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Abstract—The Systems Modeling Language (SysML) is a semi-
formal, visual modelling language used in the specification and
design of systems. In this paper, we describe how Communicating
Sequential Processes (CSP) and its associated refinement checker,
Failures Divergences Refinement (FDR), can be used in conjunc-
tion with SysML in a formal top-down approach to systems
engineering. Typically, a system is composed from constituent
systems or components using the concept of blocks. SysML allows
two alternative interpretations with regards to the behaviour of
the resulting composition. By making use of a process-algebraic
formalism we are able to explore these interpretations more
rigorously. A case study is used throughout to illuminate the
concepts in an informal manner.

I. INTRODUCTION

The Systems Modeling Language (SysML) [1], proposed
by the Object Management Group (OMG)1, is a graphical
modelling notation that can be used to describe complex, het-
erogeneous systems comprised of various components. These,
in turn, might be simple structural elements, or might them-
selves be viewed as systems comprised of various components
working together.

Modelling a system with SysML relies on the concept
of blocks — each with an associated set of states — that
communicate via events, possibly resulting in a change of state
for one or more of the communicating blocks. The architecture
of these systems allows a top-down design, starting from an
abstract level with high level concepts, down to levels with
increasingly more detail. These successive transformations
allow replacing an abstract block with a composition of parts,
but the big drawback of this decomposition is that it is at best
semi-formal and cannot guarantee consistency between a block
and its parts. However, there are two alternative interpretations
with regards to the combined behaviour [2].

1) The classifier behaviour of the block can serve as
an abstraction of the behaviours of its parts. The
abstraction serves as a specification that the parts
must realise: the parts must interact in such a way that
their combined behaviour conforms to the abstraction.

2) Alternatively, the classifier behaviour of the block
acts as a controller in order to actively orchestrate the
behaviours of its parts. In this case, the behaviour of
the block is a combination of its behaviour and that
of its parts.

1http://www.omg.org

Communicating Sequential Processes (CSP) [3] is a pro-
cess algebra used to describe complex patterns of interaction
between processes, with each process having its own charac-
teristic behaviour. In this paper we show how CSP can be
used to precisely define these differing notions of composition
by making use of an illustrative case study. Moreover, the as-
sociated refinement checker, Failures Divergences Refinement
(FDR) [4], gives rise to a practical approach that enables us
to reason about these interactions in a formal setting.

The structure of the remainder of this paper is as follows.
In Section II, we provide a brief introduction to CSP. In
Section III we employ a small case study to show how
CSP can be employed to analyse expositions composed of
multiple, communicating state machine and activity constructs.
Section IV formalises the different interpretations that can be
assigned to combined block behaviour using the case study as
exemplar. In Section V we review related literature. Section VI
summarises the contributions of this paper.

II. BACKGROUND

In this section, we give a necessarily brief introduction
to CSP. We assume familiarity with SysML, although the
necessary concepts are explained throughout Section III.

Events are at the heart of CSP — they are fundamental
to the synchronisation mechanism that is employed — with
an event being an indivisible communication or interaction.
We denote by Σ the set of all possible events for a particular
specification. We can also give consideration to the alphabet
of a process — the events that it can perform. We write αP
to denote the alphabet of a process P.

A communication takes place when two or more processes
agree on an event. The communication can either be a prim-
itive event, or can take a more structured, message-passing
form, utilising channels. The message-passing mechanism is
fundamentally based on the principle of a rendezvous between
a sending and a receiving process: if the communication takes
place on channel c, and a sending process wants to output a
value e, the receiving process has to allow for this (by inputting
on c). Once this has happened, the event is abstracted as c.e. A
process indicates that it intends to output a value on a channel
using the syntax c!e; the willingness to receive an input on a
channel is expressed c?x.

CSP is compositional in the sense that it provides operators
that allow us to define a process in terms of other, constituent



processes. The CSP syntax utilised in this paper can be defined
thus:

P =̂ P |
Stop | Skip |
e→ P |
P 2 P | 2 e : X • e→ P |
P u P | u e : X • e→ P |
P \ X |
P o

9 P |
P [ X ‖ Y ] P |
P [| X |] P | ‖ i • [Xi]Pi |
P ||| P | ||| i • Pi |
if b then P else P |
let P1, . .,Pn within P

In the above, P, P1 and Pn denote processes, e denotes an
event, X and Y denotes sets of events, and b denotes a Boolean
condition.

