
Programming Research Group

OBJECT MODELS:
JOB SUBMISSION IN DATAGRIDS

Lee Momtahan and Andrew Martin

PRG-RR-04-26

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD



Abstract

DataGrids seek to pool geographically disperse storage and computational re-
sources to solve large-scale data-intensive problems. The EU-DataGrid is a large
research project attempting to build one of the first such DataGrids. Effective job
submission and scheduling in DataGrids is a a significant challenge. We present an
account of the EU-DataGrid scheduling architecture, some typical usage scenarios,
and a discussion of some of the issues that arose when this architecture was used in
practice. Some of these issues are generic, and likely to be of interest to future at-
tempts to build a DataGrid, but also of a pragmatic nature, illuminated by experience
as well as theory.

1 Introduction

The EU-DataGrid (EDG) is one of the largest attempts yet to build a DataGrid [Seg00]
with 200 researchers involved from over 20 institutes across Europe for a period three
years. The project is designed to provide the computational infrastructure required for the
next generation of science in the areas of high energy physics, bio-informatics and earth
observation. Grids are characterized by large-scale heterogeneous storage and compute
(cluster and supercomputing) resources, massive geographical distribution, and poten-
tially large user communities organised into overlapping dynamic virtual organisations.

The scheduling of user compute jobs upon these various resources — with suitable
access to storage, data sets and so on — is a significant challenge: the design of the
scheduling system is central to the realization of the distributed resource as a virtual
massive computing device. Conversely, a poor job submission scheme has the potential
to render the rest of the architecture worthless.

In this paper, we explore the dimensions of the problem. We briefly consider what
makes scheduling in a DataGrid context a different problem from the relatively well-
understood problem of scheduling in supercomputing and cluster computing. In Section 3
we explain the architecture adopted by the EDG, and in the following section present the
principal usage scenarios supported by the software, illustrated by sequence diagrams.
Section 5 broadens the discussion to consider in detail the more generic issues which have
been encountered (whether or not supported by EDG) in consideration of those use cases.
The paper ends with some conclusions on how those complexities may be incorporated
into an EDG-like Grid.

In reflecting upon the modes of use for the EDG we have found it instructive to use
UML models to describe the static and interacting structure of the distributed compo-
nents. Our purpose in writing is to report upon the design of the EDG documented
in that way, and to provide a concise starting point for anyone wishing to understand,
deploy, or adapt the EDG architecture.

2 Job submission and scheduling in DataGrids

Job scheduling in distributed computing is a well-studied topic and has been thoroughly
described [CK88]. Scheduling in Grids presents new challenges since the scheduler does

1



not have full control and ownership over the resources in a Grid. Moreover, there may not
be a single scheduler (this becoming a distributed function of the collective layer), and
the schedulers may have to rely on partial or out-of-date information. In DataGrids even
more challenges arise since inter-dependent compute and data tasks must be scheduled. It
is often the case that requirements for data files can only be known during the execution
of a job.

Berman notes that Grids violate the assumptions in traditional massively parallel
processor schedulers with resource pools which are heterogeneous, dynamic, shared and
under multiple administrative domains. Furthermore, Grid schedulers have to cooperate
with other Grid level and lower level schedulers and schedule different resources simulta-
neously [Ber99].

Schopf [Sch01] defines super-scheduling as scheduling across multiple administrative
domains, and usefully outlines the steps executed by the EDG’s resource broker However
the interaction of competing super-schedulers and the optimal co-allocation of compute
and storage resources is not considered. The Global Grid Forum’s Grid Resource Al-
location Agreement Protocol Working Group is defining the standards and protocols to
support negotiations between a Super-Scheduler and local scheduling systems.

In [TK04] Kosar and Livny propose Stork, a scheduler for data transfers in the Grid.
Stork interacts with DAGMan, a higher level planner, allowing the user to define depen-
dencies between data transfers and computational tasks in their application. This allows
the automatic staging in and out of data. Although a massive improvement over manual
data transfer, Stork works independently from other schedulers (except for the necessary
temporal coupling imposed by DAGMan); data locality is not taken into account during
job placement. Kosar and Livny leave co-scheduling of computational and data resources
as a topic of future research.

