Programming Research Group

THE COMPLEXITY OF
CONSTRAINT SATISFACTION:
AN ALGEBRAIC APPROACH

Andrei KROKHIN

Department of Computer Science
Unwversity of Warwick
Coventry CV4 TAL, UK

Andrei BULATOV, Peter JEAVONS
Computing Laboratory
Unwversity of Ozford
Ozford OX1 30D, UK

PRG-RR-04-08
(corrected)

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

Many computational problems arising in artificial intelligence, computer science
and elsewhere can be represented as constraint satisfaction and optimization prob-
lems. In this survey paper we discuss an algebraic approach that has proved to be
very successful in studying the complexity of constraint problems.

1 Constraint Satisfaction Problems

The constraint satisfaction problem (CSP) is a powerful general framework in which a
variety of combinatorial problems can be expressed [21, 60, 62, 80]. The aim in a con-
straint satisfaction problem is to find an assignment of values to the variables, subject to
specified constraints. In artificial intelligence, this framework is widely acknowledged as
a convenient and efficient way of modelling and solving a number of real-world problems
such as planning [48] and scheduling [76], frequency assignment problems [28], image
processing [64], programming language analysis [66] and natural language understand-
ing [2]. In database theory, it has been shown that the key problem of conjunctive-query
evaluation can be viewed as a constraint satisfaction problem [36, 54]. Furthermore,
some central problems in combinatorial optimization can be represented as constraint
problems [21, 31, 43, 50]. Finally, CSPs have attracted much attention in complexity
theory because various versions of CSPs lie at the heart of many standard complexity
classes, and because, despite their great expressiveness, they tend to avoid “intermediate”
complexity; that is, they tend to be either tractable or complete for standard complex-
ity classes [7, 8, 11, 13, 14, 21, 31, 51, 56, 74]. On a more practical side, constraint
programming is a rapidly developing area with its own international journal and an an-
nual international conference, and with new programming languages being specifically
designed (see, e.g., [62]).

The standard toy example of a problem modelled as a constraint satisfaction problem
is the “8-queens” problem: place eight queens on a chess board so that no queen can
capture any other one [80]. One can think of the horizontals of the board as variables,
and the verticals as the possible values, so that assigning a value to a variable means
placing a queen on the corresponding square of the board. The fact that no queen must
be able to capture any other queen can be represented as a collection of binary constraints
Cjj, one for each pair of variables 4, j, where the constraint Cj; allows only those pairs
(k,1) such that a queen at position (7, k) cannot capture a queen at position (j,1). It is
easy to see that every solution of this constraint satisfaction problem corresponds to a
“legal” placing of the 8 queens.

We now give a formal definition of the general CSP.

1.1 Definition An instance of a constraint satisfaction problem is a triple (V. D,C)
where

e V is a finite set of variables,

e D is a set of values (sometimes called a domain), and

e C is a set of constraints {C',...,Cy},

in which each constraint C; is a pair (s;, 9;) with s; a list of variables of length m;,
called the constraint scope, and p; an mj-ary relation over the set D called the
constraint relation.

The question is whether there exists a solution to (V, D,C), that is, a function from V to
D such that, for each constraint in C, the image of the constraint scope is a member of
the constraint relation.

Now we give some examples of natural problems and their representations as CSPs.

1.2 Example The most obvious algebraic example of a CSP is the problem of solving
a system of equations: given a system of linear equations over a finite field F', does it
have a solution? Clearly, in this example each individual equation is a constraint, where
the variables in the equation form the scope, and the set of all tuples corresponding to
solutions of this equation is the constraint relation.

1.3 Example An instance of the standard propositional 3-SATISFIABILITY problem [33,
67] is specified by giving a formula in propositional logic consisting of a conjunction of
clauses, each containing three literals (that is, variables or negated variables), and asking
whether there are values for the variables which make the formula true.

Suppose that ® = ¢; A --- A ¢, is such a formula, where the ¢; are clauses. The
satisfiability question for ® can be expressed as the instance (V, {0, 1},C) of CSP, where
V is the set of all variables appearing in the formula, and C is the set of constraints
{(s1,01),... ,(Sn,0n)}, where each constraint (si, o) is constructed as follows: s is a
list of the variables appearing in ¢y and g, consists of all tuples that make ¢, true. The
solutions of this CSP instance are exactly the assignments which make the formula ¢
true. Hence, any instance of 3-SATISFIABILITY can be expressed as an instance of CSP.

Example 1.3 suggests that any instance of CSP can be represented in a logical form.
Indeed, using the standard correspondence between relations and predicates, one can
re-write an instance of CSP as a first-order formula p1(s1) A ... A g4(sq) where the ;
(1 <i < q) are predicates on D and p;(s;) means p; applied to the tuple s; of variables.
The question then would be whether this formula is satisfiable [75]. In this paper we will
sometimes use this alternative logical form for the CSP. This form is commonly used in
database theory because it corresponds so closely to conjunctive query evaluation [54], as
the next example indicates.

1.4 Example A relational database is a finite collection of tables. A table consists of a
scheme and an instance, where

A scheme is a finite set of attributes, where each attribute has an associated set of
possible values, referred to as a domain.

An instance is a finite set of rows, where each row is a mapping that associates with
each attribute of the scheme a value in its domain.

A standard problem in the context of relational databases is the CONJUNCTIVE QUERY
EVALUATION problem [36, 54]. In this problem we are asked if a conjunctive query to a
relational database, that is, a query of the form gy A ... A g, where the p1,..., 0, are
atomic formulas, has a solution.

A conjunctive query over a relational database corresponds to an instance of CSP by a
simple translation of terms: ‘attributes’ have to be replaced with ‘variables’, ‘tables’ with
‘constraints’, ‘scheme’ with ‘scope’, ‘instance’ with ‘constraint relation’, and ‘rows’ with
‘tuples’. Hence a conjunctive query is equivalent to a CSP instance whose variables are
the variables of the query. For each atomic formula g; in the query, there is a constraint
C such that the scope of C is the list of variables of g; and the constraint relation of C
is the set of models of p;.

Another important reformulation of the CSP is the HOMOMORPHISM problem: the ques-
tion of deciding whether there exists a homomorphism between two relational structures
(see [31, 36, 54]). Let 7 = (Ry,... , Ry) be a signature, that is, a list of relation names with
a fixed arity assigned to each name. Let A = (A; R, ... ,RkA) and B = (B;RE,... ,RE)
be relational structures of signature 7. A mapping h : A — B is called a homomorphism
from A to B if, for all 1 <4 <k, (h(ay),... ,h(am)) € RE whenever (ay, ... ,a,) € RA.
In this case we write h : A — B. To see that the HOMOMORPHISM problem is the same
as the CSP, think of the elements in A as variables, the elements in B as values, tuples
in the relations of A as constraint scopes, and the relations of B as constraint relations.
Then, clearly, the solutions to this CSP instance are precisely the homomorphisms from
A to B.

We now give some more examples of well-known combinatorial problems and their
representations as a CSP. For the sake of brevity, we use the homomorphism form of the
CSP.

1.5 Example For any positive integer k, an instance of the GRAPH k-COLORABILITY
problem consists of a graph G. The question is whether the vertices of G can be coloured
with & colours in such a way that adjacent vertices receive different colours.

It follows that every instance of GRAPH COLORABILITY can be expressed as a CSP
instance where A = G and B is the complete graph on k vertices, Kj.

1.6 Example An instance of the CLIQUE problem consists of an undirected graph G
and an integer k. The question is whether G has a clique of size k (that is, a subgraph
isomorphic to the complete graph Kj).

It follows that every instance of the CLIQUE problem can be expressed as a CSP
instance where A is Ky and B is the graph G.

1.7 Example An instance of the HAMILTONIAN CIRCUIT problem consists of a graph
G = (V; E). The question is whether there is a cyclic ordering of V' such that every pair
of successive nodes in V is adjacent in G.

It follows that every instance of the HAMILTONIAN CIRCUIT problem can be expressed
as a CSP instance with A = (V;Cy,#y) and B = (V; E, #y), where #y denotes the
disequality relation on V' and Cy is the graph of an arbitrary cyclic permutation on V.

1.8 Example An instance of the GRAPH ISOMORPHISM problem consists of two graphs,
G = (V;E) and G' = (V';E'), with |V| = |V'|. The question is whether there is a
bijection between V and V'’ such that adjacent vertices in G are mapped to adjacent
vertices in G’, and non-adjacent vertices are mapped to non-adjacent vertices.

It follows that every instance of the GRAPH ISOMORPHISM problem can be expressed
as a CSP instance with A = (V; E, E) and B = (V'; E', E'), where E denotes the set of
all pairs in #y that are not in E.

Many other examples of well-known problems expressed as CSPs can be found further
on in this paper, and also in [43].

2 Related Constraint Problems

As with many other computational problems, it is not only the standard version of the
CSP (that is, deciding whether a CSP instance has a solution or not) which is of interest.
There are many related problems that have been studied, and in this section we give a
brief overview of some of these.

¢ Counting Problem
How many solutions does a given CSP instance have?

A standard natural problem associated with many computational decision prob-
lems [21].

e Quantified Problem
Given a fully quantified instance of CSP, is it true?

Problems of this form have provided several fundamental examples of PSPACE-
complete problems [21, 23, 75]. Any instance of the ordinary CSP can be viewed as
an instance of this problem in which all the quantifiers are existential. We note that
certain games involving the construction of graph colorings can easily be expressed
in this form [5].

e Minimal Solution
Given a CSP instance and some solution to it, is there a solution that is strictly
less (point-wise) than the given one?

