However in any
given case simplification is likely to be possible: there is no need for the
complications of Negate on an argument if there are no negative premises
on it, and even then we might get away with Negate0 if no events of the
form (a,¬S ) are required. And in general we only need to include ¬S for
sets of negative premises that n-combinators actually use.

4.3 Turning processes off

In the rest of this construction there is little difference in how we treat
combinators and n-combinators, so from here on we will include both sorts
under the term “combinator”.

This and the following sections of this construction follow similar meth-
ods to those used in [27, 26], with a few modifications arising from the
negative premise events and use of combinators directly as events.

With a non-homogeneous combinator, some of the arguments that were
previously active may no longer be needed in the result state. Since our sim-
ulation had a parallel component for each such argument before the action,
it will still have it afterwords, as CSP does not provide a way of reducing
the number of components in a parallel composition while some components
are still active. Therefore we need to ensure that such components can be
turned into zombies that do not affect the operational semantics thereafter.
As we said earlier, we need to ensure that the actions we cannot stop the ac-
tual argument process from performing (τ and X) do not interfere with the
operational semantics once the argument is supposed to have disappeared.
So if it is still around we have to make sure it does perform them. What we
therefore do is put a harness Switch(·) around the argument which allows it
to disappear in favour of something that really behaves like a zombie (which
at present means STOP , though it will get more complex later). The event
that triggers this will be one of the combinators firing. There are separate
cases we have to consider for this: either the process which is being shut
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down contributes a premise to the combinator or it does not. If it does
then the argument (as modified by our previous mechanisms) must commu-
nicate the event that closes it down, and otherwise it does not. Let C 1 be
the set of combinators of the first sort (i.e., closing this argument with it
communicating) and C 2 those of the second sort.

The argument process including its harness will have to communicate
both of these sorts of combinators, but the process itself only the first. In
the first case we shut the process down using the throw operator of CSP:
if Z is our zombie process then P ΘC1 Z allows P to behave normally until
it communicates a member of C 1 and then becomes Z . In the case of C 2
combinators, P does not contribute to its own disappearance. For C 2 events
we have the choice of using 4 (interrupt) instead of ΘA, and indeed this
was done in [27, 26]. However, since 4 can be expressed in terms of ΘA and
other CSP operators [23], it should not be surprising that we can do our
whole job with the throw operator. We can define

Switch(C 1,C 2,P) = (P ||| RUNC2) ΘC1∪C2 Z

It makes no sense to include this feature in our simulation at this stage,
since we have not yet introduced the rest of the mechanisms required to
handle non-homogeneous combinators. Rather it provides an important
part of these mechanisms.

4.4 Non-homogeneous combinators

We will now deal with the case where we are allowed non-homogeneous
combinators: ones where the format of the running process can be changed
by actions. However we will not yet contemplate situations in which new
argument processes (either constants introduced by operators or previously
inactive arguments) are set running. Thus the set of argument processes
involved will, in the case we are considering now, always be a subset of
those active at the start.

Thanks to restrictions placed above we know that the successor syntax T
is always either a constant process, a simple argument or a simple operator
application satisfying the immediately distributive condition from before.

Any one of these can lead to the switching off of a number of the argu-
ments of the original operator F as detailed above.

The great thing about an operator with only homogeneous combinators
is that its arguments are always in the same relationship with each other, and
the same set of combinators always apply. However as soon as the structure
of the simulation can change, this is no longer true. In this latter case we
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need to program each argument (via harnesses and renamings of events) to
handle all of the operator contexts it might find itself in. Thus, for example,
each event needs to be renamed to all the combinators it participates in in
every such context.

However while the arguments have one operator applied, we cannot allow
the combinators of other operators to fire. Therefore we need to add a
regulator process to our simulation which always knows the current format:

• What operator is being applied...

• to which of the arguments of the original operator.

• It only permits combinators appropriate to this to fire...

• and has its own state changed by the firing of a non-homogeneous
combinator.

