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Abstra
tMany 
omputational problems arising in arti�
ial intelligen
e, 
omputer s
ien
eand elsewhere 
an be represented as 
onstraint satisfa
tion and optimization prob-lems. In this survey paper we dis
uss an algebrai
 approa
h that has proved to bevery su

essful in studying the 
omplexity of 
onstraint problems.1 Constraint Satisfa
tion ProblemsThe 
onstraint satisfa
tion problem (CSP) is a powerful general framework in whi
h avariety of 
ombinatorial problems 
an be expressed [21, 60, 62, 80℄. The aim in a 
on-straint satisfa
tion problem is to �nd an assignment of values to the variables, subje
t tospe
i�ed 
onstraints. In arti�
ial intelligen
e, this framework is widely a
knowledged asa 
onvenient and eÆ
ient way of modelling and solving a number of real-world problemssu
h as planning [48℄ and s
heduling [76℄, frequen
y assignment problems [28℄, imagepro
essing [64℄, programming language analysis [66℄ and natural language understand-ing [2℄. In database theory, it has been shown that the key problem of 
onjun
tive-queryevaluation 
an be viewed as a 
onstraint satisfa
tion problem [36, 54℄. Furthermore,some 
entral problems in 
ombinatorial optimization 
an be represented as 
onstraintproblems [21, 31, 43, 50℄. Finally, CSPs have attra
ted mu
h attention in 
omplexitytheory be
ause various versions of CSPs lie at the heart of many standard 
omplexity
lasses, and be
ause, despite their great expressiveness, they tend to avoid \intermediate"
omplexity; that is, they tend to be either tra
table or 
omplete for standard 
omplex-ity 
lasses [7, 8, 11, 13, 14, 21, 31, 51, 56, 74℄. On a more pra
ti
al side, 
onstraintprogramming is a rapidly developing area with its own international journal and an an-nual international 
onferen
e, and with new programming languages being spe
i�
allydesigned (see, e.g., [62℄).The standard toy example of a problem modelled as a 
onstraint satisfa
tion problemis the \8-queens" problem: pla
e eight queens on a 
hess board so that no queen 
an
apture any other one [80℄. One 
an think of the horizontals of the board as variables,and the verti
als as the possible values, so that assigning a value to a variable meanspla
ing a queen on the 
orresponding square of the board. The fa
t that no queen mustbe able to 
apture any other queen 
an be represented as a 
olle
tion of binary 
onstraintsCij, one for ea
h pair of variables i; j, where the 
onstraint Cij allows only those pairs(k; l) su
h that a queen at position (i; k) 
annot 
apture a queen at position (j; l). It iseasy to see that every solution of this 
onstraint satisfa
tion problem 
orresponds to a\legal" pla
ing of the 8 queens.We now give a formal de�nition of the general CSP.1.1 De�nition An instan
e of a 
onstraint satisfa
tion problem is a triple (V;D; C)where� V is a �nite set of variables,� D is a set of values (sometimes 
alled a domain), and1



� C is a set of 
onstraints fC1; : : : ; Cqg,in whi
h ea
h 
onstraint Ci is a pair hsi; %ii with si a list of variables of length mi,
alled the 
onstraint s
ope, and %i an mi-ary relation over the set D 
alled the
onstraint relation.The question is whether there exists a solution to (V;D; C), that is, a fun
tion from V toD su
h that, for ea
h 
onstraint in C, the image of the 
onstraint s
ope is a member ofthe 
onstraint relation.Now we give some examples of natural problems and their representations as CSPs.1.2 Example The most obvious algebrai
 example of a CSP is the problem of solvinga system of equations: given a system of linear equations over a �nite �eld F , does ithave a solution? Clearly, in this example ea
h individual equation is a 
onstraint, wherethe variables in the equation form the s
ope, and the set of all tuples 
orresponding tosolutions of this equation is the 
onstraint relation.1.3 Example An instan
e of the standard propositional 3-Satisfiability problem [33,67℄ is spe
i�ed by giving a formula in propositional logi
 