Some of the issues relating to replica selection are addressed by Vazhkudai et al
[VTF01]. They describe a selection algorithm for applications to use at run time, ranking
individual replicas. Ranganathan and Foster [RF02] provide a simulation (in the context
of the GriPhyN project) of various replication strategies. Later [RF03], they use further
simulations to show that job scheduling must take into account data placement and
conclude that good performance can be achieved by scheduling jobs where data is located,
with a separate process periodically creating replicas at sites where they are most in
demand.

3 The Architecture of the EDG

Here we describe features of the EDG which are relevant to our present discussion. The
term ‘EDG’ is slightly ambiguous in that properly the term refers to a suite of software
developed using version 2 of the Globus toolkit [FK99, chapter 11], and also Condor
[TTL02], but the main experience of the EDG to date has been its running Testbed
which has been aiming to offer something close to a ‘production Grid’ service through
the latter stages of the project. In future, the EDG team expect to see the software
deployed in a number of distinct situations.

2



The EDG high level design presented here was captured through a process suggested
by one of the authors providing methodology advice to the EDG’s Architecture Task
Force. Tracking the overall design has been difficult for the ATF because software devel-
opment proceeds across a large number of institutions distributed over Europe [MM02].
The ATF contains representatives from each of the main software development teams. In
the design exercise, each representative chooses an abstraction of their software into one
or more components. Application scientist representatives choose a test case or scenario,
and the resultant sequence(s) of interactions between components which would occur in
the execution of the test is discussed by the group. This is very much in the style of
the well-known Class-Responsibilities-Collaborators exercise [BC89]. A more complete
exercise was not possible due to the limited time available for ATF meetings.

For the job submission scenarios we have further abstracted away from concerns not
relevant to the present discussion and presented the pattern of interaction in the spirit
of the UML [FS97] in section 4. Such diagrams helpfully show the various components
taking part in the process, but do not necessarily cover all the exceptional or unexpected
behaviours. The diagrams are supported by prose explanations of each interaction. Firstly
though, we describe the components themselves.

3.1 Components

We introduce some of the terms used to describe elements of the DataGrid. EDG has
common terms which we define here. Other projects may differ in their terminology, but
we expect similar concepts.

Storage Element This is the name given to a storage resource available to the Grid.
The Storage Element supports functionality to store and retrieve files. Also, the
Storage Element can give an estimate of the time taken to retrieve a file. The
Storage Element publishes its status (for example the amount of free space) into
the Information System.

Computing Element This is the name given to a computational resource available to
the Grid. Typically Computing Elements present to the Grid an interface for a Local
Batch System. Jobs can be submitted to the Computing Element and their status
queried. The Computing Element publishes its status (for example the number of
free CPUs, queue length, etc.) into the Information System.

User Interface This component runs on the end-users’ local machines and provides
them with an entry point into the Grid, from which they can submit jobs. It can
also be installed within Computing Elements to allow jobs to be submitted by other
jobs (see 4.4), not just users.

Information System Computing Elements and Storage Elements periodically update
the Information System with their presence and status. The Information System
is queried by Resource Brokers to help make scheduling decisions. Because the
Information System is updated only periodically, and caches and aggregates data
sent to it, the information returned may not be up to date.

3



Resource Broker The Resource Brokers are responsible for finding the best Computing
Element on which to run a particular job. To help the Resource Broker make
this decision a Job Description is provided when submitting a job which contains
information about the resources needed to execute the job and other hints.

Physical File A Physical File refers to some particular instance of a piece of data on
the Grid. Physical Files are stored in a Storage Element. Physical Files may be
replicated — identical copies made, and stored at different locations — hence the
need for Logical Files.

Logical File A Logical File refers to a piece of data on the Grid. Each Logical File
refers to one or more Physical Files, all of which have identical content.

Replica Manager A Replica Manager maintains the mapping from Logical to Physical
File. For every Computing/Storage Element and Physical File it can associate a
cost (i.e. time) to transfer the file to the Computing/Storage Element. Given a
Computing/Storage Element and Logical File it can find the least costly Physical
file for the Computing/Storage to access.

Job Description The Job Description is used to inform the Resource Broker of a job’s
requirements (for example, operating system type, memory required, and so on).
Is also includes a list of the names of the Logical Files needed by the Job. Not
all jobs will be able to use remote access protocols, and because this can affect job
submission there is a flag for this.