This will replace the RUNC component of the simulation to date.
The operation of the regulator can take one of three forms

• After all arguments have been switched off, it might be acting as some
constant process.

• After all but one arguments have been switched off, it might be per-
mitting that process to act as itself (i.e., when the result of a previous
combinator has been that this single argument is now how the com-
plete system acts). The combinator ((a, ·), a,1) of � is an example.

• It might be allowing the combinators of some operator F , with a map-
ping from the active arguments of that operator to the running argu-
ment processes, with all the others turned off.

In fact the first and second cases can be included in the third, since

• We can safely include all the constant processes that the various combi-
nators might introduce amongst an extended set of inactive arguments.
So instead of starting up a constant process (either as the result state
of a combinator, or as an argument to the successor combinator), the
same constant process can be extracted from the inactive arguments,
once we have built mechanisms for doing this.

• It is easy to devise combinators to implement the identity operator on
the j th argument: ((· · · , a, · · ·), a) for each a (including X), with the
non-“·” premise in the j th place. The accuracy of this representation
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depends on the rest of the arguments having been turned off, because
of patience rules.

We will therefore just deal with the third case above.
In this F is an operator with a (n-)combinator operational semantics

and we define

Reg(F , ξ) = �
c∈HC (F )

ξ(c)→ Reg(F , ξ)

��
c∈NHC (F )

ξ(c)→ Reg(S (c), ξ.ζ(c))

where HC (F ) and NHC (F ) are respectively the homogeneous and non-
homogeneous combinators of the operator F , S (c) is the successor syntax
of c, and ζ(c) is the mapping which says, for each active argument of S (c),
which active argument of c it takes over. If c has k arguments and there
are n arguments in the initial configuration, ξ is the current (necessarily
injective) mapping from the k indices of c to {1, . . . ,n} that says where the
arguments of c are amongst the n. ξ(c) lifts one of c’s combinators to one
on the n argument components of the simulation by mapping the positions
of the argument processes. (Thus one of the arguments not in the image of
ξ will always have the null premise “·”.) ξ.ζ means functional composition.
Note that you can calculate from ξ and from the expanded combinator ξ(c)
which argument processes are no longer in scope and must be zombies.

Note that since the recursion defining Reg(F , ξ) here is transparently
guarded, the operational semantics will not insert any extra τ actions from
unfolding into this: its only actions are combinators and those directly at-
tributable to any constant process.

Thus, with n active arguments initially, the combinator events performed
by the simulation are always based on n arguments, even though the current
active operator might have less than n. It is up to us to maintain the
invariant that the component processes of the simulation corresponding to
arguments no longer in the image of ξ have been switched off as described
in the previous section.

The a, ¬S and (a,¬S ) events of each (Negated where necessary12) argu-
ment process now need to be renamed to all the combinators ξ(c) in which
the given argument might participate for all the operators and ξ reachable
from the initial configuration.

12Where this is necessary if it is in any of the operator contexts that the argument can
reach.
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The overall simulation now looks like

((‖n
i=1

(Ai ,Switch(C 1i ,C 2i ,Negate(Pi)[[Ri ]])))

∪A‖C Reg(F , id))[[CR]] \ {Tau}

where

• Ai remains the set of combinators involving the ith argument, includ-
ing C 2i , now expanded to be n-ary as is done by ξ above.

• C 1i are the combinators that discard/turn off the ith argument in
which it participates in the premises.

• C 2i are the combinators that discard/turn off the ith argument in
which it does not otherwise participate.

• Ri maps each event of Negate(Pi) to the appropriate combinator(s) in
Ai .

• F is the initial operator of the term.

• C are all combinators of all operators involved, expanded to be n-ary
by every ξ that might arise. We assume that the combinators from
different operators are disjoint, and disjoint from all other events used
here.

• id is the identity function on {1, . . . ,n}, where F has n (active) argu-
ments.

Though by now it is quite complicated, the justifications of the previous
steps should make it clear that we still have isomorphic transition systems.