onsisting of a 
onjun
tion of
lauses, ea
h 
ontaining three literals (that is, variables or negated variables), and askingwhether there are values for the variables whi
h make the formula true.Suppose that � = �1 ^ � � � ^ �n is su
h a formula, where the �i are 
lauses. Thesatis�ability question for � 
an be expressed as the instan
e (V; f0; 1g; C) of CSP, whereV is the set of all variables appearing in the formula, and C is the set of 
onstraintsfhs1; %1i; : : : ; hsn; %nig, where ea
h 
onstraint hsk; %ki is 
onstru
ted as follows: sk is alist of the variables appearing in �k and %k 
onsists of all tuples that make �k true. Thesolutions of this CSP instan
e are exa
tly the assignments whi
h make the formula �true. Hen
e, any instan
e of 3-Satisfiability 
an be expressed as an instan
e of CSP.Example 1.3 suggests that any instan
e of CSP 
an be represented in a logi
al form.Indeed, using the standard 
orresponden
e between relations and predi
ates, one 
anre-write an instan
e of CSP as a �rst-order formula %1(s1) ^ : : : ^ %q(sq) where the %i(1 � i � q) are predi
ates on D and %i(si) means %i applied to the tuple si of variables.The question then would be whether this formula is satis�able [75℄. In this paper we willsometimes use this alternative logi
al form for the CSP. This form is 
ommonly used indatabase theory be
ause it 
orresponds so 
losely to 
onjun
tive query evaluation [54℄, asthe next example indi
ates.1.4 Example A relational database is a �nite 
olle
tion of tables. A table 
onsists of as
heme and an instan
e, whereA s
heme is a �nite set of attributes, where ea
h attribute has an asso
iated set ofpossible values, referred to as a domain.An instan
e is a �nite set of rows, where ea
h row is a mapping that asso
iates withea
h attribute of the s
heme a value in its domain.2



A standard problem in the 
ontext of relational databases is the Conjun
tive QueryEvaluation problem [36, 54℄. In this problem we are asked if a 
onjun
tive query to arelational database, that is, a query of the form %1 ^ : : : ^ %n where the %1; : : : ; %n areatomi
 formulas, has a solution.A 
onjun
tive query over a relational database 
orresponds to an instan
e of CSP by asimple translation of terms: `attributes' have to be repla
ed with `variables', `tables' with`
onstraints', `s
heme' with `s
ope', `instan
e' with `
onstraint relation', and `rows' with`tuples'. Hen
e a 
onjun
tive query is equivalent to a CSP instan
e whose variables arethe variables of the query. For ea
h atomi
 formula %i in the query, there is a 
onstraintC su
h that the s
ope of C is the list of variables of %i and the 
onstraint relation of Cis the set of models of %i.Another important reformulation of the CSP is the Homomorphism problem: the ques-tion of de
iding whether there exists a homomorphism between two relational stru
tures(see [31, 36, 54℄). Let � = (R1; : : : ; Rk) be a signature, that is, a list of relation names witha �xed arity assigned to ea
h name. Let A = (A;RA1 ; : : : ; RAk ) and B = (B;RB1 ; : : : ; RBk )be relational stru
tures of signature � . A mapping h : A! B is 
alled a homomorphismfrom A to B if, for all 1 � i � k, (h(a1); : : : ; h(am)) 2 RBi whenever (a1; : : : ; am) 2 RAi .In this 
ase we write h : A ! B. To see that the Homomorphism problem is the sameas the CSP, think of the elements in A as variables, the elements in B as values, tuplesin the relations of A as 
onstraint s
opes, and the relations of B as 
onstraint relations.Then, 
learly, the solutions to this CSP instan
e are pre
isely the homomorphisms fromA to B.We now give some more examples of well-known 
ombinatorial problems and theirrepresentations as a CSP. For the sake of brevity, we use the homomorphism form of theCSP.1.5 Example For any positive integer k, an instan
e of the Graph k-Colorabilityproblem 
onsists of a graph G. The question is whether the verti
es of G 
an be 
olouredwith k 
olours in su
h a way that adja
ent verti
es re
eive di�erent 
olours.It follows that every instan
e of Graph 
olorability 
an be expressed as a CSPinstan
e where A = G and B is the 
omplete graph on k verti
es, Kk.1.6 Example An instan
e of the Clique problem 
onsists of an undire
ted graph Gand an integer k. The question is whether G has a 
lique of size k (that is, a subgraphisomorphi
 to the 
omplete graph Kk).It follows that every instan
e of the Clique problem 
an be expressed as a CSPinstan
e where A is Kk and B is the graph G.1.7 Example An instan
e of the Hamiltonian Cir
uit problem 
onsists of a graphG = (V ;E). The question is whether there is a 
y
li
 ordering of V su
h that every pairof su