Stop is the deadlocked CSP process: it will refuse all and
any event and never communicates. Skip is the process that
communicates the special internal event X, before behaving
like Stop; it is used to model successful termination.

The process e→ P, modelled using the prefixing operator,
performs the event e and subsequently behaves as P.

CSP provides two choice operators: the external or de-
terministic choice operator, 2, offers the environment the
choice between the initial events of its argument processes;
conversely, the internal or nondeterministic choice operator,
u, offers no such choice and the observed behaviour may be
that of either process. Indexed versions exist for both operators.

The hiding operator, \, conceals the events of X from the
view of the external environment of P.

The process P1
o
9 P2 represents the sequential composition

of P1 and P2. This process behaves as P1 until it terminates
successfully, after which it behaves as P2.

Several parallel operators exist. The process P1 [| X |] P2

uses the generalised parallel operator to define an interface
on which P1 and P2 must synchronise. Events outside X may
occur independently in either process. The process P1 [ X ‖ Y ]
P2 denotes alphabetised parallel, where synchronisation takes
place on events in the set X ∩ Y . The interleaving operator,
|||, expresses the unsynchronised concurrent interleaving of the
events of its constituent processes. Indexed forms exist for
these parallel operators.

A conditional choice construct is available in the form
if b then P1 else P2, where a process behaves as P1 if b is
true and P2 otherwise. The let within construct allows us to
use local definitions (of the form of P1, . .,Pn) in the definition
of a complex process.

CSP (and FDR) allows us to compare the behaviour of one
process against that of another. Our concern here is in terms of
traces. The traces of a process P, written traces [[P ]], is the set
of all finite sequences of observable events. As an example,
traces [[ a→ b→ Stop u c→ d → Stop ]] is the set

{〈〉, 〈a〉, 〈a, b〉, 〈c〉, 〈c, d〉}

In the following, P/t represents the process P after the trace
t; refusals [[ P ]] represent the initial set of events that P may
refuse, no matter how long they are offered. The failures [[ P ]]
are the pairs of the form (t,X) such that, for all t ∈ traces [[P ]],
X = refusals [[ P/t ]].

We define traces refinement, using reverse containment, as

P1 vT P2 ⇔ traces [[ P2 ]] ⊆ traces [[ P1 ]]

For example, a → b → Stop — the traces of which are
given by the set {〈〉, 〈a〉, 〈a, b〉} — is a traces-refinement of
a→ b→ Stop u c→ d → Stop:

a→ b→ Stop u c→ d → Stop
vT
a→ b→ Stop

The refinement checker Failures-Divergence Refinement
(FDR) — which utilises the machine-readable dialect of CSP,
CSPM [4] — uses this theory of refinement to investigate
whether a potential design meets its specification. A pleasing
feature of FDR is that if such a test fails, a counter-example
is returned to indicate why this is so.

Similarly, we define failures refinement as

P1 vF P2 ⇔
traces [[ P2 ]] ⊆ traces [[ P1 ]]
∧
failures [[ P2 ]] ⊆ failures [[ P1 ]]

III. A ROBOTIC ARM

In this section we apply the concepts central to our method-
ology to an illustrative case study.

We study a single component, a robotic arm, of a fully
fledged case study that is well known in the formal methods
community. The production cell is an industrial installation of
a metal processing plant located in Karlsruhe, Germany [5].
However, in the interest of brevity and clarity, we consider the
arm as our system of interest. The arm is one subsystem of the
travelling crane, which is yet another component of the much
bigger system — the production cell.

Actuators and sensors are individual components that com-
municate with the system controller. Actuators receive outputs
from the controller in order to coordinate the operation of
several components. Conversely, sensors, as the name sug-
gests, are sensory components that send inputs to the system
controller. Examples of actuators are bidirectional motors and
electromagnets. A bidirectional motor can operate in two op-
posing directions. An electromagnet can activate or deactivate
a magnetic field using an electric current. A potentiometer is
an example of a sensor: it provides a value within certain limits
so as to indicate the range of extension.

The arm is equipped with a bidirectional motor responsible
for vertical extension. An electromagnet is placed at the front
of the arm for handling metal objects; a potentiometer is
present to indicate the range of extension of the arm.