4.5 Making use of inactive arguments

An inactive argument can never have any effect on the transitions of a com-
binator operational semantics unless it becomes active, necessarily through
some non-homogeneous rule activating it. Our definition also allows combi-
nators to activate constant processes, but for brevity we will simply assume
that all such constant processes are included in Q, by expanding this and I
if necessary. In order to handle activation in our simulation we need:

• A way of managing the arrangement of inactive arguments as the sim-
ulation evolves.
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• A way of using the combinator that activates an argument to create a
copy of the latter that thereafter runs as one of the active arguments.
In general an active argument can have several copies started at the
same time, and yet remain an inactive one as well.

The effect of starting up inactive arguments can be to increase the num-
ber of active arguments in a simulation. We have two choices of how to
manage this.

• The first is to add new processes onto the end of the row of argument
processes each time a new process is started up. In this way the
width of the simulation increases each time this happens, and there
is no bound to its width. This is achieved by having a single process
that can be instructed to construct, dynamically, finite collections of
processes to run in parallel with it and the rest of the simulation. This
was the approach taken in [27, 26].

• The second is enabled by the limitation we have placed in this paper,
because of the effects of negation, on the syntax of the third compo-
nent of combinators. The most complex thing we allow there is a single
operator applied to a selection of argument processes. If we assume
that the number of active arguments of all operators that are reachable
within the operational semantics of the initial ones is bounded, then we
know that even though the number of distinct active arguments that
have ever existed in the the simulation is unbounded, there is a bound
on the number active at any one time. In this case we can opt to have
a fixed number of processes in our simulation, which have the ability to
come back from the dead after becoming zombies. Specifically, combi-
nators that activate arguments will command some zombie to reboot
itself as any process that might start during the simulation, namely
any initially inactive argument (including any constant process that
an operator can introduce). In order to avoid the scenario of having
to stop an argument and start it again as something else in the same
action, we will assume there are enough processes to accommodate the
stoppings and startings of each combinator being disjoint.

This ability needs to be programmed into the definition of a zombie
from the start, which means this definition now depends on the oper-
ators and inactive arguments.

The advantage of this approach is that there is much more chance of
keeping the alphabet as well as the simulation finite.
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Neither of these approaches is simple to program in CSP. For details of the
first, which would work equally well in our context, see the earlier works.
For the second, we need to index the zombie process so that it becomes a
suspended process at index position i , and note that if the initial number of
active arguments (i.e., those of the initial operator) is less than the number
of active arguments we might need later, then we will need to supplement
the initial active arguments with some number of zombies so that we have
enough.

If Zi is the process at index position i it must now synchronise on all
combinators that have the effect of “reincarnating” it. So for each expanded
combinator (analogous to ξ(c) but now taking account of changes in the
mapping of inactive arguments as well) that has this effect on some argument
we need to calculate which zombies have to come to life as what. We assume
the existence of

• Revive(i), the set of expanded combinators that tell a zombie to reac-
tivate.

• For each c ∈ Revive(i), the index Reborn(i , c) to the original inactive
arguments, which is how the component is reborn.

To achieve this despite changes to the operator we will have the regulator
process modify the ways in which combinators point at inactive arguments.
Specifically, a combinator points at these through indexes in the final (T )
component of a non-homogeneous combinator. As constructed for a given
operator, the indexes are formed relative to those of that operator. But the
zombies were created from processes set up relative to the indexes of the
initial operator. Therefore – just as happens for the active arguments – the
regulator will modify the indexes in such T to point at the indexes in the
original I that correspond to the desired arguments for the operator that is
now active. So the regulator must keep a mapping ψ from the indexing set
IG of the presently active operator G to the original one I . This must be a
total but, in this instance, not necessarily injective function.

Reborn(i , c) can be calculated from the expanded combinator since the
said combinator will generate a finite list of I -indexes it needs to start, and
a zombie at i will start as the j th member of this list – modified to take
account of its place in the simulation – if it is currently the j th zombie
(which it can tell from the combinator).