essive nodes in V is adja
ent in G.It follows that every instan
e of the Hamiltonian Cir
uit problem 
an be expressedas a CSP instan
e with A = (V ;CV ; 6=V ) and B = (V ;E; 6=V ), where 6=V denotes thedisequality relation on V and CV is the graph of an arbitrary 
y
li
 permutation on V .3



1.8 Example An instan
e of the Graph Isomorphism problem 
onsists of two graphs,G = (V ;E) and G0 = (V 0;E0), with jV j = jV 0j. The question is whether there is abije
tion between V and V 0 su
h that adja
ent verti
es in G are mapped to adja
entverti
es in G0, and non-adja
ent verti
es are mapped to non-adja
ent verti
es.It follows that every instan
e of the Graph Isomorphism problem 
an be expressedas a CSP instan
e with A = (V ;E;E) and B = (V 0;E0; E0), where E denotes the set ofall pairs in 6=V that are not in E.Many other examples of well-known problems expressed as CSPs 
an be found furtheron in this paper, and also in [43℄.2 Related Constraint ProblemsAs with many other 
omputational problems, it is not only the standard version of theCSP (that is, de
iding whether a CSP instan
e has a solution or not) whi
h is of interest.There are many related problems that have been studied, and in this se
tion we give abrief overview of some of these.� Counting ProblemHow many solutions does a given CSP instan
e have?A standard natural problem asso
iated with many 
omputational de
ision prob-lems [21℄.� Quanti�ed ProblemGiven a fully quanti�ed instan
e of CSP, is it true?Problems of this form have provided several fundamental examples of PSPACE-
omplete problems [21, 23, 75℄. Any instan
e of the ordinary CSP 
an be viewed asan instan
e of this problem in whi
h all the quanti�ers are existential. We note that
ertain games involving the 
onstru
tion of graph 
olorings 
an easily be expressedin this form [5℄.� Minimal SolutionGiven a CSP instan
e and some solution to it, is there a solution that is stri
tlyless (point-wise) than the given one?This problem is 
onne
ted with 
ir
ums
ription, a framework used in arti�
ial intel-ligen
e to formalize 
ommon-sense reasoning [53℄. It was also studied as \minimalmodel 
he
king" in [52℄.� Cir
ums
riptive Inferen
eGiven two CSP instan
es with the same set of variables, is every minimal solutionto the �rst one also a solution to the se
ond one?This is a popular problem in nonmonotoni
 reasoning, an area of arti�
ial intelli-gen
e, related to the previous version of the CSP. It was studied in [51, 52℄.4



� Equivalen
eGiven two CSP instan
es, do they have the same sets of solutions?In database theory, this 
orresponds to the question of whether or not two queriesare equivalent [6℄.� IsomorphismGiven two CSP instan
es, 
an one permute the variables in them so that they be
omeequivalent in the above sense?This is a more general form of the Equivalen
e problem whi
h is of interest in some
ontexts. The 
omplexity of the Boolean 
ase of this problem is 
lassi�ed in [7℄.� Inverse Satis�abilityGiven a set of n-tuples, is it the set of all solutions to a CSP instan
e of some
ertain type?This problem is related to eÆ
ient knowledge representation issues in arti�
ial in-telligen
e [49℄.� Listing ProblemGenerate all solutions of a given CSP instan
e.A standard natural problem asso
iated with many 
omputational de
ision prob-lems [21℄.� Max CSPMaximize the number of satis�ed 
onstraints in a CSP instan
e.For over-
onstrained problems, where it is impossible to satisfy all of the 
onstraints,it may be appropriate to try to �nd a solution satisfying as many 
onstraints aspossible [32℄. A number of standard optimization problems, e.g., maximum 
ut,
an also be expressed as Max CSP problems [21, 50℄.� Maximum SolutionMaximize the sum of values in a solution of a CSP instan
e.Many optimization problems in
luding maximum 
lique are of this form; in theBoolean 
ase this problem is known as MAX ONES [21, 50℄.� Maximum Hamming Distan
eFind two solutions to a CSP instan
e that are distin
t in a maximal number ofvariables.The \world di�eren
e" in the blo
ks world problem from knowledge representation
an be modelled in this way [22℄.� Lex Max CSPGiven a CSP instan
e where the variables are linearly ordered, �nd a solution thatis lexi
ographi
ally maximal.This form of CSP is used when variables in instan
es have priorities a