The case study is explored from two slightly different
angles, related to the different interpretations which can be
attributed to the composition of the composing block. The Arm



pd0
pd1
pd2

«enumeration»
PD

fwd
rev

«enumeration»
Direction

bdd Enumerations

bdd Signals

d: Direction

«signal»
BDMotorOn

«signal»
OnPD

«signal»
BDMotorOff

«signal»
MagnetOn

«signal»
MagnetOff

pd: PD

«signal»
NotifyPD

pd: PD

«signal»
Grasp

pd: PD

«signal»
Drop

«signal»
Ready

pd: PD

«signal»
PickUp

pd: PD

«signal»
PutDown

Fig. 1. The block definition diagram introducing Signals and Enumerations.

is the block of interest for the purposes of the case study. In
this section we explore the behaviours of the blocks that make
up the composition: BDMotor, PDMeter and Magnet. These
blocks or parts have exactly the same behaviour, regardless of
the interpretation assigned to their composition. We introduce
the SysML constructs common to both interpretations and their
relationships to their CSP counterparts in this section. We start
by looking at the structural aspects, followed by behavioural
constructs like state machines and activities.

A. Enumerations and Signals

Refer to Figure 1. Signal and enumeration definitions intro-
duce the messages and associated parameters communicated
between state machines and activities. We introduce all the
signals and enumerations utilised in both interpretations here.

The Direction and PD enumerations of Figure 1 can be
represented with CSP datatypes.

datatype Direction = fwd | rev
datatype PD = pd0 | pd1 | pd2

In the above, the potential differences are denoted using
different constants, each corresponding to a reading returned
by the potentiometer.

The signals used by the communicating state machines are
similarly defined. For each block, the signals corresponding to
the provided receptions of the particular block are used. Where
a signal has associated parameters, these are included in the
datatype definition.

datatype BDMotorSignal =
BDMotorOn.Direction | BDMotorOff

datatype MagnetSignal = MagnetOff | MagnetOn
datatype PDMeterSignal = NotifyPD.PD

SysML blocks are connected using connectors; connectors
are modelled using CSP channels. For simplicity we use the
name of the association end for the purposes of communica-
tion, and assume this to be the name of the associated block.
Thus, for every block we require two CSP channels: the first
models the event queue that the block uses to communicate
with the external environment; the second is used for internal

onoff

stm Magnet

MagnetOn/ActivateMagnet

MagnetOff/DeactivateMagnet

senseidle

stm PDMeter

/OnSense

NotifyPD(d)

onoff

stm BDMotor

BDMotorOn(d)/TurnOnBDMotor(d)

BDMotorOff/TurnOffBDMotor

Fig. 2. The state machine diagrams of the Magnet, BDMotor and PDMeter
blocks.

communication between the block and its associated event
queue.

channel bdmotor : BDMotorSignal
channel bdmotorlocal : Dispatched.BDMotorSignal
channel magnet : MagnetSignal
channel magnetlocal : Dispatched.MagnetSignal
channel pdmeter : PDMeterSignal
channel pdmeterlocal : Dispatched.PDMeterSignal

For example, the channel bdmotor is used to communicate
with the state machine of the bidirectional motor via its
associated event queue; the channel bdmotorlocal is used by
the event queue of the bidirectional motor to dispatch events
for processing. The datatype Dispacthed models this: an event
can either be processed, or, if the state machine is in a state
where the dispatched event is not expected, discarded. Using
the assumption above, any block connected to BDMotor via
a connector uses the channel bdmotor to send signal events
destined for BDMotor.

datatype Dispatched = proc | disc

B. State Machines

The classifier behaviour is the main behaviour of a block,
and executes from the instant the instance is created until the
point of destruction. The modelling construct most frequently
used to represent the classifier behaviour is a state machine.
In most systems engineering methodologies, activities are
typically used as a complementary modelling notation to state
machines: it is the behavioural formalism normally associated
with the effect component of a transition; alternatively, it is
used to model behaviours related to a particular state.

Figure 2 shows the state machines of the magnet, bidi-
rectional motor and potentiometer. Activities that execute on
the transitions as the effect component are italicised after the
trigger, set in bold typeface. Activities are shown in Figure 3
and are discussed in Section III-C. For now, it is sufficient to
assume that these are modelled using CSP processes.