So the definition of the zombie process is considerably enriched from
STOP to

Zi =�{c → Switch(C 1i ,C 2i ,Negate(QReborn(i ,c))[[Ri ]]) | c ∈ Revive(i)}
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Note that like STOP this has the crucial property that when in state Z it
cannot perform a τ or X, so that it does not introduce any events into our
simulation independently when it is in the zombie state.

The regulator process needs to be updated to take part in the revival
of zombies. In particular the mapping ξ from the active arguments of the
present operator to the indexes of the corresponding argument processes
needs, after an action that activates one or more processes, to be augmented
with the appropriate indices mapped to the reborn zombies. Clearly the
regulator can calculate what this mapping is. The regulator also has to
update the inactive argument mapping ψ.

Reg(F , ξ, ψ) = �
c∈HC (F )

ξ(c)→ Reg(F , ξ, ψ)

��
c∈NHC (F )

map(ξ, ψ, c)→
Reg(S (c), (ξ.ζ1(c)) ∪ (ρ(ξ, ψ, c).ψ.ζ2(c), ψ.θ(c)))

where

• map(ξ, ψ, c) corresponds to the ξ(c) we used previously: it uses ξ to
map the active arguments of the present operator F to the places
they occupy amongst the operators, and uses ψ to map the inactive
argument indices of F to the original index set I . (Note that homo-
geneous combinators do not have such indices, so we can still use ξ(c)
for HC (F ).)

• ζ1(c) is that part of the assignment of c’s successor term T ’s active
argument list which is to the active arguments of F .

• ζ2(c) is the part that maps to the inactive arguments of F , and are thus
the subject of re-births amongst the zombies. Note that the inactive
arguments of F still need to be mapped to the original Q via ψ.

• ρ(ξ, ψ, c) is the mapping from the image of ψ.ζ2 to the indices of the
restarted zombies that will act as them:

ρ(ξ, ψ, c)(Reborn(map(ξ, ψ, c), i)) = i

whenever map(ξ, ψ, c) ∈ Revives(i)

• θ(c) is the function from the inactive arguments of the new operator
invocation to those of the previous one. In a combinator of the form
(p, a,GQ′(...)), θ(c) would be derived from the relationship between
the indexing in Q′ and that in F ’s list of inactive arguments.
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As an example, consider the following CSP construction which, for sim-
plicity, we define over only an infinite list PS of processes:

ListThrow(A,PS ) = head(PS ) ΘA ListThrow(A, tail(PS ))

This has the effect of making each communication of any a ∈ A by any
of 〈P1,P2, . . .〉 pass control to the next. We can give this a combinator
operational semantics, where there is a single active argument and a list of
inactive ones. The combinators for LTPS

A (P) (with P now being the head
of the list, and PS being the tail), are

• (b, b) for b 6∈ A

• (a, a,LT
tail(PS)
A (head(PS))) for a ∈ A

To follow our syntax for third components exactly, we need to treat tail(PS)
as an indexed structure of pointers into the structure represented by PS. If
the indexing set of an infinite list is {1, 2, . . .}, then θ(c)(i) = i + 1 for all
the non-homogeneous combinators c and all i , and after k non-homogeneous
combinators we will have ψ(i) = i +k . The simulation needs two slots {1, 2}
where an active process can be running so that we do not have to stop and
start the same one each time an A action happens. Each non-homogeneous
combinator closes one of these to become a zombie, while re-starting each
as the next member of PS that is due to run. So for each such combinator
ζ1(c) is empty, while ζ2(c) maps whichever of 1 and 2 is presently a zombie
to 1 (as the pointer to the head of the present inactive argument list), which
ψ then maps to the head of the current list of arguments where it sits in the
original list, namely the k + 1th where there have been k elements of A so
far in the trace.