ording tosome preferen
e list [74℄. 5



� Unique SolutionDoes a given instan
e of CSP have a unique solution?This problem is studied in [47℄. A related problem 
on
erning partially uniquesolutions (that is, solutions that are unique on some subsets of variables) was studiedin [56℄.3 Parameterization of the CSPThe main obje
t of our interest is the 
omputational 
omplexity of 
onstraint problemsof various kinds. We refer the reader to [33, 67℄ for a general ba
kground in 
omplex-ity theory and the de�nitions of standard 
omplexity 
lasses. In general, the standardde
ision-problem form of the CSP is NP-
omplete, as one 
an see from Example 1.3,so it is unlikely to be 
omputationally tra
table. However, 
ertain restri
tions on theform of the problems 
an ensure tra
tability, that is, solvability in polynomial time (see,e.g., [68℄).With any CSP instan
e one 
an asso
iate two natural parameters, whi
h represent,informally, the following two features of the instan
e: whi
h variables 
onstrain whi
hothers, and the way in whi
h the values are 
onstrained.(1) The �rst feature (that is, whi
h variables 
onstrain whi
h others) 
an be 
apturedin two ways: one of these is by giving a hypergraph de�ned on the set of variablesused in the instan
e, where ea
h hyperedge 
onsists of the set of variables appearingtogether in some 
onstraint s
ope. The other, �ner, way is by spe
ifying the left-hand-side stru
ture, A, in the homomorphism form of the CSP.(2) The se
ond feature (that is, the way in whi
h the values are 
onstrained), 
anbe 
aptured by spe
ifying the set of 
onstraint relations used in the instan
e, oralternatively by spe
ifying the right-hand-side stru
ture, B, in the homomorphismform of the CSP.It follows from these observations that the general CSP 
an be restri
ted by �xingeither the set of allowed hypergraphs (or left-hand-side stru
tures) or else the set ofallowed 
onstraint relations (or right-hand-side stru
tures).The 
ase when the set of hypergraphs is �xed has been studied in 
onne
tion withdatabases [36, 54℄. Moreover, in [37℄, there is a 
omplete 
lassi�
ation of the 
omplexityof the CSP in the 
ase when the set of possible left-hand-side stru
tures is �xed, andthere are no restri
tions on the right-hand-side stru
tures.In this paper we 
on
entrate on the 
ase when the set of 
onstraint relations allowedin instan
es is �xed, but there is no restri
tion on the form of the asso
iated hypergraphs(or left-hand-side stru
tures). Let R(n)D denote the set of all n-ary relations (or predi
ates)on a set D, and let RD = S1n=1R(n)D .3.1 De�nition A 
onstraint language over D is a subset � of RD. The 
onstraint sat-isfa
tion problem over �, denoted CSP(�), is the sub
lass of the CSP de�ned by thefollowing property: any 
onstraint relation in any instan
e must belong to �.6