This problem is connected with circumscription, a framework used in artificial intel-
ligence to formalize common-sense reasoning [53]. It was also studied as “minimal
model checking” in [52].

e Circumscriptive Inference
Given two CSP instances with the same set of variables, is every minimal solution
to the first one also a solution to the second one?

This is a popular problem in nonmonotonic reasoning, an area of artificial intelli-
gence, related to the previous version of the CSP. It was studied in [51, 52].

Equivalence
Given two CSP instances, do they have the same sets of solutions?

In database theory, this corresponds to the question of whether or not two queries
are equivalent [6].

Isomorphism
Given two CSP instances, can one permute the variables in them so that they become
equivalent in the above sense?

This is a more general form of the Equivalence problem which is of interest in some
contexts. The complexity of the Boolean case of this problem is classified in [7].

Inverse Satisfiability
Given a set of n-tuples, is it the set of all solutions to a CSP instance of some
certain type?

This problem is related to efficient knowledge representation issues in artificial in-
telligence [49].

Listing Problem
Generate all solutions of a given CSP instance.

A standard natural problem associated with many computational decision prob-
lems [21].

Max CSP

Mazimize the number of satisfied constraints in a CSP instance.

For over-constrained problems, where it is impossible to satisfy all of the constraints,
it may be appropriate to try to find a solution satisfying as many constraints as
possible [32]. A number of standard optimization problems, e.g., maximum cut,
can also be expressed as Max CSP problems [21, 50].

Maximum Solution
Mazimize the sum of values in a solution of a CSP instance.

Many optimization problems including maximum clique are of this form; in the
Boolean case this problem is known as MAX ONES [21, 50].

Maximum Hamming Distance
Find two solutions to a CSP instance that are distinct in a mazximal number of
variables.

The “world difference” in the blocks world problem from knowledge representation
can be modelled in this way [22].

Lex Max CSP

Given a CSP instance where the variables are linearly ordered, find a solution that
18 lexicographically mazimal.

This form of CSP is used when variables in instances have priorities according to
some preference list [74].

e Unique Solution
Does a given instance of CSP have a unique solution?

This problem is studied in [47]. A related problem concerning partially unique
solutions (that is, solutions that are unique on some subsets of variables) was studied
in [56].

3 Parameterization of the CSP

The main object of our interest is the computational complexity of constraint problems
of various kinds. We refer the reader to [33, 67] for a general background in complex-
ity theory and the definitions of standard complexity classes. In general, the standard
decision-problem form of the CSP is NP-complete, as one can see from Example 1.3,
so it is unlikely to be computationally tractable. However, certain restrictions on the
form of the problems can ensure tractability, that is, solvability in polynomial time (see,
e.g., [68]).

With any CSP instance one can associate two natural parameters, which represent,
informally, the following two features of the instance: which variables constrain which
others, and the way in which the values are constrained.

(1) The first feature (that is, which variables constrain which others) can be captured
in two ways: one of these is by giving a hypergraph defined on the set of variables
used in the instance, where each hyperedge consists of the set of variables appearing
together in some constraint scope. The other, finer, way is by specifying the left-
hand-side structure, 4, in the homomorphism form of the CSP.

(2) The second feature (that is, the way in which the values are constrained), can
be captured by specifying the set of constraint relations used in the instance, or
alternatively by specifying the right-hand-side structure, B, in the homomorphism
form of the CSP.

It follows from these observations that the general CSP can be restricted by fixing
either the set of allowed hypergraphs (or left-hand-side structures) or else the set of
allowed constraint relations (or right-hand-side structures).

The case when the set of hypergraphs is fixed has been studied in connection with
databases [36, 54]. Moreover, in [37], there is a complete classification of the complexity
of the CSP in the case when the set of possible left-hand-side structures is fixed, and
there are no restrictions on the right-hand-side structures.

In this paper we concentrate on the case when the set of constraint relations allowed
in instances is fized, but there is no restriction on the form of the associated hypergraphs

(or left-hand-side structures). Let R(g) denote the set of all n-ary relations (or predicates)

on a set D, and let Rp = J;—, R%Z).

3.1 Definition A constraint language over D is a subset I' of Rp. The constraint sat-
isfaction problem over T', denoted CSP(T'), is the subclass of the CSP defined by the
following property: any constraint relation in any instance must belong to I'.

Of course, such a parameterization can also be considered for all of the related con-
straint problems discussed in Section 2 above.

3.2 Definition A constraint language T is called globally tractable if CSP(T') is tractable,
and it is called tractable if, for every finite I'y C I", CSP(I'y) is tractable. It is called NP-
complete if, for some finite I'y C I';, CSP (') is NP-complete.

Of course, every finite tractable constraint language is also globally tractable, but
for infinite constraint languages this implication is not immediate (see [15, 17]), so it
is technically necessary to distinguish the notions of tractability and global tractability.
In fact, all known tractable constraint languages are globally tractable, and it seems
plausible that the two notions coincide, though at present this is an open problem. In
this paper, we will consider only the question of determining which constraint languages
are tractable, and we will not make any further use of the notion of global tractability.

When the set I' C Rp is finite, let Br denote the relational structure over the universe
D whose relations are precisely the relations of ' (listed in some order). Then the problem
CSP(I') corresponds exactly with the problem Hom(Br), defined as follows: given a
structure A similar to Br (i.e., of the same signature), is it true that A — Br? Note that
the order in which the relations from I' are listed in Br does not affect the complexity of
this problem.

We now give some examples of well-known problems expressible as CSP(I") for suitable
sets T'.

3.3 Example An instance of LINEAR EQUATIONS consists of a system of linear equations
over a field.

Following Example 1.2, it is easy to see that this problem can be expressed as CSP(T")
where I' consists of all relations expressible by a linear equation. This problem is clearly
tractable because it can be solved by a straightforward polynomial-time algorithm, such
as Gaussian elimination.

Moreover, systems of equations can be considered not only over fields, but also over
other algebraic structures. For example, systems of polynomial equations over a (fixed)
finite group (that is, equations of the form aiz1as - Tpan+1 = b1y1ba -+ - Ymbm1 where
the a;’s and the b;’s are constants and the z;’s and y;’s are variables) are studied in [34]
where it is proved that solving such systems is tractable if the underlying group is Abelian,
and is NP-complete otherwise. This result is generalised in [65] to solving systems of
equations over finite monoids: this problem is tractable if the underlying monoid is a
union of groups and commutative; otherwise it is NP-complete. A more general setting,
when systems of polynomial equations are considered over an arbitrary finite (universal)
algebra, is studied in [58], which gives a generalization of the results on groups and
monoids mentioned above.

3.4 Example The NOT-ALL-EQUAL SATISFIABILITY problem [33, 75] is a restricted
version of the standard 3-SATISFIABILITY problem (Example 1.3) which remains NP-
complete. In this problem the clauses are ternary, and each clause is satisfied by any
assignment in which the variables of the clause do not all receive the same truth value.

This problem corresponds to the problem CSP({N}) where N is the following ternary
relation on {0,1}:
N ={0,13°\ {(0,0,0), (1,1, 1)}.

3.5 Example Let H = (V, E) be a finite graph. An instance of the GRAPH H-COLORING
problem consists of a finite graph G. The question is whether G can be homomorphically
mapped to H.

This problem precisely corresponds to the problem CSP({E}). If we consider only
undirected graphs H, then the complexity of GRAPH H-COLORING has been completely
characterised [40]: it is tractable if H is bipartite or contains a loop; otherwise it is
NP-complete. However, if we allow H and G to be directed graphs, then the complexity
of GRAPH H-COLORING has not yet been fully characterised. Moreover, it was shown
in [31] that every problem CSP(I') with finite I' is polynomial-time equivalent to GRAPH
H-CcOLORING for some suitable directed graph H.

Following a seminal work by Schaefer in 1978 [75], many researchers have studied the
following problem:

3.6 Problem Determine the complexity of a given constraint problem for all possible
values of the parameter I'.

Most progress has been made in the Boolean case (that is, when the set of values D
is {0,1}), such problems are sometimes called “generalized satisfiability problems” [33].
Schaefer obtained a complete classification for the standard decision-problem form of
the CSP over {0,1} [75], which is described in Section 4.3, below. Over the last decade,
classifications for many related Boolean constraint problems, including all of the problems
mentioned in Section 2, have been completed (see references in Section 2). Some of these
classifications are also described in Section 4.3.

Classifying the complexity in the non-Boolean case has proved to be a very difficult
task. Three main approaches to this problem have been considered; two of them are
based on the homomorphism form of the CSP.

(1) The homomorphism problem for graphs has been extensively studied (see, e.g., [39]),
and thus one can try to develop some methods of graph theory to apply in the more
general context of constraint satisfaction.

(2) The problem Hom(B) can be seen as the membership problem for the class of all
relational structures A such that A — B, and hence methods of finite model theory
can applied to study the definability of this class in various logics (from which one
can then derive information about the complexity of the problem [30]).

Elements of these two approaches are present in [24, 26, 31, 54].

In the remainder of this paper, we will discuss the third, algebraic, approach to the
complexity classification problem. This approach has proved to be the most fruitful so
far; it has made it possible to obtain very strong complexity classification results for a
wide variety of cases.

4 The Finite-Valued CSP

In this section we consider the case when the set of possible values for the variables in a
constraint satisfaction problem is finite.
4.1 Expressive Power of Constraint Languages

In any CSP instance some of the required relationships between variables are given explic-
itly in the constraints, whilst others generally arise implicitly from interactions between
different constraints. For any instance in CSP(T"), the explicit constraint relations must
be elements of I', but there may be implicit restrictions on some subsets of the variables
for which the corresponding relations are not elements of I, as the next example indicates.