Figure 1 is a class diagram showing the static relationships between the entities we
have described above. In this diagram, the association between Logical File and Physical
File, has the ‘Replica Manager’ stereotype to indicate that traversing this link requires a
call to the Replica Manager.

3.2 DataGrid Testbed

The issues we report later in this paper were seen in practice whilst the EDG software
was running on a testbed, a quasi-production Grid of the following approximate scale:

• about ten sites (mostly European but some others) in the collaboration;

• hundreds of CPUs (worker nodes) and terabytes of disk storage;

• several resource brokers;

• scores of users; and

• several Virtual Organisations.

More information on the testbed setup can be found in the Testbed Evaluation [ED03].

4



1 1..*

<<Replica Manager>>

1

0..*

0..*

1

0..*

1

0..* 1

0..*

1

0..*

1

0..*

1

0..*0..*

0..*

0..*

ResourceBroker

replicaManager

informationSystem

getStatus

getJobOutput

putJobOutput

submitJob

ReplicaManager

getBestFile

getAccessCost

getAccessCost1

InformationSystem

query

register

UserInterface

resourceBroker

notify

getJobOutput

submitJob

PhysicalFile

ComputeElement

closeStorageElements

informationSystem

submitJob

reportStatus

StorageElement

informationSystem

retrieve

store

reserveSpace

getAccessCost

LogicalFile

JobDescription

SupportsRemoteIO

InputFilesList

Figure 1: Class Diagram

5



4 Job Submission scenarios in the EDG

We explore here the main job submission scenarios supported by the EDG software. There
are three special cases which illustrate the features of the available systems [ED02]:

• job submission with no data requirements—no input files e.g. Monte Carlo simula-
tion;

• job submission with static file selection—where the input files can be determined
ahead of time; and

• job submission with dynamic file selection—where the file selection must happen at
runtime.

We also describe the fetching of job output data. As explained above, the resource
broker is responsible for receiving user job submissions and selecting compute resources
on which they are to run. When a job completes, the compute element returns to a cache
on the resource broker the output which it generated. The end user must retrieve this
output data from the resource broker, so we also explain how this is achieved.

There is also a process whereby Computing Elements, Storage Elements and Network
Monitors periodically update the Information System with their their presence. This
process is often called ‘soft-state registration’ since after a configurable timeout period, if
the Information System has not received an update from a particular resource it assumes
the resource is no longer available. This process is an ongoing or background process; it
is not triggered by a user action. We have not presented a diagram for this process but
mention it here for completeness.

4.1 Job Submission with no data requirements

The simplest imaginable job is one which does not need any input files. This may appear
to be an over-simplification, but is commonly the case for Monte Carlo simulation jobs
in High Energy Physics for example. Very small amounts of input data — the values of
parameters in a simulation or a random seed — can be expressed in the job description
and easily passed to the job executable. The simplicity of this pattern (and its repetition
in the other interaction cases) makes it worth recording. The output data (or a pointer
to it) is stored on the resource broker; the next case covers its recovery by the user.

1 The User creates a Job Description and issues a submit-job command on their User
Interface.

1.1 The User Interface forwards this request on to the Resource Broker.

1.1.1 The Resource Broker queries the Information System to find the status of all
available Computing Elements.

1.1.1.1 The Information System asks each Computing Element to report its status unless
it already holds of a recent version in cache.

6



cex

ComputeElement

ce1

ComputeElement

User

ui1

UserInterface

is

InformationSystem

rb1

ResourceBroker

1.1.2: filter CEs

1.1.5: notify()

1.1.4: submitJob(JobDescription)

1.1.3: rank CEs

1.1.1: state:=query(all Ces)

1.1.1.1:*[per CE][not cached] reportStatus()

1.1: submitJob(JobDescription)

1: JobID:=submitJob(JobDescription)

1.1.4.2: putJobOutput() 1.1.4.1: executeJob

Figure 2: Simple Job Submission

1.1.2 The Resource Broker obtains a list of candidate Computing Elements by filtering
only those which match the requirements specified in the Job Description.

1.1.3 The Resource Broker ranks the Computing Elements. A default formula is used
for this, but can be overridden in the Job Description.