Of 
ourse, su
h a parameterization 
an also be 
onsidered for all of the related 
on-straint problems dis
ussed in Se
tion 2 above.3.2 De�nition A 
onstraint language � is 
alled globally tra
table if CSP(�) is tra
table,and it is 
alled tra
table if, for every �nite �0 � �, CSP(�0) is tra
table. It is 
alled NP-
omplete if, for some �nite �0 � �, CSP(�0) is NP-
omplete.Of 
ourse, every �nite tra
table 
onstraint language is also globally tra
table, butfor in�nite 
onstraint languages this impli
ation is not immediate (see [15, 17℄), so itis te
hni
ally ne
essary to distinguish the notions of tra
tability and global tra
tability.In fa
t, all known tra
table 
onstraint languages are globally tra
table, and it seemsplausible that the two notions 
oin
ide, though at present this is an open problem. Inthis paper, we will 
onsider only the question of determining whi
h 
onstraint languagesare tra
table, and we will not make any further use of the notion of global tra
tability.When the set � � RD is �nite, let B� denote the relational stru
ture over the universeD whose relations are pre
isely the relations of � (listed in some order). Then the problemCSP(�) 
orresponds exa
tly with the problem Hom(B�), de�ned as follows: given astru
ture A similar to B� (i.e., of the same signature), is it true that A ! B�? Note thatthe order in whi
h the relations from � are listed in B� does not a�e
t the 
omplexity ofthis problem.We now give some examples of well-known problems expressible as CSP(�) for suitablesets �.3.3 Example An instan
e of Linear Equations 
onsists of a system of linear equationsover a �eld.Following Example 1.2, it is easy to see that this problem 
an be expressed as CSP(�)where � 
onsists of all relations expressible by a linear equation. This problem is 
learlytra
table be
ause it 
an be solved by a straightforward polynomial-time algorithm, su
has Gaussian elimination.Moreover, systems of equations 
an be 
onsidered not only over �elds, but also overother algebrai
 stru
tures. For example, systems of polynomial equations over a (�xed)�nite group (that is, equations of the form a1x1a2 � � � xnan+1 = b1y1b2 � � � ymbm+1 wherethe ai's and the bi's are 
onstants and the xi's and yi's are variables) are studied in [34℄where it is proved that solving su
h systems is tra
table if the underlying group is Abelian,and is NP-
omplete otherwise. This result is generalised in [65℄ to solving systems ofequations over �nite monoids: this problem is tra
table if the underlying monoid is aunion of groups and 
ommutative; otherwise it is NP-
omplete. A more general setting,when systems of polynomial equations are 
onsidered over an arbitrary �nite (universal)algebra, is studied in [58℄, whi
h gives a generalization of the results on groups andmonoids mentioned above.3.4 Example The Not-All-Equal Satisfiability problem [33, 75℄ is a restri
tedversion of the standard 3-Satisfiability problem (Example 1.3) whi
h remains NP-
omplete. In this problem the 
lauses are ternary, and ea
h 
lause is satis�ed by anyassignment in whi
h the variables of the 
lause do not all re
eive the same truth value.7



This problem 
orresponds to the problem CSP(fNg) where N is the following ternaryrelation on f0; 1g: N = f0; 1g3 n f(0; 0; 0); (1; 1; 1)g:3.5 Example Let H = (V;E) be a �nite graph. An instan
e of the Graph H-
oloringproblem 
onsists of a �nite graph G. The question is whether G 
an be homomorphi
allymapped to H.This problem pre
isely 
orresponds to the problem CSP(fEg). If we 
onsider onlyundire
ted graphs H, then the 
omplexity of Graph H-
oloring has been 
ompletely
hara
terised [40℄: it is tra
table if H is bipartite or 
ontains a loop; otherwise it isNP-
omplete. However, if we allow H and G to be dire
ted graphs, then the 
omplexityof Graph H-
oloring has not yet been fully 
hara
terised. Moreover, it was shownin [31℄ that every problem CSP(�) with �nite � is polynomial-time equivalent to GraphH-
oloring for some suitable dire
ted graph H.Following a seminal work by S
haefer in 1978 [75℄, many resear
hers have studied thefollowing problem:3.6 Problem Determine the 
omplexity of a given 
onstraint problem for all possiblevalues of the parameter �.Most progress has been made in the Boolean 
ase (that is, when the set of values Dis f0; 1g), su
h problems are sometimes 
alled \generalized satis�ability problems" [33℄.S
haefer obtained a 
omplete 
lassi�
ation for the standard de
ision-problem form ofthe CSP over f0; 1g [75℄, whi
h is des
ribed in Se
tion 4.3, below. Over the last de
ade,
lassi�
ations for many related Boolean 
onstraint problems, in
luding all of the problemsmentioned in Se
tion 2, have been 
ompleted (see referen
es in Se
tion 2). Some of these
lassi�
ations are also des
ribed in Se
tion 4.3.Classifying the 
omplexity in the non-Boolean 
ase has proved to be a very diÆ
ulttask. Three main approa
hes to this problem have been 
onsidered; two of them arebased on the homomorphism form of the CSP.(1) The homomorphism problem for graphs has been extensively studied (see, e.g., [39℄),and thus one 
an try to develop some methods of graph theory to apply in the moregeneral 
ontext of 
onstraint satisfa
tion.(2) The problem Hom(B) 
an be seen as the membership problem for the 
lass of allrelational stru
tures A su
h that A ! B, and hen
e methods of �nite model theory
an applied to study the de�nability of this 
lass in various logi
s (from whi
h one
an then derive information about the 
omplexity of the problem [30℄).Elements of these two approa
hes are present in [24, 26, 31, 54℄.In the remainder of this paper, we will dis
uss the third, algebrai
, approa
h to the
omplexity 
lassi�
ation problem. This approa
h has proved to be the most fruitful sofar; it has made it possible to obtain very strong 
omplexity 
lassi�
ation results for awide variety of 
ases. 8