4.1 Example Let I" be the set containing a single binary relation, y, over the set {0, 1,2},
where x is defined as follows:

x = {(0,0),(0,1),(1,0),(1,2),(2,1), (2,2)}.
One element of CSP(T") is the instance
P = ({Ul,an 3, U4}a {01 13 2}a {Cl) 025 035 C4a 05})5

where C1 = ((v1,v2),x), C2 = ((v1,v3),X), C3 = ((v2,v3),X), C1 = ((v2,v4),x), C5 =
((’Ug,’U4),X).

Vg

Figure 1: The CSP instance P defined in Example 4.1

Note that there is no explicit constraint on the pair (vi,vs). However, by considering
all solutions to P, it can be shown that the possible pairs of values which can be taken
by this pair of variables are precisely the elements of the relation x’ = x U {(1,1)}.

We now define exactly what it means to say that a constraint relation can be expressed
in a constraint language.

4.2 Definition A relation p can be ezpressed in a constraint language I' over D if there
exists a problem instance (V, D, C) in CSP(I'), and a list, s, of variables, such that the
solutions to (V, D, C) restricted to s give precisely the tuples of p.

For any constraint language I', the set of all relations which can be expressed in I' will
be called the expressive power of T'.

The expressive power of a constraint language I can be characterised in a number of
different ways [46]. For example, it is equal to the set of all relations that may be obtained
from the relations in I' using the relational join and project operations from relational
database theory [38]. Alternatively, it can be shown to be equal to the set of relations
definable by primitive positive formulas involving the relations of I' and equality, which
is defined as follows.

4.3 Definition For any set of relations T' over D, the set (I') consists of all relations
that can be expressed using

(1) relations from T', together with the binary equality relation on D (denoted =p),
(2) conjunction, and
(3) existential quantification.

4.4 Example Example 4.1 demonstrates that the relation x’ belongs to the expressive
power of the constraint language I' = {x}. It is easy to deduce from the construction
given in Example 4.1 that

X' (z,y) = Fudv(x(z,u) A x(z,v) A x(u,v) A x(u,y) A x(v,y)).

Hence, x' € ({x}).

4.2 Polymorphisms and Complexity

In this section we shall explore how the notion of expressive power may be used to simplify
the analysis of the complexity of the constraint satisfaction problem.

We first note that any relation that can be expressed in a language I' can be added
to I' without changing the complexity of CSP(T").

4.5 Proposition For any constraint language I' and any relation o belonging to the
expressive power of I', CSP(I' U {o}) is reducible in polynomial time to CSP(T).

This result can be established simply by noting that, given an arbitrary problem instance
in CSP(I'U{p}), we can obtain an equivalent instance in CSP(I") by replacing each
constraint C that has constraint relation o with a collection of constraints that have
constraint relations chosen from I' and that together express the constraint C.

By iterating this procedure we can obtain the following corollary.

10

4.6 Corollary For any constraint language T, and any finite constraint language Ty, if
[y is contained in the expressive power of I', then CSP(I'y) is reducible to CSP(L) in
polynomial time.

Corollary 4.6 implies that for any finite constraint language I', the complexity of CSP(T")
is determined, up to polynomial-time reduction, by the expressive power of I', and hence
by (I'). This raises an obvious question: how can we obtain sufficient information about
the set (I') to determine the complexity of CSP(T")?

A very successful approach to this question has been developed in [18, 43, 45], using
techniques from universal algebra [63, 71]. To describe this approach, we need to consider

finitary operations on D. We will use ng) to denote the set of all n-ary operations on the
set D (that is, the set of mappings f: D" — D), and Op to denote the set J;~, g).

An operation f € ng) will be called essentially unary if there exists some ¢ in the

range 1 <4 < n, and some operation g € Og) such that the following identity is satisfied

f(wlaan s ,[L‘n) = g(xl)

An essentially unary operation for which g is the identity operation is called a projection.
Any operation (of whatever arity) which is not essentially unary will be called essentially
NON-UNATY.

Any operation on D can be extended in a standard way to an operation on tuples over
D, as follows. For any operation f € Og), and any collection of tuples ay,ds,... ,d, €
D™, where d@; = (a1, ... ,a4im) (i =1...n), define f(d@y,...,d,) by setting

f(al,... ,Ein) = (f(an,... ,anl),... ,f(alm,... ,anm)).

4.7 Definition For any relation o € R(L;n), and any operation f € Og), if f(dy,...,dy) €
o for all choices of @y,... ,d, € p, then p is said to be invariant under f, and f is called

a polymorphism of o.

The set of all relations that are invariant under each operation from some set C C Op
will be denoted Inv(C). The set of all operations that are polymorphisms of every relation
from some set I' C Rp will be denoted Pol(T"). The operators Inv and Pol form a Galois
correspondence between Rp and Op (see Proposition 1.1.14 of [71]). A basic introduction
to this correspondence can be found in [69], and a comprehensive study in [71].

Sets of operations of the form Pol(T") are known as clones and sets of relations of the
form Inv(C') are known as relational clones [71]. Moreover, the following useful charac-
terisation of sets of the form Inv(Pol(T')) can be found in [71].

4.8 Theorem For every set I' C Rp, Inv(Pol(I')) = (T').

This result was combined with Corollary 4.6 to obtain the following result in [43].

4.9 Theorem For any constraint languages I',Ty C Rp, with Ty finite, if Pol(T") C
Pol(T'y), then CSP(I'y) is reducible to CSP(L') in polynomial time.

11

Sets of
operations

Sets of
relations

Inv(Pol(I')) o
=(I)

Figure 2: The operators Inv and Pol

This result implies that, for any finite constraint language I' over a finite set, the com-
plexity of CSP(T") is determined, up to polynomial-time reduction, by the polymorphisms
of I.

We now apply this result to obtain a sufficient condition for NP-completeness of
CSP(T'). A constraint language I' is said to be strongly rigid if Pol(I") consists of projec-
tions only.

4.10 Proposition If T is strongly rigid then CSP(T) is NP -complete.

This proposition follows from Theorem 4.9 by setting I'y = {N} (see Example 3.4),
assuming {0,1} C D, and using the fact that every relation on D is invariant under any
projection.

Proposition 4.10 was used in [59] to show that most non-trivial problems of the form
CSP(T'), with finite I, are NP-complete. More precisely, let R(n, k) denote a random
k-ary relation on the set {1,... ,n}, for which the probability that (a1,... ,ax) € R(n,k)
is equal to 1/2 independently for each k-tuple (aq,... ,ax) where not all a;’s are equal;
also, set (a,...,a) & R(n,k) for all a (this is necessary to ensure that CSP(R(n,k)) is
non-trivial). It is shown in [59] that the probability that {R(n, k)} is strongly rigid tends
to 1 as either n or k tends to infinity.

4.3 Complexity of Boolean Problems

In this section we describe some of the results that have been obtained concerning the
complexity of Boolean constraint problems, that is, problems over a two-valued domain.

12

The first result of this kind was a complete classification of the complexity of the
ordinary Boolean constraint satisfaction problem obtained by Schaefer in 1978 [75]. Recall
that a computational problem is called tractable if there is a polynomial-time algorithm
deciding every instance of the problem. The class of all tractable problems is denoted
PTIME.

4.11 Theorem For any constraint language T' C Ry 1y, CSP(T) is tractable when (at
least) one of the following conditions holds:

(1) Every g in T’ contains the tuple (0,0,... ,0).
(2) Every o in T contains the tuple (1,1,...,1).

(3) Every o in T is definable by a CNF' formula in which each conjunct has at most one
negated variable.

(4) Every o in T is definable by a CNF' formula in which each conjunct has at most one
unnegated variable.

(5) Ewvery o in T is definable by a CNF formula in which each conjunct has at most two
literals.

(6) Every o in T is definable by a system of linear equations over the two-element field.
In all other cases CSP(I') is NP -complete.

This result establishes a dichotomy for versions of this problem parameterized by the
choice of constraint language: they are all either tractable or NP-complete. Dichotomy
theorems of this kind are of particular interest because, on the one hand, they determine
the precise complexity of particular constraint problems, and, on the other hand, they
demonstrate that no problems of intermediate complexity can occur in this context. Note
that the existence of constraint problems of intermediate complexity cannot be ruled out a
priori due to the result [57] that if PTIME # NP then the class NP contains (infinitely
many pairwise inequivalent) problems which are neither tractable nor NP-complete.

Using the algebraic approach described in the previous sections, together with the
knowledge of possible clones on a two-element set obtained in [72], Schaefer’s result can
be reformulated in the following much more concise form.

4.12 Theorem For any set of relations T C Ry 1y, CSP(T') is tractable when Pol(T')
contains any essentially non-unary operation or a constant operation. Otherwise it is
NP-complete.

4.13 Example Recall the relation N over {0, 1} defined in Example 3.4. Using general
results from [72], it can be shown that Pol({N}) contains essentially unary operations
only, and hence, by Theorem 4.12, CSP({N}) is NP-complete.

13

Schaefer’s result has inspired a series of analogous investigations for many related
constraint problems, including those listed in Section 2. We will now list some com-
plexity classification results that have recently been obtained for these problems in the
Boolean case. Surprisingly, for a wide variety of such related problems it turns out that
the polymorphisms of the constraint language are highly relevant to the study of the
computational complexity.