The CSP processes modelling the state machines for the
BDMotor, Magnet and PDMeter blocks follow. Local process
definitions model each state in the associated state machine.
The deterministic choice between permissible triggers are
offered to the external environment. If a CSP event correspond-
ing to a permitted SysML triggering event is received:



• the process modelling the exit behaviour of the source
state execute;

• the process modelling the effect of the transition
execute;

• the process modelling the entry behaviour of the target
state execute; and

• the target state is entered.

The above is modelled using the sequential composition op-
erator of CSP. The aforementioned behaviours are all SysML
activities with corresponding CSP processes; if a behaviour is
not present it is simply not included in the sequential com-
position2. Note that in every state the dispatched, unexpected
events are discarded and thus removed from the event queue
without effect: this corresponds to communications of the form
local.disc.e, where e is a signal event. Events that are served up
for processing and successfully processed by the state machine
correspond to communications of the form local.proc.e.

BDMotor(queue, local) =
let

I0 = OFF
OFF =

local.proc.BDMotorOn?d →
TurnOnBDMotor(d) o

9 ON
2

local.disc?e : {| BDMotorOff |} → OFF
ON =

local.proc.BDMotorOff ?d →
TurnOffBDMotor(d) o

9 OFF
2

local.disc?e : {| BDMotorOn |} → ON
EQ = queue?e→ local?p!e→ EQ

within
I0 [| {| local |} |] EQ

BDMOTOR = BDMotor(bdmotor, bdmotorlocal)

αBDMOTOR =
Union({{| bdmotor, bdmotorlocal |},
αTurnOnBDMotor, αTurnOffBDMotor})

Magnet(queue, local) =
let

I0 = OFF
OFF =

local.proc.MagnetOn→
ActivateMagnet o

9 ON
2

local.disc?e : {| MagnetOff |} → OFF
ON =

local.proc.MagnetOff →
DeactivateMagnet o

9 OFF
2

local.disc?e : {| MagnetOn |} → ON
EQ = queue?e→ local?p!e→ EQ

within
I0 [| {| local |} |] EQ

2Alternatively, it can be modelled using the CSP process Skip.

MAGNET = Magnet(magnet,magnetlocal)

αMAGNET =
Union({{| magnet,magnetlocal |},
αActivateMagnet, αDeactivateMagnet})

PDMeter(queue, local) =
let

I0 = IDLE
IDLE =

local.proc.NotifyPD?pd → SENSE
SENSE =

OnSense o
9 IDLE

2

local.disc?e : {| NotifyPD |} → SENSE
EQ = queue?e→ local?p!e→ EQ

within
I0 [| {| local |} |] EQ

PDMETER = PDMeter(pdmeter, pdmeterlocal)

αPDMETER =
Union({{| pdmeter, pdmeterlocal |}, αOnSense})

The channel pdmeter is used for communication with the state
machine of the potentiometer; the channel pdmeterlocal is used
for internal communication between the event queue and state
machine.

Alphabets of the individual processes are defined below
each process definition. The alphabet of a state machine is the
set of events that it can communicate, as well as the alphabets
of its associated activities.

C. Activities

The activities that serve to augment the classifier behaviour
of the blocks introduced in Section III-B are formalised here.

Each activity has an associated CSP process with localised
process definitions corresponding to the actions. Activity
parameter nodes are modelled with local process variables.
Opaque actions are communicated on the CSP channel opaque.

The activities of the bidirectional motor — TurnOnBDMo-
tor and TurnOffBDMotor — can be modelled thus.

TurnOnBDMotor(d) =
let

DEC0 =
if d == fwd then

OA0

else
OA1

OA0 = opaque.enginefwd → F0

OA1 = opaque.enginerev→ F0

F0 = Skip
within

DEC0

αTurnOnBDMotor =
{| opaque.enginefwd, opaque.enginerev |}

TurnOffBDMotor =
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Fig. 3. Activity diagrams modelling additional behaviours executed within
the context of state machines.

let
I0 = OA0

OA0 = opaque.engineoff → F0

F0 = Skip
within

I0

αTurnOffBDMotor = {| opaque.engineoff |}

The rest of the activities of Figure 3 — ActivateMagnet,
DeactivateMagnet and OnSense — can be similarly defined.
We omit the definitions here in the interest of brevity.

IV. INTERPRETATIONS

This section explores the different notions that can be
attributed to the behavioural composition of a collection of
blocks using a process algebraic approach.