1.1.4 The Resource Broker sends job to be executed on the top ranked Computing
Element.

1.1.4.1 The Computing Element runs the job.

1.1.4.2 The output of the Job is stored on the Resource Broker.

1.1.5 On completion of the job the Resource Broker notifies the User, via email.

4.2 Fetch Job Output

Job output data is stored at the Resource Broker (it cannot be stored at the Computing
Element which ran the previous job, because these are unknown to the user). Normally
this will be the standard output of the job and a relatively small amount of data. For
jobs which will produce vast amounts of output data, it is recommended that the job
saves the bulk output on a Storage Element, especially if this output will require further
processing on the Grid; the mechanism described here is then used to return a pointer to
the bulk output.

This use case describes how users may fetch the output data produced by a previous
job.

7



User

ui1

UserInterface

rb1

ResourceBroker

1.2: getJobOutput(JobID)

1.1: getStatus(JobID)
1: getJobOutput(JobID)

Figure 3: Fetch Output

1 The User enters a command on their User Interface asking to fetch the job output.
The Job Identity is specified to determine which job.

1.1 The User Interface checks with the Resource Broker that the job has completed and
its output has been received.

1.2 If so, the output is moved to the User Interface.

4.3 Job Submission with Static File Selection

A more complicated scenario is the submission of a job which requires input files. In this
subsection we assume that the input files can be determined at submission time; the next
deals with the case when the files can only be determined at run time.

The task of the Resource Broker is now more complex in that it must collect infor-
mation about available replicas of the logical files in question, and possibly reserve space
at a local storage element for a further copy.

1–1.1.2 The steps are the same as in the case: Job Submission with no data requirements
- subsection 4.1.

1.1.3 The Resource Broker calls the Replica Manager with its list of candidate Comput-
ing Elements and the Logical files needed by the job.

1.1.3.1 Having determined all the physical instances of the Logical Files, the Replica
Manager asks each relevant Storage Element to estimate the cost of retrieving the
files.

1.1.3.2 The Information System is queried to estimate the bandwidth of the relevant
networks so that the file transfer time can be added. Thus the Resource Broker is
returned a matrix of Computing Elements and the costs with each Logical file.

8



User

ui1

UserInterface

rb1

ResourceBroker

is

InformationSystem

ce1

ComputeElement

cex

ComputeElement

rm

ReplicaManager

sex

StorageElement

se1

StorageElement

1.1.6.1.1: retrieve()

1.1.6.1: store()

1.1.3.2: query(relevant network Metrics)

1.1.3.1: getAccessCost()

1.1.7.2: putJobOutput()

1.1.7.1.2:[jobSupportsRemoteIO] retrieve()

1.1.7.1.1: retrieve()

1.1.7.1: executeJob

1.1.1.1:*[per CE][not cached] reportStatus()

1.1.6:*[per Logical File][not jobSupportsRemoteIO] getBestFil...

1.1.5: reserveSpace()

1.1.3: getAccessCost(ComputeElement,LogicalFile,boolean)

1.1.2: filter CEs

1.1.8: notify()

1.1.7: submitJob(JobDescription)

1.1.4: rank CEs

1.1.1: state:=query(all Ces)

1.1: submitJob(JobDescription)

1: JobID:=submitJob(JobDescription)

Figure 4: Job Submission with Static File Selection

9



1.1.4 This matrix, along with the state of each Computing Element is combined to derive
an overall ranking for each Computing Element. The exact formula is tunable and
the default can be overridden.

1.1.5 Since files may need to be copied to a Storage Element local (i.e accessible via
POSIX) to the Computing Element this call checks for necessary space. (When
advance reservation is supported — see 5.3 — the call will reserve the necessary
space.) If the space is not available, the next highest ranking Computing Element
is chosen and this step is repeated.

1.1.6–1.1.6.1.1 The Resource Broker asks the Replica Manager to copy each Logical
File to the local storage element (se1 in the diagram) in the case that the job does
not support remote IO.

1.1.7 Now the Resource Broker can submit the job to the Computing Element

1.1.7.1–1.1.7.1.3 The job runs retrieving any necessary input files.