4.14 Theorem Let I' C Ryg 1y be a Boolean constraint language. The following facts
are known to hold for constraint problems parameterized by T':

e The Counting Problem is tractable if Pol(T") contains the unique affine operation
on {0,1}, x — y + z. Otherwise it is #P-complete [21].

e The Quantified Problem is tractable if Pol(T') contains an essentially non-unary
operation. Otherwise it is PSPACE-complete [21, 23].

e The Equivalence problem is tractable if Pol(T") contains an essentially non-unary
operation or a constant operation. Otherwise it is coNP-complete [6].

e The Inverse Satisfiability problem is tractable if Pol(I') contains an essentially
non-unary operation. Otherwise it is coNP-complete [49].

e The Maximum Hamming Distance problem is tractable if Pol(T') contains ei-
ther a constant operation, or the affine operation and the negation operation on

0,1} [22].

A full description of these results requires the careful definition of the relevant complexity
classes and reductions, which is beyond the scope of this paper, so we refer the reader to
the cited papers for details.

4.15 Example Recall the relation N over {0, 1} defined in Example 3.4. Using general
results from [72], it can be shown that Pol({N}) contains essentially unary operations
only. Hence, by Theorem 4.14, we can immediately conclude that:

e Counting the number of solutions to an instance of CSP({/N}) is #P-complete;

e Deciding whether a quantified Boolean formula whose quantifier-free part involves
only conjunctions of the predicate N is true is PSPACE-complete.

e Deciding whether two instances of CSP({/N}) have the same solutions is coNP-
complete;

e Deciding whether a given set of n-tuples is the set of solutions to some instance of
CSP({N}) is coNP-complete.

14

4.4 From the CSP to Algebras and Varieties

Most of the results presented in this section were first obtained in [15, 17, 18].

With any constraint language I' C Rp one can associate an algebra Apr = (D; Pol(T)).
In this section we show that the complexity of the problem CSP(I") is completely deter-
mined by certain properties of Ap. (We refer the reader to [63] for a general background
in universal algebra.)

Recall that algebras are said to be term equivalent if they have the same set of term
operations. Since, the term operations of Ar are precisely the operations in Pol(T"),
Theorem 4.9 implies that term equivalent algebras give rise to problem classes of the
same complexity.

4.16 Proposition Let I';,I's C Rp, where D 1s finite. If Ap, and Ar, are term equiva-
lent then T'y and T's are tractable or NP-complete simultaneously.

This allows us to introduce the notion of a tractable algebra.

4.17 Definition An algebra A = (D; F) is said to be tractable if the constraint language
Inv(F) is tractable. It is said to be NP-complete if Inv(F') is NP-complete.

Thus, the complexity classification problem for constraint languages reduces to the
complexity classification problem for finite algebras. Furthermore, the next results show
that it is possible to significantly restrict the class of algebras which need to be classified.

Let A = (D; F) be an algebra, and U C D. Let A‘U denote the algebra A{U = (U, F'),

where F' consists of all operations of the form f|y (the restriction of f to U), for each
term operation f of A such that f € Pol(U).

4.18 Proposition Let A be a finite algebra, f a unary term operation such that f(f(z)) =
f(z) and U = f(D). Then A is tractable if and only if A{U is tractable.

Hence, by choosing a unary term operation with a minimal range, we may restrict
ourselves to considering only surjective algebras, that is, algebras all of whose term op-
erations are surjective.

Recall that an operation f is called idempotent if it satisfies the identity f(z,... ,x) =
z, and the full idempotent reduct of an algebra A = (D; F) is the algebra |d(A) = (D, F'
where F’ consists of all idempotent term operations of A.

4.19 Proposition A surjective finite algebra A is tractable if and only if its full idem-
potent reduct is tractable.

It follows that to classify the complexity of arbitrary finite algebras it is sufficient to
consider only idempotent algebras, that is, algebras whose operations are all idempotent.

Next, we show that the standard algebraic constructions preserve the tractability of
an algebra.

15

4.20 Theorem Let A be a finite algebra. If A is tractable, then all of its subalgebras,
homomorphic images and finite direct powers are also tractable. Conversely, if A has
an NP-complete subalgebra, homomorphic image, or finite direct power, then it is NP-
complete itself.

For an algebra A, we denote the pseudo-variety and the variety generated by A by pvar(A)
and var(A), respectively.

4.21 Corollary A finite algebra A is tractable if and only if every algebra from pvar(A)
1s tractable.

As is well known, if 2 is a finite class of finite algebras, then the pseudo-variety
generated by 2 equals the class of finite algebras from the variety generated by .

4.22 Corollary A finite algebra A is tractable if and only if every finite algebra from
var(A) is tractable.

4.23 Corollary If A is a finite algebra, and var(A) contains a finite NP-complete alge-
bra, then A is NP-complete.

Thus, the tractability of an algebra is a property which can be determined by identities.

We call an algebra a set if it contains more than one element and all of its operations
are projections. By combining Proposition 4.10 with Corollary 4.23, we get the following
result.

4.24 Corollary If the pseudovariety generated by a finite idempotent algebra A contains
a set then A is NP-complete.

A homomorphic image of a subalgebra of an algebra A is called a factor of A.

4.25 Proposition If A is an idempotent algebra and pvar(A) contains a set then some
factor of A is a set.

Remarkably, the presence of a set as a factor is the only known reason for an idem-
potent algebra to be NP-complete. This prompts us to suggest the following conjecture.

4.26 Conjecture A finite idempotent algebra A is tractable if and only if
none of the factors of A is a set; (No-SET)

otherwise it is NP-complete.

It was shown in [17] that if one weakens Conjecture 4.26 by removing the condition of
idempotency, or replacing “factor” by either “subalgebra” or “homomorphic image”, then
the resulting conjecture is false.

16

It was proved in [79] that a variety V generated by a finite idempotent algebra contains
no set if and only if there is an n-ary term f (called a Taylor term) in V such that V
satisfies n identities of the form

f(xila"'axin):f(yila"'7yin)a izla"'ana

where z;;,y;; € {z,y} and z;; # y;; for all 4, j. Therefore, Corollary 4.24 can be restated
as follows.

4.27 Corollary If a finite idempotent algebra has no Taylor term, then it is NP-complete.

This corollary was used in [58] to study systems of polynomial equations over finite
algebras, where it was proved, in particular, that solving systems of equations over a
non-trivial algebra from a congruence-distributive variety is NP-complete, and, further-
more, solving systems of equations over a Mal’'tsev algebra is tractable if this algebra is
polynomially equivalent to a module, otherwise it is NP-complete.

Using the result from [79] mentioned above, Conjecture 4.26 can be restated in terms
of identities.

4.28 Conjecture A finite idempotent algebra A is tractable if it has a Taylor term;
otherwise it is NP-complete.

Finally, the condition (N0O-SET) from Conjecture 4.26 can be expressed in terms of tame
congruence theory [41]: a finite idempotent algebra satisfies this condition if and only if
the variety it generates “omits type 1”7 [15].

4.5 Tractable Algebras, Classification Results and Tractability Tests
4.5.1 Tractable Algebras

During the last decade several particular identities (particular forms of Taylor term) have
been identified that guarantee the tractability of algebras satisfying one of these identities
(that is, having a Taylor term of one of these special forms) [9, 12, 27, 43, 44, 45].

Recall that a binary operation - is called a 2-semilattice operation if it satisfies the
identities z-z = z, -y = y-x and (z-x)-y = z-(x-y). Note that a semilattice operation is a
particular case of a 2-semilattice operation. A ternary operation f satisfying the identities
f(z,y,y) = f(y,y,z) = x is called a Mal’tsev operation, and an n-ary operation g is called
a near-unanimity operation if it satisfies the identities

f(y’x""’x):f(x’y’x"" ’x):"':f(x"" ’x’y):x'

An n-ary operation is called totally symmetric if, for all x1,... ,x, and y1,... ,y, such
that {z1,... ,2,} = {y1,... ,yn}, it satisfies the identities

fl@rsosan) = fyis - yn)-

(Note that, in [27], a family (f,),>2 of totally symmetric operations, where f, is n-ary,
was called a set function).

17

4.29 Theorem If a finite algebra is tractable if it has (at least) one the following:

- a 2-semilattice term operation;
— a Mal’tsev term operation;
- a near-unanimity term operation;

- n-ary totally symmetric term operations for all n > 2.

Another class of algebras which has been shown to be tractable [25] is the class of
para-primal algebras, which are defined as follows. Let ¢ an n-ary relation on D, and
I={iy,... it} C{1,... ,n} with i; < ... <. By the projection of o onto I we mean
the relation Q‘I = {(aj,...,a;) | (a1,... ,a,) € o}. The set I is said to be p-reduced if
it is minimal with the property that the natural mapping o — Q‘I is one-to-one. A finite
algebra A is called para-primal if for every n € N, every subuniverse g of A", and every
o-reduced set I, we have Q‘I = [Lier g‘{i}. However, it is known that every para-primal

algebra has a Mal'tsev term operation (see Theorem 4.7 of [77]), and, hence, tractability
of para-primal algebras follows from Theorem 4.29.

4.5.2 Classification results

Algebras of several special types have been completely classified with respect to the
complexity of the corresponding constraint satisfaction problems.

Strictly simple algebras. A finite algebra is said to be strictly simple if it is
simple and has no subalgebras with more than one element. Strictly simple algebras are
completely described in [78].

4.30 Proposition ([17, 18]) A finite idempotent strictly simple algebra is tractable if
it 1s not a set; otherwise it is NP -complete.

Homogeneous algebras An algebra is called homogeneous if every permutation
on its base set is an automorphism of the algebra. Finite homogeneous algebras are
completely described in [61].

4.31 Proposition ([25]) A finite homogeneous algebra is tractable if it satisfies the con-
dition (NO-SET); otherwise it is NP-complete.