A. Abstraction

We explore the behavioural composition of the Arm block
with the first interpretation, mentioned in Section I, in mind.

The block definition diagram showing the composition of
the Arm is shown in Figure 4; the interconnection amongst
the parts are depicted with the internal block definition dia-
gram of Figure 5. The structural aspects of the system are
modelled using blocks for the controller, bidirectional motor,
electromagnet, and the potentiometer. The classifier behaviour
of the Arm is to serve as an abstraction of the behaviours
of its parts: the BDMotor, Magnet, PDMeter and Controller.
We have seen CSP definitions modelling the behaviours of the

«block»
Arm

«block»
Controller

«block»
Magnet

«block»
BDMotor

«block»
PDMeter

bdd ArmSystem

Fig. 4. The block definition diagram of the Arm System.

ibd Arm

: Controller

: Magnet

: PDMeter

: BDMotor

magnet

bdmotor

pdmeter

controller

controller controller

Fig. 5. The internal block definition diagram of the Arm block.

BDMotor, Magnet and PDMeter; the controller is introduced
below.

The channel and datatype definitions are similar to those
defined in Section III.

datatype ArmSignal = PickUp.PD | PutDown.PD
datatype ControllerSignal =

Grasp.PD | Drop.PD | OnPD

channel controller : ControllerSignal
channel controllerlocal : Dispatched.ControllerSignal

The provided and required receptions of the Controller and
Arm blocks are shown below3. There is a clear correspondence
between the CSP datatype definitions and the provided recep-
tions of the SysML blocks. Required receptions should appear
in the CSP datatype definitions of other blocks in the system
that receive these signal events as a triggers in their classifying
state machines.

The CSP process describing modelling the characteris-
tic behaviour of the controller’s state machine follows. The
activity Extend is associated with the effect component of
the transitions emanating from the idle state; the activity
Magnetise represents the entry behaviour of the grasp state.
Activities are shown in Figure 3.

Controller(queue, local) =
let

I0 = IDLE
IDLE =

local.proc.Grasp?e→
Extend(local, e) o

9 Magnetise o
9 GRASP

2

local.proc.Drop?e→
Extend(local, e) o

9 Demagnetise o
9 DROP

2

3The detailed block definition diagrams of other blocks are omitted in the
interest of brevity.



bdd Controller
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prov            OnPD()
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«signal»
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Fig. 6. The block definition diagram of the Controller block.

ready
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entry: Demagnetise

Grasp(e)/Extend(e) Drop(e)/Extend(e)

/Retract /Retract
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busy

/SetReady

Fig. 7. The state machine diagrams of the classifier behaviours of the Arm
and Controller blocks.

local.disc?e : {| OnPD |} → IDLE
GRASP =

Retract(local) o
9 IDLE

2

local.disc?e : {| Grasp,Drop,OnPD |} → GRASP
DROP =

Retract(local) o
9 IDLE

2

local.disc?e : {| Grasp,Drop,OnPD |} → DROP
EQ = queue?e→ local?p!e→ EQ

within
I0 [| {| local |} |] EQ

CONTROLLER = Controller(controller, controllerlocal)

αCONTROLLER =
Union({{| controller, controllerlocal |},
αMagnetise, αDemagnetise, αExtend, αRetract})

The blocks above — Controller, BDMotor, Magnet and
PDMeter are all concrete implementation blocks in SysML.
The abstract block, Arm, which serve as an implementation
which the parts must realise, is modelled below.

Arm(queue, local) =
let

I0 = READY
READY =

local.proc.PickUp?e→ BUSY
2

local.proc.PutDown?e→ BUSY
BUSY =

SetReady o
9 READY

2

local.disc?e : {| PickUp,PutDown |} → BUSY
EQ = queue?e→ local?p!e→ EQ

within
I0 [| {| local |} |] EQ

ARM = Arm(arm, armlocal)

αARM =
Union({{| arm, armlocal |}, αSetReady})

The process SetReady used within the ARM process fol-
lows.

SetReady =
let

I0 = SS0
SS0 = client.Ready→ F0

F0 = Skip
within

I0

αSetReady = {| client.Ready |}

The processes — Extend, Retract, Magnetise and
Demagnetise — modelling the activities used in the
CONTROLLER process follow. All activities in this paper
execute within the context of their owing state machine. An
activity can take parameters, passed from the arguments of the
triggering event of the owing state machine as input. Some
activities have receive signal events as actions; these receive
signal events need to be passed via the event queue mechanism
of the state machine. It follows that the channel used for local
communication with the state machine ought to be passed in
as an argument to the activity.