4.6 Termination

So far, remarkably, we have managed to keep our simulation so exact that
the operational semantics of the simulation is isomorphic to that of the
target. As we said earlier, and implied in the formulation of Theorems 1
and 2, we have to be a little less exact when the X action is involved. This
is because of its nature as a signal and the limitations this places on how
the simulation can manipulate it – the reader will have noticed that events
in Σ have been manipulated ruthlessly so far in our simulation.

The trick to handling termination within our simulation is to replace each
argument process that might terminate by P ; (tick → STOP) where tick is
a new member of Σ distinct from X. This new event can be renamed, hidden
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and synchronised like any other member of Σ. Wherever a combinator c
demands that an argument process communicates X from argument i , we
will rename the tick of the said argument to c rather than attempting to
illegally renameX to it. Notice that this combinator will have to synchronise
with the regulator process, and possibly others if it turns off more than just
the process that is performing the X/tick . The behaviour of the resulting
simulation is the same as if the argument P had been replaced by P ; SKIP ,
because in each the actual X of P becomes a τ , and the way the simulation
treats the tick from this process is the same as when P ; SKIP performs X
in the combinator semantics.

There is one more subtlety here, which is that when X is the result
event of a combinator then CSP does not allow us to use CR to rename that
combinator to X. Therefore we rename such combinators to tick and place
the entire simulation in the context (Simulation Θtick SKIP) \ {tick}. This
accounts for the additional ; SKIP after the simulation in the theorems.

The use of the event tick has another advantage: at various points in
this construction we have added components such as RUN in parallel or
interleaved with the real arguments. If we were trying to make use of ter-
mination per se to make the simulation terminate then we would have to
make all these terminate too: this is messy and would also introduce extra
τs. The use of Θ{tick} avoids this difficulty.

This concludes our construction and therefore our proof of Theorem 2.

5 Generalising and composing

5.1 Composability or not

One of the beautiful features of combinator operational semantics (without
negative premises) is the way one can compose the combinators of a tree
of operators representing an immediately distributive term in each active
argument separately, to obtain a combinator semantics for the whole term,
corresponding to the FDR concept of supercombinator. This underpins
the whole implementation of FDR, and indeed a later version of FDR3
will exploit this composability to provide direct support for user-defined
combinator semantics.

The following example is taken from [26]. The compound operator ((P ‖
X

Q) ‖
Y

R) \ (X ∪ Y ) combines three processes together, so the combinators

that represent it have three process arguments 1, 2 and 3. All of these are
active because neither the hiding nor the parallel operator have any inactive
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arguments. For simplicity we are considering only the homogeneous case
and will assume that the arguments never terminate.

It is not hard to see how we can feed the result event of the combinators
for 1 ‖

X
2 into the first input of · · · ‖

Y
3, yielding the following “supercombi-

nators” for (P ‖
X

Q) ‖
Y

R, essentially by substituting13 them for occurrences

of their result events in the higher-level operator’s premises:

• ((·, ·, a), a)[a 6∈ Y ] derived solely from ((·, a), a)[a 6∈ Y ]

• ((a, ·, ·), a)[a 6∈ X ∪ Y ] derived by composing ((a, ·), a)[a 6∈ X ] and
((a, ·), a)[a 6∈ Y ]

• ((·, a, ·), a)[a 6∈ X ∪Y ] from ((·, a), a)[a 6∈ X ] and ((a, ·), a)[a 6∈ Y ]

• ((a, a, ·), a)[a ∈ X \Y ] from ((a, a), a)[a ∈ X ] and ((a, ·), a)[a 6∈ Y ]

• ((a, ·, a), a)[a ∈ Y \X ] from ((a, ·), a)[a 6∈ X ] and ((a, a), a)[a ∈ Y ]

• ((·, a, a), a)[a ∈ Y \X ] from ((·, a), a)[a 6∈ X ] and ((a, a), a)[a ∈ Y ]

• ((a, a, a), a)[a ∈ Y ∩X ] from ((a, a), a)[a ∈ X ] and ((a, a), a)[a ∈ Y ].