Finite semigroups. A semigroup is called a left- [right-]zero semigroup if z -y = x
[z -y = y] for all z,y. Tt is called a block-group if none of its subsemigroups is a left- or
right-zero semigroup. As is easily seen, block-groups are exactly those semigroups that
have no factor which is a set.

4.32 Proposition ([16]) A finite semigroup is tractable if it is a block-group; otherwise
it is NP -complete.

Small algebras. Conjecture 4.26 has been proved for 2- and 3-element algebras.

4.33 Theorem ([75, 11])

18

(1) An idempotent two-element algebra is tractable if it is not a set; otherwise it is
NP-complete.

(2) Anidempotent three-element algebra is tractable if it satisfies the condition (NO-SET);
otherwise it is NP -complete.

Conservative algebras. An algebra is said to be conservative if every subset of its
universe is a subalgebra, or, equivalently, if f(z1,... ,z,) € {z1,... ,z,} for every term
operation f and all zq,... , ;.

4.34 Theorem ([13]) A conservative algebra A is tractable if every 2-element subalge-
bra B has a term operation of one of the following types: a semilattice operation, a ternary
near-unanimity operation (that is, a majority operation), or a Mal’tsev operation; other-
wise A is NP-complete.

It is not hard to check that the conditions stated in Theorem 4.34 are equivalent to
(NO-SET) for conservative algebras.

4.5.3 Testing Tractability

We now consider the problem of deciding whether a given constraint language or idem-
potent algebra is tractable. Following [21], we call such a problem a meta-problem. A
priori, there is no upper complexity bound for this problem, it may even be undecidable.
However, if Conjecture 4.26 is true, then, given the basic operations of an idempotent
algebra, one can straightforwardly check whether any factor of the algebra is a set. If we
are given a finite constraint language I' on a finite set A, then the presence of a factor
which is a set can be detected by examining all polymorphisms of I' of arity at most |A|.
Thus, the meta-problem is decidable, assuming Conjecture 4.26 holds. In this section we
study its complexity.

For a constraint language I, let f € Pol(I') be a unary operation with minimal range
U,and let f(T) = {f(0) | 0 € T} where f(0) = {f(@) | @ € o}. Denote by T the constraint
language f(I')U{{a} | a € U}. It follows from Propositions 4.18 and 4.19 that I" tractable
if and only if T is tractable. Moreover, the algebra A= = (U, Pol(T)) is idempotent.

We consider three combinatorial decision problems related to the condition (NO-SET).

CSP-TRACTABILITY-OF-ALGEBRA
Instance. A finite set A and operation tables of idempotent operations fi,... , f, on A.
Question. Does the algebra A = (4;{f1,..., fa}) satisfy (NO-SET)?

CSP-TRACTABILITY
Instance. A finite set A and a finite constraint language I" on A.
Question. Does the algebra A = (U, Pol(T)) satisfy (NO-SET)?

CSP-TRACTABILITY (k)
Instance. A finite set A4, [A| <k, and a finite constraint language I' on A.
Question. Does the algebra A = (U, Pol(I")) satisfy (NO-SET)?

4.35 Theorem ([15])

19

(1) The problem CSP-TRACTABILITY-OF-ALGEBRA is tractable.
(2) The problem CSP-TRACTABILITY (k) is tractable.
(3) The problem CSP-TRACTABILITY is NP-complete.

The algorithm solving CSP-TRACTABILITY-OF-ALGEBRA is, in fact, an adapted version
of the algorithm presented in [3] for finding the type set of a finite algebra. Since this
algorithm uses operations of arity bounded by the size of the algebra, it can be further
transformed to an algorithm for solving CSP-TRACTABILITY(k). Finally, it is possible to
show that CSP-TRACTABILITY is in NP and to reduce the NP-complete problem NOT-
ALL-EQUAL-SATISFIABILITY (see Example 3.4) to CSP-TRACTABILITY in polynomial
time.

4.6 The Counting CSP

In this section we discuss Problem 3.6 for the counting constraint satisfaction problem
(#CSP), which is the problem of counting solutions to an instance of CSP. Using the
logical and the homomorphism forms of the CSP (see Section 1) this problem can also be
formulated as the problem of counting satisfying assignments to a conjunctive formula,
that is, a formula of the form p; A ... A g,, where each p; is an atomic formula, in a given
interpretation, or alternatively as the problem of finding the number of homomorphisms
between two finite relational structures. For any constraint language I', giving rise to the
decision constraint satisfaction problem CSP(T"), we also define the corresponding class
#CSP(T") of counting problems.
The results of this section were first obtained in [14].

4.36 Example An instance of the #3-SAT problem [20, 21, 81, 82] is specified by giving
an instance of the 3-SATISFIABILITY problem (see Example 1.3) and asking how many
assignments satisfy it. Therefore, #3-SAT is equivalent to #CSP(I") where I is the set
of ternary Boolean relations which are expressible by clauses.

4.37 Example In the problem ANTICHAIN [73], we are given a finite poset (P; <), and
we aim to compute the number of antichains in P. This problem can be expressed in the
#CSP-form as follows. Let p< be the predicate of the natural order on {0,1}. We assign a
variable z, to each element a € P. Then the #CSP({o<}) instance ® = A ., 0<(zq,zs)
can be shown to be equivalent to the original ANTICHAIN instance. B

To show this, notice that every model ¢ to ® satisfies the following condition: if
¢(zq) =1 and a < b then ¢(z) = 1. This means that the set F, = {a € P | ¢(z,) =1}
is a filter of P. Hence the models of ® correspond one-to-one to the filters of P, and
consequently, to the antichains of P.

On the other hand, any #CSP({o<}) instance is reducible to an ANTICHAIN in-
stance, though not so straightforwardly (see [14]). Thus ANTICHAIN is equivalent to

#CSP({o<})-

20

The general #CSP is known to be ZP-complete, as follows from Theorem 4.14, or the
results of [82] and the examples above. We call a constraint language ' #-tractable if, for
every finite I’y C T", the problem #CSP(T'y) is polynomial time solvable. The language T
is said to be #P-complete if #CSP () is #P-complete for a certain finite I'y C I'.

The expressive power and the polymorphisms of a constraint language again play
crucial roles in determining the complexity of #CSP(T").

4.38 Proposition For any constraint languages, I',['g, on a finite set D, with 'y finite,
if To C(T), then #CSP(Ty) is reducible to #CSP(T) in polynomial time.

4.39 Proposition For any constraint languages I',Ty, on a finite set D, with Ty finite,
if Pol(I') C Pol(T'y), then #CSP(Ly) is reducible to #CSP(T') in polynomial time.

Proposition 4.39 implies that, as with the decision CSP, the algebra Ar fully determines
the counting complexity of a constraint language I'. We will say that a finite algebra
A = (D; F) is #-tractable [#P-complete] if so is the constraint language Inv(F').

The next result shows that, once again, standard constructions preserve tractability.

4.40 Theorem Let A be a finite algebra. If A is #-tractable, then all of its subalgebras,
homomorphic images and finite direct powers are also #-tractable. Conversely, if A has
a #P-complete subalgebra, homomorphic image, or finite direct power, then A is #P-
complete itself.

4.41 Theorem A finite algebra is #-tractable (#P-complete) if and only if its full idem-
potent reduct is #-tractable (#P-complete).

The benchmark hard counting problems arise from binary reflexive non-symmetric rela-
tions.

4.42 Proposition If p is a binary reflexive non-symmetric relation on a finite set, then

#CSP({o}) is #P-complete.

Theorem 4.40, Proposition 4.42, and the results from [41], provide a link between the
complexity of #CSP and Mal’tsev operations, which we will now investigate. The next
statement follows from Theorem 9.13 of [41].

4.43 Theorem For a finite algebra A the following conditions are equivalent:
(1) A does not have a Mal’tsev term operation.

(2) There is a finite algebra B = (B; F) € var(A), such that Inv(F) contains a binary
reflexive non-symmetric relation.

By Proposition 4.42, the algebra B from Theorem 4.43(2) is #P-complete. Furthermore,
Theorem 4.40 implies that A is also #£P-complete.

4.44 Corollary Fwvery finite algebra having no Mal’tsev term operation is #P-complete.

21

By making use of Corollary 4.44 we can obtain a very easy proof of the dichotomy
theorem for the Boolean #CSP ([20], see Theorem 4.14). First, it follows from the results
of [72], that any Boolean relation which is invariant under some Mal’tsev operation on
{0,1} is also invariant under the unique affine operation on {0,1}, z — y + 2. Hence, by
Corollary 4.44, any Boolean constraint language is either #P-complete, or else a subset
of Inv({z — y + z}). Any relation belonging to Inv({z —y + z}) is the solution space of
a system of linear equations over the 2-element field, so it is possible to find a basis for
this set in polynomial time. Furthermore, the number of solutions in this set equals 2",
where n is the number of vectors in the basis.

4.45 Example The # H-COLORING problem is the counting version of the GRAPH H-
COLORING problem (see Example 3.5). In this problem, the goal is to find the number of
homomorphisms from a given graph G to the fixed graph H.

If the #H-COLORING problem is restricted to undirected graphs then, as proved
in [29], the problem is tractable if every connected component of H is either an isolated
vertex, or a complete graph with all loops, or a complete unlooped bipartite graph;
otherwise the problem is #P-complete. The tractability part of this result is easy, and
the hardness part can be easily derived from Corollary 4.44, since symmetric relations
(or graphs) invariant under a Mal’tsev operation must be of the form specified above.

Mal’tsev operations on a three-element set, and the structure of relations invariant
with respect to them, are exhaustively studied in [10]. Making use of these results, three-
element algebras have been completely classified with respect to counting complexity [14].