Extend(local, pd) =
let

I0 = VS0
VS0 = SS0(fwd)
SS0(o) = bdmotor.BDMotorOn.o→ SS1
SS1 = pdmeter.NotifyPD.pd → RS0

RS0 =
local.proc.OnPD→ SS2

2

local.disc?ev : {| Grasp,Drop |} → RS0

SS2 = bdmotor.BDMotorOff → F0

F0 = Skip
within

I0

αExtend =
{| bdmotor.BDMotorOn.fwd, bdmotor.BDMotorOff ,

pdmeter.NotifyPD |}

Retract(local) =
let

I0 = VS0
VS0 = SS0(rev)
SS0(o) = bdmotor.BDMotorOn.o→ VS1
VS1 = SS1(pd0)
SS1(o) = pdmeter.NotifyPD.0→ RS0

RS0 =
local.proc.OnPD→ SS2

2



prov            PickUp (pd : PD)
prov            PutDown (pd : PD)
reqd            Ready()

Arm

«signal»
«signal»
«signal»

bdd Arm

Fig. 8. The block definition diagram of the Arm block.

local.disc?ev : {| Grasp,Drop |} → RS0

SS2 = bdmotor.BDMotorOff → SS3

SS3 = client.Ready→ F0

F0 = Skip
within

I0

αRetract =
{| bdmotor.BDMotorOn.rev, bdmotor.BDMotorOff ,

pdmeter.NotifyPD.pd0, client.Ready |}

Magnetise =
let

I0 = SS0

SS0 = magnet.magnetOn→ F0

F0 = Skip
within

I0

αMagnetise = {| magnet.MagnetOn |}

Demagnetise =
let

I0 = SS0

SS0 = magnet.magnetOff → F0

F0 = Skip
within

I0
αDemagnetise = {| magnet.MagnetOff |}

Send signal event actions may have input object pins that deter-
mine the argument sent as part of the event; similarly, receive
signal event actions may receive arguments and therefore have
object output pins. Value specification actions4 are used in
object flows to output a constant value that serve as input
to another action. In every case the internal channel is used
to receive events using the event passing mechanism. Signal
events5 are sent using the channel with the same name as the
target block, similar to the approach taken for state machines6.

Assuming that

P =
{CONTROLLER,MAGNET,BDMOTOR,PDMETER}

we then have

CONCRETE = ‖ p : P • [αp]p

4As an example, the action outputting the forward direction in Extend.
5As examples, see BDMotorOn in Extend for a send signal event and OnPD

in Retract for a receive signal event.
6In addition, send and receive signal events have input and output pins that

can identify the target and source of an action.

In the above, αp denotes the set of events communicable by P.
The set of processes P represent the concrete implementation
blocks whose conjoined behaviour must be that of the block
arm that serves as its specification. The similarity with CSP
here is striking: refinement in CSP is expressed between
specification and implementation processes.

CONCRETER is the process with events suitably renamed
to ensure compatible alphabets.

CONCRETER =
CONCRETE[

controller.Grasp.pd0← arm.PickUp.pd0,
controller.Drop.pd0← arm.PutDown.pd0,
controller.Grasp.pd1← arm.PickUp.pd1,
...]

The set Hidden are those events not present in the alphabet
of the concrete specification process ARM; Σ denotes the set
of all CSP events within the context of the specification. Thus

Hidden =
Σ \ {| arm.PickUp, arm.PutDown,

armlocal.proc.PickUp, armlocal.proc.PutDown,
armlocal.disc.PickUp, armlocal.disc.PutDown,
client |}

FDR verifies the assertion

ARM v CONCRETER \ Hidden [v holds]

Given that the trace refinement holds, ARM can be substi-
tuted for its parts in the complete system: the behaviour of the
concrete implementation processes, denoted by CONCRETER,
can neither accept nor refuse an event unless ARM can. Stated
another way, the characteristic behaviour of CONCRETER is
completely contained within that of ARM. The compositional
approach presented above is effective in alleviating the state
space explosion problem: subsystems can be developed and
formally verified in isolation and subsequently combined to
form an integrated system description.