1.1.7.2 The job’s output is stored on the Resource Broker.

1.1.8 On job completion the Resource Broker notifies the User via email.

The relatively complex interaction pattern, and the long-lived nature of the copying
process, give rise to numerous possible failure modes. See Section 5.7.

4.4 Job Submission with Dynamic File Selection

In this scenario the job needs some input files, but exactly which files cannot be deter-
mined until run-time. For example it may be that the files needed for input can only be
determined after some initial processing. For simplicity we have assumed here that no
Logical Files are specified in the Job Description, but in fact this case can be combined
with the previous one in the obvious way: some Logical Files can be specified at job
submission, and some decided at run time.

1–1.1.4 The job is submitted to the Computing Element using exactly the same steps
as in the case: Job Submission with no data requirements - subsection 4.1.

1.1.4.1 The job is started on the Computing Element.

1.1.4.1.1 The job decides it needs a Logical File and asks the Replica Manager to de-
termine the best replica available.

1.1.4.1.1.1 The Replica Manager determines all the physical instances of the Logical
File and asks each relevant Storage Element how long it will take to retrieve the
physical file.

1.1.4.1.1.2 The bandwidth between the Computing Element on which the job runs and
these Storage Elements is obtained from the Information System because it is used
to determine the best physical file.

10



cex

ComputeElement

sex

StorageElement

rb1

ResourceBroker

rm

ReplicaManager

ce1

ComputeElement

ui1

UserInterface

is

InformationSystem

se1

StorageElement

User

1.1.4.1.1.3.1: retrieve()

1.1.1.1:*[per CE][not cached] reportStatus()

1.1: submitJob(JobDescription)

1.1.4.2: putJobOutput()

1.1.4.1.3:[jobSupportsRemoteIO] retrieve()

1.1.4.1.2:[not jobSupportsRemoteIO] retrieve()

1.1.4.1.1: getBestFile()

1.1.4.1: executeJob

1.1.4.1.1.2: query(relevant network metrics)

1.1.4.1.1.1: getAccessCost()

1.1.4.1.1.3:[not jobSupportsRemoteIO] store()

1.1.2: filter CEs

1.1.5: notify()

1.1.4: submitJob(JobDescription)

1.1.3: rank CEs

1.1.1: state:=query(all Ces)

1: JobID:=submitJob(JobDescription)

Figure 5: Job Submission with Dynamic File Selection

1.1.4.1.1.3 The Replica Manager also triggers a replication of this best file to the local
Storage Element in the case that the job does not support remote IO.

1.1.4.1.2 The job retrieves the file from the local Storage Element if it does not support
remote IO.

1.1.4.1.3 The job retrieves the file from the remote Storage Element otherwise.

1.1.4.2 The output of the Job is stored on the Resource Broker.

1.1.5 On completion of the job, the User is notified via email.

At 1.1.4.1.1.3 or 1.1.4.1.2 we note that the job may block on the file transfer and
this might lead to inefficient use of the Local Batch System resources. To avoid this the
job may instead of executing 1.1.4.1.1, save its state in a Storage Element, and submit a
fresh job to the Grid. This new job can have the required files in its Job Description, and
we have a case of Job Submission with Static File selection. With this new information
the Resource Broker may decide to send the job to a Computing Element closer to the
required data. In effect this allows moving the job to the data rather than moving the
data to the job. Of course the upside of more efficient input data access needs to be
balanced with the downside of having to save and reload state plus resubmitting the job
and letting it traverse the queue of the Local Batch System on which it is scheduled.

One might argue that this alternative of job resubmission using static file selection is
always favourable because it avoids wastage of compute resources. The situation seems
akin to the potential wastage of compute resources in non-Grid local batch systems where

11



jobs may need to wait for files to be spooled from tape. We would expect that policies
which have been evolved for those situations to be applicable in the Grid context also.
The correct trade-off is an application-specific matter, depending how much computation
is performed before the job needs new input files.

5 Issues

In the preceding section we have presented the principal job submission scenarios sup-
ported by the EDG. In describing these, many issues have been considered, and we
document them here. Addressing most of these would introduce too much complexity
to the present code base. In some cases, they are sufficiently poorly understood that it
would even be hard to simulate their effects. Nevertheless, they indicate the complexities
which must be managed if wide-use production grids are to become a reality.