4 The Finite-Valued CSPIn this se
tion we 
onsider the 
ase when the set of possible values for the variables in a
onstraint satisfa
tion problem is �nite.4.1 Expressive Power of Constraint LanguagesIn any CSP instan
e some of the required relationships between variables are given expli
-itly in the 
onstraints, whilst others generally arise impli
itly from intera
tions betweendi�erent 
onstraints. For any instan
e in CSP(�), the expli
it 
onstraint relations mustbe elements of �, but there may be impli
it restri
tions on some subsets of the variablesfor whi
h the 
orresponding relations are not elements of �, as the next example indi
ates.4.1 Example Let � be the set 
ontaining a single binary relation, �, over the set f0; 1; 2g,where � is de�ned as follows:� = f(0; 0); (0; 1); (1; 0); (1; 2); (2; 1); (2; 2)g:One element of CSP(�) is the instan
eP = (fv1; v2; v3; v4g; f0; 1; 2g; fC1 ; C2; C3; C4; C5g);where C1 = ((v1; v2); �), C2 = ((v1; v3); �), C3 = ((v2; v3); �), C4 = ((v2; v4); �), C5 =((v3; v4); �).

u
uu u������������������������

�
�

�
��v1

v2
v3

v4
Figure 1: The CSP instan
e P de�ned in Example 4.1Note that there is no expli
it 
onstraint on the pair (v1; v4). However, by 
onsideringall solutions to P , it 
an be shown that the possible pairs of values whi
h 
an be takenby this pair of variables are pre
isely the elements of the relation �0 = � [ f(1; 1)g.We now de�ne exa
tly what it means to say that a 
onstraint relation 
an be expressedin a 
onstraint language. 9



4.2 De�nition A relation % 
an be expressed in a 
onstraint language � over D if thereexists a problem instan
e (V;D;C) in CSP(�), and a list, s, of variables, su
h that thesolutions to (V;D;C) restri
ted to s give pre
isely the tuples of %.For any 
onstraint language �, the set of all relations whi
h 
an be expressed in � willbe 
alled the expressive power of �.The expressive power of a 
onstraint language � 
an be 
hara
terised in a number ofdi�erent ways [46℄. For example, it is equal to the set of all relations that may be obtainedfrom the relations in � using the relational join and proje
t operations from relationaldatabase theory [38℄. Alternatively, it 
an be shown to be equal to the set of relationsde�nable by primitive positive formulas involving the relations of � and equality, whi
his de�ned as follows.4.3 De�nition For any set of relations � over D, the set h�i 
onsists of all relationsthat 
an be expressed using(1) relations from �, together with the binary equality relation on D (denoted =D),(2) 
onjun
tion, and(3) existential quanti�
ation.4.4 Example Example 4.1 demonstrates that the relation �0 belongs to the expressivepower of the 
onstraint language � = f�g. It is easy to dedu
e from the 
onstru
tiongiven in Example 4.1 that�0(x; y) � 9u9v(�(x; u) ^ �(x; v) ^ �(u; v) ^ �(u; y) ^ �(v; y)):Hen
e, �0 2 hf�gi.4.2 Polymorphisms and ComplexityIn this se
tion we shall explore how the notion of expressive power may be used to simplifythe analysis of the 
omplexity of the 
onstraint satisfa
tion problem.We �rst note that any relation that 
an be expressed in a language � 
an be addedto � without 
hanging the 
omplexity of CSP(�).4.5 Proposition For any 
onstraint language � and any relation % belonging to theexpressive power of �, CSP(� [ f%g) is redu
ible in polynomial time to CSP(�).This result 
an be established simply by noting that, given an arbitrary problem instan
ein CSP(� [ f%g), we 
an obtain an equivalent instan
e in CSP(�) by repla
ing ea
h
onstraint C that has 
onstraint relation % with a 
olle
tion of 
onstraints that have
onstraint relations 
hosen from � and that together express the 
onstraint C.By iterating this pro
edure we 
an obtain the following 
orollary.10