B. Controller

We explore the behavioural composition of the Arm block
with the second interpretation, mentioned in Section I, in mind.
The second interpretation calls for the classifier behaviour
of the Arm block to act as a controller in order to actively
orchestrate the behaviours of its parts. Thus, the behaviour of
the Arm block must be a combination of its own behaviour
and that of its parts.

Figure 9 shows the new composition of the arm using the
second interpretation. The arm is still composed from instances
of the potentiometer, bidirectional motor and magnet blocks.
The controller block, however, is missing. The interconnection
between the parts is depicted in Figure 10: the parts now
directly communicate with the composite block. The result-
ing composition thus behaves as a combination of its own
behaviour (the classifying behaviour of the arm) and that of
its parts (the behaviours of the magnet, potentiometer and
bidirectional motor).

The behaviour of the state machine for the arm in the sec-
ond interpretation is exactly the behaviour of the controller in
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Fig. 9. The block definition diagram of the Arm’ System.
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: Magnet

: PDMeter
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magnet

bdmotor
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Fig. 10. The internal block definition diagram of the Arm’ block.

the first interpretation. In the first interpretation, the controller
orchestrated the behaviour of the rest of the parts, and the arm
block served as the specification. Here, the arm block itself
orchestrates the behaviours of its parts.

The behaviour of the state machine for the arm using the
second interpretation follows.

datatype Arm′Signal =
Grasp.PD | Drop.PD | OnPD

channel arm′ : Arm′Signal
channel arm′local : Dispatched.Arm′Signal

Arm′(queue, local) =
let

I0 = IDLE
IDLE =

local.proc.Grasp?e→
Extend(local, e) o

9 Magnetise o
9 GRASP

2

local.proc.Drop?e→
Extend(local, e) o

9 Demagnetise o
9 DROP

2

local.disc?e : {| OnPD |} → IDLE
GRASP =

Retract(local) o
9 IDLE

2

local.disc?e : {| Grasp,Drop,OnPD |} → GRASP
DROP =

Retract(local) o
9 IDLE

2

local.disc?e : {| Grasp,Drop,OnPD |} → DROP
EQ = queue?e→ local?p!e→ EQ

within
I0 [| {| local |} |] EQ

ARM′ = Arm′(arm′, arm′local)

αARM′ =

idle

grasp

entry: Magnetise

drop

entry: Demagnetise

Grasp(e)/Extend(e) Drop(e)/Extend(e)

/Retract /Retract

stm Arm'

Fig. 11. The state machine diagram of the classifier behaviour of the Arm’
block.

Union({{| arm′, arm′local |},
αMagnetise, αDemagnetise, αExtend, αRetract})

The complete behaviour of the arm and all its parts can be
expressed in CSP thus. Assuming that

P =
{ARM,MAGNET,BDMOTOR,PDMETER}

we then have

CONCRETE′ = ‖ p : P • [αp]p

In the above, αp denotes the set of events communicable by
P. The set of processes P represent the arm, that acts as a
controller, and its constituent parts: the magnet, bidirectional
motor and potentiometer. The behaviour is a combination
of the arm and that of the magnet, bidirectional motor and
potentiometer.

The second interpretation above has the drawback that
there is no specification process that can be substituted for the
composition. However, this interpretation sits well where the
overall system architecture is described in terms of high level
blocks. These high level blocks might be specification level or
abstract blocks, each obtained from previous refinements using
the first interpretation. At the architectural level, however, the
integrated behaviour of all the components would be of interest
to the modeller. Here, techniques that would assist in assured
requirements traceability would be beneficial [6]. Figure 12
graphically depicts these concepts. For example, the designers
of a travelling crane might use the first interpretation above that
results in an abstract block that denotes the robotic arm. This
block might then be substituted in place of its components7

in the system of interest – the travelling crance — along
with other blocks, such as sensors and bidirectional motors,
using the second interpretation. Alternatively, the first interpre-
tation might be used again to obtain a single abstract block,
modelling the travelling crane, when the system of interest is
the production cell. At this level, one might have refinements
modelling behavioural safety requirements, as outlined in [6].

V. RELATED WORK

In this paper we have defined the semantics of state ma-
chines and activities that execute within this context informally.
For a formal treatment of the semantics of state machines,
see [6]; the formal semantics of activities is forthcoming.