4.46 Theorem A three-element algebra is #-tractable if it is Mal’tsev; otherwise it is
#HP-complete.

An algebra is said to be uniform if, for any subalgebra B, the blocks of every congruence
of B are of the same size. Clearly, all two-element algebras, groups and quasi-groups are
uniform.

4.47 Theorem FEvery uniform Mal’tsev algebra is #-tractable.

Theorems 4.46 and 4.47 prompt a natural conjecture: a finite algebra is #-tractable if
and only if it is Mal’tsev; otherwise it is Z2P-complete. However, this conjecture does not
hold, since there is a 5-element Mal’'tsev algebra that can be proved to be #P-complete.

4.7 The Quantified CSP

The standard constraint satisfaction problem over an arbitrary finite domain can be
expressed as follows: given a first-order sentence of the form 3z ...3zi(01 A ... 0),
where each p; is an atomic formula, and z1,... ,z; are the variables appearing in the p;,
determine whether the sentence is true (see Section 1). In this subsection we consider
a more general framework which allows arbitrary quantifiers over constrained variables,
rather than just existential quantifiers. This form of the CSP is called the quantified CSP,
or QCSP for short. The Boolean QCSP (also known as QSAT or QBF), and some of its

22

restrictions (such as Q3SAT), have always been standard examples of PSPACE-complete
problems [33, 67, 75].
All the results presented in this section were first obtained in [8, 19].

4.48 Definition For a constraint language I' C Rp, an instance of QCSP(T) is a first-
order sentence Qiz; ... Qiz; (01 A... A py), where each p; is an atomic formula involving
a predicate from I', x1,... ,x; are the variables appearing in the g;, and Qy,...,Q; are
arbitrary quantifiers. The question is whether the sentence is true.

Clearly, an instance of CSP(I") corresponds to an instance of QCSP(I") in which all the
quantifiers happen to be existential.

We note that in the Boolean case, the complexity of QCSP(T") has been completely
classified (see Theorem 4.11). For problems over larger domains no complete classification
has yet been obtained, but there are a number of known results concerning the complexity
of special cases.

4.49 Example Consider the following COLORING CONSTRUCTION GAME played by two
players, Player 1 and Player 2: given an undirected graph G = (V, E), a linear ordering
onV (i.e., a bijection f : V — {1,... ,|V|}), an ownership function w : V' — {1,2}, and a
finite set of colours D with |D| > 3. In the i’th move, the player who owns vertex f (i)
(that is, Player w(f~!(i))) colours it in such a way that its colour is different from the
colours of all its neighbours that are already coloured. Player 1 wins if all vertices are
coloured at the end of the game.

Deciding whether Player 1 has a winning strategy in an instance of this game can be
translated into an instance of the quantified version of the GRAPH |D|-COLORABILITY
problem, QCSP({#p}). To make this translation we view elements from V as variables,
elements of F as constraint scopes, the relation #p as the only available constraint
relation, the variables from w~'(1) as existentially quantified, the variables from w~!(2)
as universally quantified, and the order of quantification as specified by the function f.

Since the problem of determining whether Player 1 has a winning strategy in this
game was shown to be PSPACE-complete in [5], it follows that QCSP({#p}) is also
PSPACE-complete.

It can be shown that, for quantified constraint satisfaction problems, surjective poly-
morphisms play a similar role to that played by arbitrary polymorphisms for ordinary
CSPs (cf. Theorem 4.9). Let s-Pol(T") denote the set of all surjective operations from
Pol(T").

4.50 Theorem For any constraint languages T',Tg C Rp, with Ty finite, if s-Pol(T") C
s-Pol(Ty), then QCSP(Ty) is reducible to QCSP(T') in polynomial time.

This theorem follows immediately from the next two propositions.

4.51 Definition For any set I' C Rp, the set [['] consists of all predicates that can be
expressed using

23

(1) predicates from T', together with the binary equality predicate =p on D,
(2) conjunction,

(3) existential quantification,

(4)

4

universal quantification.

4.52 Proposition For any constraint languages T', Ty C Rp, with Ty finite, if [['y] C [T,
then QCSP(Ty) is reducible to QCSP(T) in polynomial time.

4.53 Proposition For any constraint language T' over a finite set, [I'] = Inv(s-Pol(T")).

Note that Proposition 4.53 intuitively means that the expressive power of constraints
in the QCSP is determined by their surjective polymorphisms. Hence, in order to show
that some relation g belongs to [I'], one does not have give an explicit construction, but
instead one can show that p is invariant under all surjective polymorphisms of ', which
often turns out to be significantly easier.

We remark that the operators Inv() and s-Pol() used in Proposition 4.53 form a Ga-
lois connection between Rp and the set of all surjective members of Op which has not
previously been investigated (see, e.g., survey [70]).

Using Theorem 4.50, together with Example 4.49, we can obtain a sufficient condition
for PSPACE-completeness of QCSP(T'), in terms of the surjective polymorphisms of T

4.54 Theorem For any finite set D with |D| > 3, and any I’ C Rp, if every f € s-Pol(T")
is of the form f(z1,...,2y) = g(x;) for some 1 < i < n and some permutation g on D,
then QCSP(I") is PSPACE-complete.

The next example uses this result to show that even predicates that give rise to trivial
constraint satisfaction problems can give rise to intractable quantified constraint satis-
faction problems. This can happen because non-surjective polymorphisms, which may
guarantee the tractability of the CSP, do not affect the complexity of the QCSP.

4.55 Example Let 75 be the s-ary “not-all-distinct” predicate holding on a tuple (a1, ... ,as)
if and only if |[{a1,... ,as}| < s. Note that 75 O {(a,... ,a) | a € D}, so every instance
of CSP({rs}) is trivially satisfiable by assigning the same value to all variables.

However, by Lemma 2.2.4 of [71], the set Pol({7p}) consists of all non-surjective
operations on D, together with all operations of the form given in Theorem 4.54. Hence,
{7p|} satisfies the conditions of Theorem 4.54, and QCSP ({7p}) is PSPACE-complete.
Similar arguments can be used to show that QCSP({7s}) is PSPACE-complete, for any
s in the range 3 < s < |D|.

On the tractability side, we have the following result. We call a semilattice operation
bounded if the corresponding partial order is bounded (that is, it is a lattice order). Recall
that the dual discriminator operation is defined by the rule

d(x,y,z)z{ y iy =z

r otherwise.

Note that the dual discriminator is a special type of near-unanimity operation.

24

4.56 Theorem For any constraint language I' over a finite set:

(1) if Pol(T") contains a Mal’tsev operation, or a near-unanimity operation, or a bounded
semilattice operation, then QCSP(T) is tractable;

(2) if Pol(T") contains the dual discriminator operation, then QCSP(T') is in NL.

Recall that the graph of a permutation 7 is the binary relation {(z,y) | y = 7(z)} (or
the binary predicate 7(z) = y), For the special case when T" contains the set A of all graphs
of permutations, there is a trichotomy result which says that such problems are either
tractable, or NP-complete, or PSPACE-complete. (We remark that the complexity of
the standard CSP(T") for such sets I' was completely classified in [25].)

To state this trichotomy result we need to define two additional surjective operations:

e The k-ary mear projection operation,

e i) = x1 if zq,...,x; are all different,
RAEVL PR g0 otherwise.

e The ternary switching operation,

rz ify =z,
s(z,y,2) =4 y ifx=z,
2z otherwise.

4.57 Theorem Let A CT C Rp, and |D| > 3.

- If s-Pol(T") contains the dual discriminator d, or the switching operation s, or (when
|D| € {3,4}) an affine operation, then QCSP(I') is in PTIME;

- else, if s-Pol(T) contains l|p|, then QCSP(T) is NP-complete;
- else QCSP(T") is PSPACE-complete.

5 The Infinite-Valued CSP

There are many computational problems which can be represented as constraint satis-
faction problems, but require an infinite set of values. In order to avoid representation
problems for infinite objects, we will consider CSPs with infinite sets of values in the
following form: fix an infinite relational structure B of finite signature; the input then
is a finite structure A of the same signature, and the question is whether there is a
homomorphism from A to B.

Here are two well-known examples of problems with an infinite set of possible values.

5.1 Example An instance of the AcycLiCc DIGRAPH problem is a directed graph G, and
the question is whether G is acyclic, that is, contains no directed cycles. It is easy to see
that this problem is equivalent to Hom(B) where B = (N; <), since a directed graph is
acyclic if and only if its vertices can be numbered in such a way that every arc leads from
a vertex with smaller number to a vertex with a greater one. This problem is tractable.

25

5.2 Example An instance of the BETWEENNESS problem is a pair (A,T) where A is a
finite set and T C A?; the question is whether there is a function f : A — {1,...,|A[}
such that, for every triple (a,b,¢) € T, we have either f(a) < f(b) < f(c) or f(a) >
f(b) > f(c). This problem is equivalent to Hom(B) with B = (N, R) where

R={(z,y,2) EN’ |z <y<zorz>y>zh
This problem is NP-complete [33].

It can be shown that neither of the above two problems can be represented as CSP(T")
for any constraint language I' over a finite set D.

5.1 Applicability of Polymorphisms

In order to investigate the applicability of the algebraic approach, described in previous
sections, to the infinite-valued CSP, the first question to be asked is whether the com-
plexity is determined by the polymorphisms of the constraint relations; that is, whether
(T') = Inv(Pol(T")) when I is a finite constraint language over an infinite domain. It is not
hard to see that the inclusion (I') C Inv(Pol(T")) always holds. However, this inclusion
can be strict, as the next example shows.