In other words – exactly as we would expect – there is one rule for each way
in which events of the three arguments might synchronise doubly or triply
or happen independently.

The effect of the hiding operator is to take those combinators where the
action a is in X ∪Y and turn it into τ .

This composability of combinators underlies the liberal syntax we adopted
for the final components T of combinators, as opposed to n-combinators.
For we can treat any such term as an operator with naturally constructed
combinator operational semantics in its own right.

If the same were true of n-combinators, then there would be every
chance of extending FDR straightforwardly and efficiently to encompass
n-combinator definable operators. Regrettably this is not true. As a simple
example consider the operator

Pri≤1(Pri≤2(RUN{b,c} ||| P))

in which c <1 b and b <2 a. On a stable state of P , this process can perform
c whenever P can perform a from a stable state, but the combinator (a, c) is

13The exception to this is where the result action of the lower-level combinator is τ .
However if we were actually to instantiate a patience rule as ((· · · , τ, · · ·), τ) and substitute
into that, we would get the correct result.
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not an accurate representation of this behaviour, since in the operator above
the c occurs without P progressing, whereas in the combinator semantics P
would do the a and move to its next state.

It is interesting to note that applying a single priority operator with the
order c < b < a to RUN{b,c} ||| P would not achieve this effect: in fact
c would never be possible as the process inside the priority operator can
always perform b.

This impossibility of composing n-combinators and getting another one
as we could with combinators accounts for the more restricted form of T
we use in this paper, because in the CSP-like case we could depend on a
complex term T having its own (super)combinators, meaning that we can
think of it as a CSP-like operator in its own right.

5.2 Probing

The example above strongly suggests that we could liberalise the condition
on n-combinators that an argument process must progress if the premise
is that it can perform some positive action, via something akin to double
negation. This is a form of probing a process as discussed in [2], which in
general allows an operator to inspect the complete acceptance/ready set of
its argument(s) before deciding what to do next. The idea would be to
replace each argument with a version in which first each alphabet member
was renamed to two copies of itself, with one copy being used to make
progress and the other to probe availability without moving the process
forward. By elaborating on the construction above we could create a context
for P in which we had events

• a, representing the actual occurrence of the event.

• probe.a, representing the availability of a but not executing it.

• ¬S for each set of events S

This can be achieved by the construct

(Pri≤1(RUN{probe.a|a∈αP} ||| Pri≤2(RUN{a ′|a∈αP}∪{¬S |S∈negs(P)} ||| P)))
‖

{a ′|a∈αP}
STOP

where ≤1 makes probe.a less than a ′ and ≤2 makes a ′ less than a and ¬S < a
if a ∈ S .
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This can in fact be extended to probing for the availability of a set of
actions: let probe.B , for B ⊆ Σ0, mean establishing that all of B is available
from this state. Then we can adapt the above to achieve this effect via

(Pri≤1(RUN{probe.B |B⊆αP} ||| Pri≤2(RUN{a ′|a∈αP}∪{¬S |S∈negs(P)} ||| P)))
‖

{a ′|a∈αP}
STOP

where now probe.B ≤1 a ′ just when a ∈ B .
Furthermore we can actually perform a positive and negative probe si-

multaneously if we extend probe to have both a positive set B and a negative
one ¬S :

(Pri≤1(Pri≤2RUN{a ′|a∈αP}∪{¬S |S∈negs(P)} ||| P)

[[probe.B .¬S/¬S | S ∈ negs(P),B ⊆ αP ]]))
‖

{a ′|a∈αP}
STOP

where again probe.B .¬S ≤1 a ′ just when a ∈ B .
Note that

• Both positive and negative probing of P require that P is in a stable
state.

• Plainly ¬S can happen in the previous version if and only if probe.∅.¬S
can happen in this one, since the latter event is maximal under ≤1.

• probe.B .¬S can thus happen whenever no member of S can occur in
P and no a ′ for a ∈ B can occur. The latter means that every a ∈ B
can occur in the same state of P and the same one where the ¬S is
true.