Not least among the issues is the the need to support economic models of Grid use.
Some patterns of utilisation simply will not come about until there is a manageable ‘cost’
of using the resource; others can only sensibly be put in place if there is the feedback of a
charging mechanism as a control: for example, the implementation of advance reservation
is an invitation to reserve far more resources than are likely to be needed, for far longer
than necessary—whereas efficient Grid utilisation will arise only when this is constructed
as a form of futures contract.

5.1 Legacy Fabric Components

The Mass Storage Systems and Local Batch Systems which make up the DataGrid ‘pro-
duction testbed’ are valuable resources which are used in production today. It is not
realistic to expect Data Centres to uproot a software infrastructure running their critical
applications. Dedicating hardware to a particular Grid is expensive, may lead to resource
under-utilisation in the short term, and does not form an appealing migration strategy.

However, many aspects of these components are not ideal in their new role as Grid
fabric components. For example, most of the worker nodes in today’s farms do not have
outbound access to the Internet for reasons of security or network addressing. Only when
these nodes are used in a Grid context, where running jobs may need to go outside the
farm to access remote Grid services, is this downside realised. It is yet to become clear
whether the Grids will have to overcome this difficulty, or whether the policies on these
farms will change.

5.2 Data Prefetching

Another complication is the use of local batch systems with data stored remotely. The
execution of a job at a site may require a large amount of data to be staged there, and it
is unclear how this should proceed. Let us consider the options:

If we wait for the job to traverse the queue of the Local Batch System before triggering
the replication of data there is the possibility that the job will make inefficient use of the
Local Batch System resources whilst waiting for the data to arrive.

12



Another strategy is to trigger the transfer of data exactly when the job is submitted
to the Local Batch System. But again, the job may traverse the queue before the data
transfer completes. Either the job ties up the resources of the Local Batch System while
waiting again, or it resubmits itself to the back of the queue, impacting the response time
of the job. In the latter case the arrival of new jobs on this Local Batch System, since
the job was first submitted, may impact response time even further. If the job takes
much longer to traverse the queue than it takes to transfer the data, we end up with local
storage resources being used inefficiently, or even filling up completely.

A further alternative would be to trigger staging and wait for this to complete before
submitting the job to the site e.g.[TK04]. Again there is a danger local storage resources
could be used poorly.

In isolation, this issue may be solved by use of more elaborate multi-level queues,
but in combination with the more general problems of advance reservation (below) and
scheduling at both the Grid and the local batch level, the general case of the problem
becomes very hard to solve.

Unfortunately EDG has did not develop a POSIX interface to for remote data access
and many applications therefore require data to be staged. This may not always be
suitable, but would alleviate many problems.

5.3 Advance Reservation

Currently the Storage Elements on the EDG do not support advance reservation. Even
though a Job Description may state that a job requires a certain amount of local storage
this is checked only at the time of job submission; there is the possibility that this capacity
will be unavailable by the time of job execution.

Whereas advance reservation is not critical for cpu and network resources — without
it jobs will still receive some slice of the available capacity — it seems that it can be
essential for storage resources (for staged input, intermediate results, or final output).
Nevertheless without reservation in these other resources it might be difficult to know
how for long a storage reservation should be made.

A spectrum of advance reservation possibilities can be described:

• There is the present EDG implementation, with no advance reservation on any type
of resource. Free storage is checked at job submission time; the job is retried if the
storage is used up before the job completes. Check-pointing features prevent the
job being re-executed entirely.

• Alternatively, there could be advance reservation on storage resources only, making
an advance reservation at job submission time for the expected duration of the job,
attempting to renew the reservation if the job takes too long, but falling back on
retrying the job again.

• At the other end of the spectrum we could permit advance reservation on all types
of resources, making advance reservations on all relevant resources, minimizing the
chance of overrun and the need for re-execution.

13



5.4 Optimal Scheduling

In a production Grid context, the heterogeneous nature of users, jobs, and resources
complicates any notion of what it might mean to be optimal. For most users, a good
scheduler will be one which delivers short turn-around times for jobs; for resource owners,
it will be one which leads to high utilization. The best outcome for particular users may
be poor for the system as a whole. In a Grid context the trade-off is further complicated
by the presence of the virtual organizations — the throughput for the VO relative to the
whole resource may be of interest, as may the response for an individual relative to the
VO.