5.3 Example Consider I' = { Ry, Ry, R3} on N, where Ry = {(a,b,¢,d) | a = b or ¢ = d},
Ry = {(1)}, and R3 = {(a,a + 1) | a € N}. It is not difficult to show that every
polymorphism of I' is a projection, and hence Inv(Pol(I")) is the set of all relations on
N. However, one can check that, for example, the unary relation consisting of all even
numbers does not belong to (I').

However, for some countable structures B, the required equality does hold, as the
next result indicates.

A countable structure B (of finite signature) is called homogeneous if every isomor-
phism between any pair of substructures is induced by an automorphism of 5. A countable
structure is called w-categorical if it is determined (up to isomorphism) by its first-order
theory. It is known that every countable homogeneous structure is w-categorical, and
that a countable structure is w-categorical if and only if its automorphism group, when
acting on the set of all n-tuples (for any n) of elements from the structure, has only
finitely many orbits (see, e.g., [42]).

5.4 Theorem ([4]) If Br is a countable w-categorical structure then (I') = Inv(Pol(T")).

Many examples of countable homogeneous structures, as well as remarks on the complex-
ity of the corresponding constraint satisfaction problems, can be found in [4].

5.2 The Interval-Valued CSP

One form of infinite-valued CSP which has been widely studied in artificial intelliegence
is the case where the values taken by the variables are intervals on the real line. This

26

‘ Basic relation Example ‘ Endpoints

I precedes J p III It <J-
J preceded by I p~! JJJ
I meets J m IIII It =J-
J met by T m~1 JJiJ
I overlaps J o IIII I <J <I",
J overl. by I o1 3333 It <Jt
I during J d III I—>J-,
J includes T d=' 13333333 | It < Jt
I starts J s 111 I—=J,
J started by I st | 3333333 | It < Jt
I finishes J f Imr | It =Jt,
J finished by T ! JJjy3iy | I->J-
I equals J = 1111 I—=J-,
3333 It =J*t

Table 1: The 13 basic relations in Allen’s interval algebra.

setting is used to model temporal behaviour of systems, where the intervals represent time
intervals during which events occur. The most popular such formalism is Allen’s interval
algebra (AIA for short), introduced in [1], which concerns binary qualitative relations
between intervals. This algebra contains 13 basic relations (see Table 1), corresponding
to the 13 distinct ways in which two given intervals can be related. The complete set of
relations in AIA consists of the 2'3 = 8192 possible unions of the basic relations.

Let I' be a constraint language over the set of intervals on the real line, whose ele-
ments are members of Allen’s interval algebra, and let Br be the corresponding relational
structure. It is not hard to see that every instance of CSP(I") can also be (more graph-
ically) viewed as a directed graph whose vertices represent the variables and whose arcs
are each labelled with a relation from I'. The question would then be whether one can
assign intervals to the vertices so that all constraints on the arcs are satisfied.

Some well-known combinatorial problems can be represented as CSP(I") for a suitable
subset I' of ATA, as the next example indicates.

5.5 Example An undirected graph is called an interval graph if it possible to assign
(open) intervals to its nodes so that two intervals intersect if and and only if the cor-
responding nodes are adjacent. An instance of the INTERVAL, GRAPH SANDWICH prob-
lem [35] consists of two (undirected) graphs G; = (V, E1) and Gy = (V, E32) such that
E; C E5. The question is whether there is E such that £y C E C Ey and G = (V, E) is
an interval graph. This problem is known to be NP-complete [35].

This problem can be represented as CSP(T") where I' consists of two relations: “dis-
joint” (given by pUp ' UmUm™!) and its complement, “intersect” (the union of the

27

other nine basic relations). Indeed, let V' be the set of variables, then, to any edge e € E;
assign the constraint “intersect”, to any edge e ¢ Fs assign the constraint “disjoint”, and
leave all other pairs of variables unrelated. Solutions of this CSP precisely correspond to
interval graph sandwiches.

Note that the case when G; = (G5 is known as the INTERVAL GRAPH RECOGNITION
problem, which is tractable, but this problem is not of the form CSP(T') because in the
INTERVAL GRAPH RECOGNITION problem we cannot leave any pair of variables unrelated.

Choosing other pairs of complementary relations, one can obtain other graph sandwich
problems, such as the OVERLAP (or CIRCLE) GRAPH SANDWICH problem [35, 55]

The general CSP problem for ATA is NP-complete, as follows from the above example.
The problem of classifying subsets of AIA with respect to the complexity of the corre-
sponding CSP has attracted much attention in artificial intelligence (see, for example,
[76]).

Allen’s interval algebra has three operations on relations: composition, intersection,
and inversion. Note that these three operations can each be represented by using con-
junction and existential quantification, so, for any subset T' of ATA, the subalgebra I’ of
ATA generated by T' has the property that I C (T'). It follows from Corollary 4.6 that
CSP(T") and CSP(I) are polynomial-time equivalent. Hence it is sufficient to classify all
subalgebras of AIA.

Using computations in subalgebras of ATA, manipulations with primitive positive
formulas (called derivations in [55]) and a number of new NP-completeness results, a
complete classification of the complexity of all subsets of AIA was accomplished in [55],
where the following result was obtained.

5.6 Theorem Let I' be a subset of Allen’s interval algebra. If T' is contained in one
of the eighteen subalgebras listed in Table 2, then CSP(T) is tractable; otherwise it is
NP-complete.

In Table 2, for the sake of brevity, relations between intervals are written as collections
of basic relations. So, for instance, we write (pmod) instead of p Um Uo Ud. We also use
the symbol £, which should be interpreted as follows: a condition involving + means the
conjunction of two conditions, one corresponding to + and one corresponding to —. For
example, the condition (0)*' C r < (d)*! C 7 means that both (o) C r < (d) C r and
(o7 Cr < (d7!) C r hold.

It follows from Theorem 5.6 that CSP({r}), where r is a single relation in AIA, is NP-
complete if and only if r either satisfies rNr~! = (mm~') or is a relation with rNr—! =
and such that neither r nor r~! is contained in one of (pmod~'sf=!), (pmod~—'s~'f~!),
(pmodsf) and (pmodsf—1!).

It was noted in [4] that AIA (without its operations) is in fact a homogeneous relational
structure. Since we may assume, without loss of generality, that all intervals under
consideration have rational endpoints, we obtain a countable homogeneous structure of
finite signature. Therefore, by Theorem 5.4, the complexity classification problem for
subsets of ATA can be tackled using polymorphisms. Such an approach may provide a
route to simplifying the involved classification proof given in [55].

28

yFLE0=(p
Sg={rrn(pmod H 1)E £ = (d~) Cr}
So = {r|rN(pmod HfHE £ = (0)*! C r}
)

()= Cr}
(
(

A ={r|rn(pmod= 1) £) = (s~H*! Cr}
(
(
(

Sp={r|rn(pmod *f*
1

(
Ao ={r|rn(pmod=t~1)*l £} = (s)*! C r}
Az = {r | rn (pmodf)*t £ @ = (s)*! C r}
Ay ={r|rn(pmodf H)* #£ 0 = (s)** Cr}

Ep={r|rn(pmods)t! #0 = (p)*' Cr}

Eg ={r|rn (pmods)E! # 0 = (d)* Cr}
So_{r|rﬂ(pmods)i17é@:>(o) 1 gr}

By = {r|rn(pmods)™" # 0 = (f~1)*" Cr}
By = {r|rn(pmods)*! # 0 = (f)*! Cr}

By = {r|rn(pmod~'s™")*! £ = (f~1)*' Cr}
By ={r|rn(pmodls)*! £ = (f~H* Cr}

e =y 1) 70 (pmod)*! # @ = (s)*! C r, and
B D rn(ff)£0=(=)Cr

s -1, 1) rN(pmod=H)*! £ 0 = (fF-1)* Cr, and
B 2)rN(ss) #0=(=)Cr
H= {r

A=={r|r#0= (=) Cr}

2) rN(ds)* £ P & rn(d~H1)E £) = (0)*! Cr, and
3) rn(pm)* £ 0 &r Z (pm)*F = (0)F' Cr

Drn(os)* #0 & rn (o) #0 = (d)* Cr, and }

Table 2: The 18 maximal tractable subalgebras of Allen’s algebra.

29

References

1]

[10]
[11]

[12]

J.F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM, 26:832—
843, 1983.

J.F. Allen. Natural Language Understanding. Benjamin Cummings, 1994.

J. Berman, E. Kiss, P. Prohle, and A. Szendrei. The set of types of a finitely generated
variety. Discrete Math., 112(1-3):1-20, 1993.

M. Bodirsky and J. Nesettil. Constraint satisfaction problems with countable ho-
mogeneous structures. Computer Science Logic (Vienna, 2003), Lecture Notes in
Comput. Sci., 2803, 44-57. Springer, Berlin, 2003.

H. Bodlaender. On the complexity of some coloring games. Internat. J. Found.
Comput. Sci., 2(2):133-148, 1991.

E. Bohler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and isomorphism
for Boolean constraint satisfaction. Computer Science Logic (Edinburgh, 2002), Lec-
ture Notes in Comput. Sci., 2471, 412-426. Springer, Berlin, 2002.

E. Bohler, E. Hemaspaandra, S. Reith, and H. Vollmer. The complexity of Boolean
constraint isomorphism. Technical Report ¢s.CC/0306134, ACM Computing Re-
search Repository, 2003.

F. Borner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints: Algo-
rithms and complexity. Computer Science Logic (Vienna, 2003), Lecture Notes in
Comput. Sci., 2803, 58-70. Springer, Berlin, 2003.

A. Bulatov. Combinatorial problems raised from 2-semilattices. Submitted for pub-
lication.

A. Bulatov. Three-element Mal’tsev algebras. Submitted for publication.

A. Bulatov. A dichotomy theorem for constraints on a three-element set. Foundations
of Computer Science (Vancouver, BC, 2002), 649-658. IEEE Comput. Soc., 2002.