7Presuming the refinement holds.
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Fig. 12. The compositional approach afforded by CSP. The white ellipses
denote the behavioural interpretation of blocks using the abstraction approach.
The system of interest, block D, is composed of abstract blocks and serves as
a controller that orchestrates the behaviour. The second interpretation, shown
inside the dark blue ellipse, applies here. The behavioural of the overall system
is the combined behaviour of blocks A,B,C and D. Furthermore, block A serves
as a behavioural specification that must be satisfied by its constituted blocks
A1 and A2. Block A can be substituted for its components in the overall
system. A similar line of argument can be followed for blocks B and C,
together with their component blocks. Safety requirements can be allocated
behavioural constructs to further refine the intentions of the modeller, and
checked for conformance using CSP [6].

Interactions, within the context of SysML, is formalised in
[7].

A formal semantics for some of the SysML diagrams have
been given in terms of the COMPASS Modelling Language
(CML) [8]. A set of translation rules are given that maps
SysML diagrams to their counterparts in CML. The work
presented here is different in that CML integrates state-based as
well as process algebraic description techniques. Our work [9],
[6], [7] is solely concerned with defining a process algebraic
approach to ensure behavioural conformance amongst the be-
haviour diagrams of SysML. A formalisation of state machines
and activities as used in this context can be found in [10].

Ng and Butler [11] proposed the formalisation of UML
state machine diagrams using CSP as the semantic do-
main [11]. They define the translation in terms of a mapping
function from structural diagrammatic constructs to their CSP
counterparts. The translation starts from an initial state, and
then proceeds to deduce the behaviour of the entire state
machine in terms of CSP descriptions. Broadly speaking, each
state is mapped to a process and each UML event is mapped
to a CSP event. The work of Yeung and colleagues [12]
built on that of Ng and Butler by generalising inter-level
transitions and prioritising transitions at different levels of the
state hierarchy. The authors therefore provide an alternative
semantics for state machines. However, their approach only
takes into account those constructs formalised in [11]. Zang
and Liu [13] mapped state machine diagrams to CSP using
the model checker PAT [14]. A state machine is modelled by
a single CSP process; translation rules are presented that map
state machine constructs to CSP# [14], the input language of
the Process Analysis Toolkit (PAT) [14]. Refinement checking
as well as linear temporal logic (LTL) [15] model checking

is possible: both are natively supported by the model checker.
The transformation methodology is presented via a set of rules.

Xu et al. [16], [17] formalised activity diagrams in CSP. A
transformation function is defined that maps the mathematical
representation of an activity to the semantic domain of CSP.
The goal in [16], [17] is on providing a formal semantics for
activities in terms of CSP, rather than checking behavioural
conformance. Only a limited number of diagrammatic con-
structs are considered and object flows are omitted. Constructs
such as send and receive event actions are not addressed.

Our work is different than the aforementioned contribu-
tions in a number of ways. This paper presents a compo-
sitional approach to refinement and specification, evaluated
within the context of SysML. In addition, we consider the
behaviour of several interacting state machines, supplemented
with behaviours described via activities. In contrast, previous
approaches placed emphasis on the formalisation of a single
state machine (or activity); considering the execution semantics
in terms of interaction with other state machines (or activities)
was not the primary focus.

VI. CONCLUSIONS

In this paper we demonstrated how the refinement checker
FDR can be used in a practical setting to ensure that different
behavioural formalisms — activities and state machines — are
consistent. Moreover, we have demonstrated how the concept
of refinement can be used to decompose a complex design
problem to give rise to a top-down approach to designing a
system comprised of subsystems. To the best of our knowledge
this is the first contribution that explored the different notions
of behavioural integration from a formal, process algebraic
perspective. Furthermore, we are not aware of any other con-
tribution that integrates the behavioural formalisms explored
in this paper — state machines and activities — using CSP.

The contributions of this paper can be summarised thus.

• We presented a formal model of SysML blocks using
CSP. In particular, we demonstrated two possible
interpretations of SysML blocks for modelling and
integrating system behaviour in a formal setting.

• We presented an overarching behavioural semantics
for state machines and activities. To the best of our
knowledge, this is the first formalisation that encom-
passes and considers the combined behaviour of both
of these constructs.

• We demonstrated how CSP can be used in conjunction
with SysML in a compositional, refinement-based
approach to specification. The proposed methodology
was evaluated using a case study that is well suited to
underline the principles of systems engineering.
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