4.6 Corollary For any 
onstraint language �, and any �nite 
onstraint language �0, if�0 is 
ontained in the expressive power of �, then CSP(�0) is redu
ible to CSP(�) inpolynomial time.Corollary 4.6 implies that for any �nite 
onstraint language �, the 
omplexity of CSP(�)is determined, up to polynomial-time redu
tion, by the expressive power of �, and hen
eby h�i. This raises an obvious question: how 
an we obtain suÆ
ient information aboutthe set h�i to determine the 
omplexity of CSP(�)?A very su

essful approa
h to this question has been developed in [18, 43, 45℄, usingte
hniques from universal algebra [63, 71℄. To des
ribe this approa
h, we need to 
onsider�nitary operations on D. We will use O(n)D to denote the set of all n-ary operations on theset D (that is, the set of mappings f : Dn ! D), and OD to denote the set S1n=1O(n)D .An operation f 2 O(n)D will be 
alled essentially unary if there exists some i in therange 1 � i � n, and some operation g 2 O(1)D su
h that the following identity is satis�edf(x1; x2; : : : ; xn) = g(xi):An essentially unary operation for whi
h g is the identity operation is 
alled a proje
tion.Any operation (of whatever arity) whi
h is not essentially unary will be 
alled essentiallynon-unary.Any operation on D 
an be extended in a standard way to an operation on tuples overD, as follows. For any operation f 2 O(n)D , and any 
olle
tion of tuples ~a1;~a2; : : : ;~an 2Dm, where ~ai = (ai1; : : : ; aim) (i = 1 : : : n), de�ne f(~a1; : : : ;~an) by settingf(~a1; : : : ;~an) = ( f(a11; : : : ; an1); : : : ; f(a1m; : : : ; anm) ):4.7 De�nition For any relation % 2 R(m)D , and any operation f 2 O(n)D , if f(~a1; : : : ;~an) 2% for all 
hoi
es of ~a1; : : : ;~an 2 %, then % is said to be invariant under f , and f is 
alleda polymorphism of %.The set of all relations that are invariant under ea
h operation from some set C � ODwill be denoted Inv(C). The set of all operations that are polymorphisms of every relationfrom some set � � RD will be denoted Pol(�). The operators Inv and Pol form a Galois
orresponden
e between RD and OD (see Proposition 1.1.14 of [71℄). A basi
 introdu
tionto this 
orresponden
e 
an be found in [69℄, and a 
omprehensive study in [71℄.Sets of operations of the form Pol(�) are known as 
lones and sets of relations of theform Inv(C) are known as relational 
lones [71℄. Moreover, the following useful 
hara
-terisation of sets of the form Inv(Pol(�)) 
an be found in [71℄.4.8 Theorem For every set � � RD, Inv(Pol(�)) = h�i.This result was 
ombined with Corollary 4.6 to obtain the following result in [43℄.4.9 Theorem For any 
onstraint languages �;�0 � RD, with �0 �nite, if Pol(�) �Pol(�0), then CSP(�0) is redu
ible to CSP(�) in polynomial time.11
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∅∅∅∅Figure 2: The operators Inv and PolThis result implies that, for any �nite 
onstraint language � over a �nite set, the 
om-plexity of CSP(�) is determined, up to polynomial-time redu
tion, by the polymorphismsof �.We now apply this result to obtain a suÆ
ient 
ondition for NP-
ompleteness ofCSP(�). A 
onstraint language � is said to be strongly rigid if Pol(�) 
onsists of proje
-tions only.4.10 Proposition If � is strongly rigid then CSP(�) is NP-
omplete.This proposition follows from Theorem 4.9 by setting �0 = fNg (see Example 3.4),assuming f0; 1g � D, and using the fa
t that every relation on D is invariant under anyproje
tion.Proposition 4.10 was used in [59℄ to show that most non-trivial problems of the formCSP(�), with �nite �, are NP-
omplete. More pre
isely, let R(n; k) denote a randomk-ary relation on the set f1; : : : ; ng, for whi
h the probability that (a1; : : : ; ak) 2 R(n; k)is equal to 1/2 independently for ea
h k-tuple (a1; : : : ; ak) where not all ai's are equal;also, set (a; : : : ; a) 62 R(n; k) for all a (this is ne
essary to ensure that CSP(R(n; k)) isnon-trivial). It is shown in [59℄ that the probability that fR(n; k)g is strongly rigid tendsto 1 as either n or k tends to in�nity.4.3 Complexity of Boolean ProblemsIn this se
tion we des
ribe some of the results that have been obtained 
on
erning the
omplexity of Boolean 
onstraint problems, that is, problems over a two-valued domain.12