A. Bulatov. Mal’tsev constraints are tractable. Technical Report PRG-RR-02-05,
Computing Laboratory, University of Oxford, UK, 2002.

A. Bulatov. Tractable conservative constraint satisfaction problems. Logic in Com-
puter Science (Ottawa, ON, 2003), 321-330. IEEE Comput. Soc., 2003.

A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. Foundations of Computer Science (Boston, MA, 2003), 562—
571. IEEE Comput. Soc., 2003.

A. Bulatov and P. Jeavons. Algebraic structures in combinatorial problems. Tech-
nical Report MATH-AL-4-2001, Technische Universitat Dresden, Germany, 2001.

30

[16]

A. Bulatov, P. Jeavons, and M. Volkov. Finite semigroups imposing tractable con-
straints. In Gracinda M.S.Gomes, Jean-Eric Pin, Pedro V.Silva, editor, Semigroups,
Algorithms, Automata and Languages, 313-329. World Scientific, Singapore, 2002.

A. Bulatov, A. Krokhin, and P. Jeavons. Classifying complexity of constraints using
finite algebras. Submitted for publication.

A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction problems and finite
algebras. Automata, Languages and Programming (Geneva, 2000), Lecture Notes in
Comput. Sci., 1853, 272-282. Springer, Berlin, 2000.

H. Chen. Quantified constraint satisfaction problems: Closure properties, complex-
ity, and algorithms. manuscript, 2003.

N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Inform. and Comput., 125(1):1-12, 1996.

N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. STAM, Philadelphia, 2001.

P. Crescenzi and G. Rossi. On the Hamming distance of constraint satisfaction
problems. Theoret. Comput. Sci., 288(1):85-100, 2002.

V. Dalmau. Some dichotomy theorems on constant-free quantified Boolean formu-
las. Technical Report TR LSI-97-43-R, Department LSI, Universitat Politecnica de
Catalunya, 1997.

V. Dalmau. Constraint satisfaction problems in non-deterministic logarithmic space.
Automata, Languages and Programming (Malaga, 2002), Lecture Notes in Comput.
Sci., 2380, 414-425. Springer, Berlin, 2002.

V. Dalmau. A new tractable class of constraint satisfaction problems. Ann. Math.
Artif. Intell., 2004. to appear.

V. Dalmau, Ph.G. Kolaitis, and M.Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. Principles and Practice of Constraint Program-
ming (Ithaca, NY, 2002), Lecture Notes in Comput. Sci., 2470, 310-326. Springer,
Berlin, 2002.

V. Dalmau and J. Pearson. Set functions and width 1 problems. Principles and Prac-
tice of Constraint Programming (Alezandria, VA, 1999), Lecture Notes in Comput.
Sci., 1713, 159-173. Springer, Berlin, 1999.

N.W. Dunkin, J.E. Bater, P.G. Jeavons, and D.A. Cohen. Towards high order
constraint represenations for the frequency assignment problem. Technical Report
CSD-TR-98-05, Department of Computer Science, Royal Holloway, University of
London, Egham, Surrey, UK, 1998.

31

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[40]

[41]

[42]
[43]

[44]

M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms.
Random Structures Algorithms, 17:260-289, 2000.

H-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Berlin, second edition, 1999.

T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM .J.
Comput., 28:57-104, 1998.

E.C. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58:21-70, 1992.

M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, 1979.

M. Goldmann and A. Russell. The complexity of solving equations over finite groups.
Inform. and Comput., 178(1):253-262, 2002.

M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J. Algo-
rithms, 19(3):449-473, 1995.

G. Gottlob, L. Leone, and F. Scarcello. Hypertree decomposition and tractable
queries. J. Comput. System Sci., 64(3):579-627, 2002.

M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Foundations of Computer Science (Boston, MA, 2003),
552-561, IEEE Comput. Soc., 2003.

M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence, 66(1):57-89, 1994.

P. Hell. Algorithmic aspects of graph homomorphisms. In C. Wensley, editor, Sur-
veys in Combinatorics 2003, volume 307 of LMS Lecture Note Series, 239 — 276.
Cambridge University Press, 2003.

P. Hell and J. Negettil. On the complexity of H-coloring. J. Combin. Theory Ser.B,
48:92-110, 1990.

D. Hobby and R.N. McKenzie. The Structure of Finite Algebras, volume 76 of
Contemporary Mathematics. Amer. Math. Soc., Providence, R.I., 1988.

W. Hodges. A shorter model theory. Cambridge University Press, 1997.

P.G. Jeavons. On the algebraic structure of combinatorial problems. Theoret. Com-
put. Sci., 200:185-204, 1998.

P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1-2):251-265, 1998.

32

[45]

[46]

[47]

[48]

P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints.
J.ACM, 44:527-548, 1997.

P.G. Jeavons, D.A. Cohen, and M. Gyssens. How to determine the expressive power
of constraints. Constraints, 4:113-131, 1999.

L. Juban. Dichotomy theorem for generalized unique satisfiability problem. Funda-
mentals of Computation Theory (Iasi, 1999), Lecture Notes in Comput. Sci., 1684,
327-337. Springer, Berlin, 1999.

H. Kautz and B. Selman. Planning as satisfiability. Tenth Furopean Conference on
Artificial Intelligence (Vienna, 1992), 359-363, John Wiley and Sons, Chichester,
1992.

D. Kavvadias and M. Sireni. The inverse satisfiability problem. SIAM J. Comput.,
28(1):152-163, 1998.

S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of
constraint satisfaction problems. SIAM J. Comput., 30(6):1863-1920, 2001.

L. Kirousis and Ph. Kolaitis. A dichotomy in the complexity of propositional circum-
scription. Logic in Computer Science (Boston, MA, 2001), 71-80, ITEEE Comput.
Soc., 2001.

L. Kirousis and Ph. Kolaitis. On the complexity of model checking and inference in
minimal models. Logic Programming and Nonmonotonic Reasoning (Vienna, 2001),
Lecture Notes in Comput. Sci., 2173, 42-53. Springer, Berlin, 2001.

L. Kirousis and Ph. Kolaitis. The complexity of minimal satisfiability problems.
Inform. and Comput., 187:20-39, 2003.

Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint sat-
isfaction. J. Comput. System Sci., 61:302-332, 2000.

A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The
maximal tractable subalgebras of Allen’s interval algebra. J.ACM, 50(5):591-640,
2003.

A. Krokhin and P. Jonsson. Recognizing frozen variables in constraint satisfaction
problems. Technical Report TR03-062, Electronic Colloquium on Computational
Complexity, 2003.

R.E. Ladner. On the structure of polynomial time reducibility. J.ACM, 22:155-171,
1975.

B. Larose and L. Zadori. Taylor terms, constraint satisfaction and the complexity of
polynomial equations over finite algebras. manuscript, 2003.

33

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[72]

[73]

[74]

T. Luczak and J. NeSetfil. A probabilistic approach to the dichotomy problem.
Technical Report 2003-640, KAM-DIMATTIA Series, 2003.

A K. Mackworth. Constraint satisfaction. In S.C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, volume 1, 285-293. Wiley Interscience, 1992.

S.S. Marchenkov. Homogeneous algebras. Problemy Kibernet., 39:85-106, 1982.
(Russian).

K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction. MIT
Press, 1998.

R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices and Varieties,
volume I. Wadsworth and Brooks, CA, 1987.

U. Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Inform. Sci., 7:95-132, 1974.

C. Moore, P. Tesson, and D. Therien. Satisfiability of systems of equations over
finite monoids. Mathematical Foundations of Computer Science (Marianske Lazne,
2001), Lecture Notes in Comput. Sci., 2136, 537-547. Springer, Berlin, 2001.

B.A. Nadel. Constraint satisfaction in Prolog: complexity and theory-based heuris-
tics. Inform. Sci., 83(3-4):113-131, 1995.

C.H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

J.K. Pearson and P.G. Jeavons. A survey of tractable constraint satisfaction prob-
lems. Technical Report CSD-TR-97-15, Royal Holloway, University of London, July
1997.

N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge,
1997.

R. Poschel. Galois connections for operations and relations. Technical Report
MATH-AL-8-2001, Technische Universitat Dresden, Germany, 2001.

R. Poschel and L.A. Kaluznin. Funktionen- und Relationenalgebren. DVW, Berlin,
1979.

E.L. Post. The two-valued iterative systems of mathematical logic, volume 5 of Annals
of Mathematical Studies. Princeton University Press, 1941.

J.S. Provan and M.O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. STAM J. Comput., 12(4):777-788, 1983.

S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and con-
straint satisfaction problems. Inform. and Comput., 186(1):1-19, 2003.

34

[75]

[76]

[77]
[78]

[79]
[80]
[81]

[82]

T.J. Schaefer. The complexity of satisfiability problems. Tenth ACM Symposium
on Theory of Computing (San Diego, CA, 1978), 216-226, ACM Press, New York,
1978.

E. Schwalb and L. Vila. Temporal constraints: a survey. Constraints, 3(2-3):129-149,
1998.

A. Szendrei. Clones in Universal Algebra. University of Montreal, 1986.

A. Szendrei. Simple surjective algebras having no proper subalgebras. J. Austral.
Math. Soc. Ser.A, 48:434-454, 1990.

W. Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29:498-527, 1977.
E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.

L. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci.,
8:189-201, 1979.

L. Valiant. The complexity of enumeration and reliability problems. SIAM J. Com-
put., 8(3):410-421, 1979.

35