We could even add a single ordinary positive premise into this mix,
namely an event that P performs as part of the rule by adding the usual
events (a,¬S ) as additional renamed copies of the a from P , giving it the
usual priority below members of S in the inner priority operator. Outside
that priority that event is renamed to ProbedAction.a.B .¬S for every B
alongside ¬S being renamed to probe.B .¬S and putting the ProbedAction.a.B .¬S
below a ′ for a ∈ B in the outer priority operator.

Given these observations, it would have been reasonable to have extended
the definition of Pri-CSP-like operational semantics to allow a positive prob-
ing premise (meaning that a set of actions must all be available and the state
is stable) on each active argument in addition to those we have used already.
The reason we did not do so were:
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• The additional levels of complexity it adds to the simulation.

• The fact that, since Pri≤(·) is itself expressible in the Pri-CSP-like se-
mantics we have defined, so are all the above constructions in multiple
stages.

• It seems unlikely that pn-combinators as defined below will have good
composability properties. We will discuss this below.

However we may define

Definition 3 A pn-combinator is a combinator in which each active argu-
ment may have any or all of a normal positive premise, a negative premise,
and a probing premise of a set of events. (So the p of pn here stands for
probe.)

Definition 4 An operator has Generalised Pri-CSP-like operational seman-
tics if it can be defined in pn-combinators.

It is clear how we could have generalised our earlier construction to
incorporate the above, so we have the following theorem.

Theorem 3 Suppose the operator FQ(P) has generalised Pri-CSP-like op-
erational semantics, together with all other operators reachable (transitively)
through the T third components of its combinators. Then for any arguments
P and Q, FQ(P) is expressible in Pri-CSP in the sense that the simulation
is strongly bisimilar to FQ′(P′); SKIP where P′ and Q′ are defined as pre-
viously by replacing each component P by P ; SKIP.

The problem with composability for pn-combinators is that the only
piece of information a single such combinator can deliver us about a process
is a single action that an operator can perform when applied to some argu-
ments. In order to compose pn-combinators in a direct way the combinator
would have to tell us the current acceptance/ready set of the composition in
any stable state. While we could presumably add this information into the
combinators, they would look much less like an operational semantics and
more like ready-trace/FL semantics.

6 Comparisons

Many of the concepts discussed in this paper – though not relating to neg-
ative premises, probing or priority – are rooted in the author’s own 1982
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doctoral thesis [20], where a section was devoted to an early derivation of
some of the “CSP-like” qualities of CSP’s operational semantics.

As stated earlier, the closest comparison with our work on CSP-like
operational semantics that we are aware of is with van Glabbeek’s [11]14

concept of simply WB-cool operational semantics. This is more liberal than
CSP-like because it permits cloning and because it allows arbitrary probing
of active arguments in the sense described above: you are allowed multiple
premises of the form P

a−→ P ′a for different as, and we can choose to use
either the results P ′a or the original P in the result term. (Note that more
than one can be used because of cloning). Van Glabbeek also allows active
arguments to become inactive under limited circumstances. The restrictions
there are all expressed in the language of SOS. Van Glabbeek shows that
such semantics ensure congruence under weak bisimulation.

[11] also introduces some variants on WB-cool which have congruence
properties for different forms of bisimulation.

Both CSP-like and Pri-CSP-like operational semantics (like strictly WB
cool and similar classes) come firmly within the GSOS class of operational
semantics defined in [3]. This is well studied, and implies, for example,
that [4] the use of negative premises causes no problems with the well-
definedness of operational semantics.

The paper [2] provides a very detailed survey of restrictions on SOS
semantics which are intended to preserve various forms of congruence. In
particular it identifies full probing – namely the ability to test the complete
acceptance/ready set as a condition for actions – with the natural notion
of operational semantics which coincides with the FL style of model, there
termed ready-trace. It is clear that our notion of Generalised Pri-CSP-like
semantics and the proof that all such operators are implementable in Pri-
CSP is just another angle on this correspondence.