Therefore, it is not clear what kind of scheduling policy is required. Maybe all Vir-
tual Organisations (VOs) and their members will work together to optimise the overall
throughput of the Grid. Or maybe each user (or VO) works independently to minimise
the response time of their own jobs.

Other factors influence the scheduling policy:

One or many resource brokers The number of resource brokers present in the system
is critical. With exactly one Resource Broker there is the opportunity to make glob-
ally optimal decisions. But, ironically, a single Resource Broker will itself become
a bottleneck as the Grid scales.

Multiple Resource Brokers will be closer to optimal, even if they do have to work
independently so that the communication between them does not become a bottle-
neck. In this case we need to be wary that information coming from the Information
System is likely to be out of date - the action of one Resource Broker on the Grid
will not be seen by other Resource Brokers until some time later due to caching in
the Information System - and in practice we found this leads to a thrashing effect
as described in [Ber99]. That is, when multiple independent Resource Brokers sub-
mit jobs into the Grid at a sufficient rate, resources which appear to be unloaded
according to the Information System may received too many jobs. This experience
has lead us to believe that scheduling with a degree of randomness will behave more
reliably. This observation is further supported by the theoretical results in [RF03],
and the experiences in [Ell02].

Information availability Another question is how much data should be published in
the information system. The current model used in the EDG is for the Computing
Element to publish all the information the Resource Broker might need from it into
the Information System. This model has the advantage that the Resource Broker
can find the best Computing Element for a job just by contacting the Information
System. However if a Computing Element has a different scheduling policy per VO,
the amount of information to be published may become prohibitive.

An alternative model might say that only a small amount of fairly static data should
be published, and once the Resource Broker has made a first pass to filter unsuitable
Computing Elements, it must contact them directly. Although the Resource Broker
has to directly query many Computing Elements now, each Computing Element

14



could have its own algorithm to estimate how quickly it can execute the job. This
also has the advantage that for highly dynamic data, the Resource Broker works
with fresher information.

Highly distributed scheduling An entirely different model has been proposed [EKS+03]
in which each user effectively has their own resource broker. Effectively submission
is random but weighted toward the highest ranked nodes. This seems to work and
scale.

5.5 Job Description

The form of the job descriptions will be important as a they are key to most scheduling
decisions. Constraints on the type of computational resource (chip architecture, operating
system type, and so on) are commonplace and can be used immediately to filter out non-
matching resources. One might also specify which files are required by the job, and this
information can be used to provide hints to the scheduler. But if only a small fraction of
file is used the hint may be misleading. Whether a job processes its specified input files in
serial or parallel, and whether the files are read serially or randomly are factors to which
any scheduling decision may be very sensitive. Not only do we need to consider what
hints are useful to scheduling, but what hints the end-user has the ability to provide.

5.6 Base metric

Some have suggested elaborate techniques for performance optimisation in a DataGrid
based on economic models, but it is not clear yet whether the base metrics assumed
by there models can be realised. For example, which of two mass storage systems/tape
robots is preferable to serve a large dataset may come down to which can recover the data
from tape the quickest at that point. In practice making such estimates is exceedingly
hard, and may not be viable. The appropriate economic models will depend on a number
of factors [Mom].

5.7 Fault Tolerance and Exception Handling

In this paper we have only been able to look at the basic flows relating to job submission
in EDG; there are a large number of devious flows which should also be supported.

This is particularly the case for fault tolerant behaviours. Although conventionally
treated as exceptional, fault tolerant behaviour becomes ‘business-as-usual’ in Grids —
as the number of nodes in the deployment scales up there is almost always a faulty node
or network link somewhere.

Such flows may necessitate a different design: the appropriateness of the present
design can really only be judged by observation of how and why failures occur. Such data
is not presently available in the testbed status report [ED03].

15



6 Conclusions

The experience of the EDG has shown that there are many dimensions to the problem of
job submission and scheduling, and only a few have been considered in the present code
base. Experience with the EDG testbed casts doubt upon the use of a small number of
resource brokers: the scalability of such a solution seems unlikely. Instead, schemes with
more resource brokers — or a radically different approach — are under consideration.