The author believes, however, that the style presented via combinators,
n-combinators and pn-combinators in this paper of giving a much reduced
format of simplified transition rules that are guaranteed to be legitimate
has much to offer in terms of clarity relative to placing highly technical
restrictions on SOS rules.

It is also true to say, of course, that the concise elegance of ordinary
combinators is partly lost in their more elaborate counterparts.

In any case the core objective of the present paper is not to capture
what style of operational semantics has a given congruence or congruences,
but rather to capture a broad range of operational definitions that can be

14Van Glabbeek’s work was itself closely related to work by Bloom and others [1].
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simulated with a high degree of precision in CSP or Pri-CSP. The congruence
results we do get are a corollary to this latter objective.

7 Conclusions

One of the most interesting features of this work is the great expressive power
of Pri≤(·) in conjunction with ordinary CSP. The wide range of effects we
have obtained from it in the present paper demonstrate this, as well as our
main result and its later extension in Theorem 3.

Whereas the result about CSP-like semantics from [27, 26] had consider-
able practical consequences for the construction of FDR, this seems unlikely
to be true for that about Pri-CSP-like semantics, primarily because of the
non-composability of n-combinators. However we should have given those
coding in Pri-CSP a good idea of how to achieve some of the less obvious
consequences of Theorem 2, including the implementability of �N and the
ideas behind Negate(·). We also know a large class of extra operators that,
if implemented independently of supercombinators, would make sense in
checks over the FL class of models if these are added to the tool.

An interesting property of Pri≤(P), which our constructions make con-
siderable use of, is a consequence of it mapping regular LTSs to regular
LTSs. That is, that when P can perform a and b, and a < b, then processes
like Pri≤(P) ‖

{b}
STOP deadlock even though some might expect that P

being blocked from performing b would re-enable it to perform a. There is
no way in which an ordinary LTS representation of Pri≤(P) could reflect
this nuance.

Carrying on this discussion, let us imagine a model of stable state in
which if we try an event we can either see it happen or see it refused. (This is
a model that intuitively appeals to the author.) The operational semantics
of Pri≤(P) appear quite reasonable in this regard: whenever an event is
blocked, there is one of higher priority that can happen. We can imagine an
implementation trying events one after another from highest priority down
until one occurs. This seems completely in line with our imagined model.
However it is clear that the discussion in the previous paragraphs invalidates
this thinking. An event of higher property that is tried and succeeds, but
is externally blocked, would lead the implementation into an inconsistent
state (at least if we exclude cloning). It means that to have our priority
operator in the context of CSP, we must accept a model in which we can
check whether a stable state can perform an event in Σ without giving it the
chance to happen. That helps to explain why we have managed to express
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probing for the possibility of an event using the priority operator.
The results of this paper also emphasise the huge expressive power of

CSP itself, given what we have been able to achieve by the addition of a
single operator.

It is reasonable to ask how crucial the choice of priority is for this extra
operator. Clearly such an operator cannot be CSP-like, and must have
the property that Pri≤(·) is expressible using it and the rest of CSP. Not
all operators requiring negative premises would do: consider angelic choice
�N as defined earlier. It seems intuitively obvious that priority cannot be
defined in terms of �N and the rest of CSP, and to prove this we observe that
there are a number of models where �N has a compositional semantics but
Pri≤(·) does not, for example15 the failures-divergences model N . If Pri≤(·)
were so definable, it too would have such a compositional semantics, but it
does not. Of course the same argument applies to any other operator for
which some CSP model is a congruence, that does not work similarly for
the general case of Pri≤(·). So in particular the restricted cases of priority
that are compositional over refusal testing models are also insufficient.

The author has constructed several files to illustrate the ideas set out
in this paper, including the implementation of angelic choice using prior-
ity set out in Section 3 and the possibility of probing and detecting exact
ready/acceptance sets. These are available to download (for running on
FDR3) from the author’s web site16.
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