We have documented the main features of the present software, with due care given to
the possible failure modes. We have also shown above that many more factors might be
taken account of in the design of schemes for job submission in data Grids. Several of these
are non-trivial: they have potential to impact severely on the throughput, utilisation, and
turn-around time when a large-scale heterogeneous production Grid is implemented.

Those considerations will be critically dependent on patterns of use. It is inappropriate
to try to solve the general problem at this stage because there are too many unknown
parameters. We expect that the forthcoming deployments of DataGrid software will
provide an excellent opportunity to measure realistic patterns of usage and to identify
sources of inefficiency. The discussion in this paper may help to target that effort.

References

[BC89] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented
thinking. In Proceedings of OOPSLA 1989, 1989.

[Ber99] Francine Berman. High-performance schedulers. pages 279–309, 1999.

[CK88] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose
distributed computing systems. IEEE Transactions on Software Engineering,
14(2):141–154, February 1988.

[ED02] EU-DataGrid. The DataGrid architecture. Technical Report DataGrid-12-
D12.4-33671-3-0, EDG, 2002.

[ED03] EU-DataGrid. Final evaluation of testbed operation. Technical Report
DataGrid-06-D6.8-414712-3-0, EDG, 2003.

[EKS+03] P. Eerola, B. Kónya, O. Smirnova, T. Ekelöf, M. Ellert, J. R. Hansen, J. L.
Nielsen, A.Wäänänen, A. Konstantinov, and F. Ould-Saada. The NorduGrid
architecture and tools. In Computing in High Energy and Nuclear Physics
2003, La Jolla, California, March 2003.

[Ell02] Mattias Ellert. The nordugrid toolkit user interface and resource broker.
Presented at the Fourth NorduGrid workshop, Uppsala, November 2002.
http://www3.tsl.uu.se/ ellert/publ/NorduGrid-Uppsala.pdf.

[FK99] Ian Foster and Carl Kesselman, editors. The Grid. Morgan Kaufman, 1999.

16



[FS97] Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard
Object Modelling Langauge. Addison-Wesley, 1997.

[MM02] Lee Momtahan and Andrew Martin. e-science experiences: Software engi-
neering practice and the EU DataGrid. In Asia-Pacific Software Engineering
Conference, IEEE Press (APSEC 2002), pages 269–275, 2002.

[Mom] Lee Momtahan. Grid economics: Standardised grid resource commodities.
(Work in progress).

[RF02] Kavitha Ranganathan and Ian T. Foster. Identifying dynamic replication
strategies for a high-performance data grid. In International Workshop on
Grid Computing, 2002.

[RF03] Kavitha Ranganathan and Ian T. Foster. Simulation studies of computation
and data scheduling algorithms for data grids. Journal of Grid Computing,
1:53–62, 2003.

[Sch01] J. M. Schopf. 10 actions when superscheduling, July 2001. Global Grid Forum
Document GFD-I.4.

[Seg00] Ben Segal. Grid computing: The european data grid project. In IEEE Nuclear
Science Symposium and Medical Imaging Conference, Lyon, France, October
2000.

[TK04] Miron Livny Tevfik Kosar. Stork: Makring data placement a first class citi-
zen in the grid. In Proceedings of 24th IEEE Int. Conference on Distributed
Computing Systems (ICDCS2004), Tokyo, Japan, March 2004.

[TTL02] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid. In
Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making
the Global Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

[VTF01] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection in the globus data
grid. In International Workshop on Data Models and Databases on Clusters
and the Grid (DataGrid 2001). IEEE Computer Society Press, 2001.

Acknowledgements

The EDG is a large project and many have contributed to the design and code of the
present system. We are grateful to the members of the Architecture Task Force (espe-
cially: Franck Bonnassieux, Akos Frohner, Leanna Guy, Jens Jensen, Erwin Laure, Julian
Linford, Cal Loomis, German Melia, Johan Motagnat, Fabrizio Pacini, Piotr Pozanski,
Jeff Templon, Annalisa Terracina, Antony Wilson) for discussions which led to our present
understanding, and for their participation in the construction of the sequence diagrams
presented here. We would also like to thank Ian Stokes-Rees for his comments and proof
reading.

17



This work has been supported by the UK research councils PPARC and EPSRC under
EPSRC grants GR/R74284/01 and GR/S73204/01.

18