The �rst result of this kind was a 
omplete 
lassi�
ation of the 
omplexity of theordinary Boolean 
onstraint satisfa
tion problem obtained by S
haefer in 1978 [75℄. Re
allthat a 
omputational problem is 
alled tra
table if there is a polynomial-time algorithmde
iding every instan
e of the problem. The 
lass of all tra
table problems is denotedPTIME.4.11 Theorem For any 
onstraint language � � Rf0;1g, CSP(�) is tra
table when (atleast) one of the following 
onditions holds:(1) Every % in � 
ontains the tuple (0; 0; : : : ; 0).(2) Every % in � 
ontains the tuple (1; 1; : : : ; 1).(3) Every % in � is de�nable by a CNF formula in whi
h ea
h 
onjun
t has at most onenegated variable.(4) Every % in � is de�nable by a CNF formula in whi
h ea
h 
onjun
t has at most oneunnegated variable.(5) Every % in � is de�nable by a CNF formula in whi
h ea
h 
onjun
t has at most twoliterals.(6) Every % in � is de�nable by a system of linear equations over the two-element �eld.In all other 
ases CSP(�) is NP-
omplete.This result establishes a di
hotomy for versions of this problem parameterized by the
hoi
e of 
onstraint language: they are all either tra
table or NP-
omplete. Di
hotomytheorems of this kind are of parti
ular interest be
ause, on the one hand, they determinethe pre
ise 
omplexity of parti
ular 
onstraint problems, and, on the other hand, theydemonstrate that no problems of intermediate 
omplexity 
an o

ur in this 
ontext. Notethat the existen
e of 
onstraint problems of intermediate 
omplexity 
annot be ruled out apriori due to the result [57℄ that if PTIME 6= NP then the 
lass NP 
ontains (in�nitelymany pairwise inequivalent) problems whi
h are neither tra
table nor NP-
omplete.Using the algebrai
 approa
h des
ribed in the previous se
tions, together with theknowledge of possible 
lones on a two-element set obtained in [72℄, S
haefer's result 
anbe reformulated in the following mu
h more 
on
ise form.4.12 Theorem For any set of relations � � Rf0;1g, CSP(�) is tra
table when Pol(�)
ontains any essentially non-unary operation or a 
onstant operation. Otherwise it isNP-
omplete.4.13 Example Re
all the relation N over f0; 1g de�ned in Example 3.4. Using generalresults from [72℄, it 
an be shown that Pol(fNg) 
ontains essentially unary operationsonly, and hen
e, by Theorem 4.12, CSP(fNg) is NP-
omplete.13



S
haefer's result has inspired a series of analogous investigations for many related
onstraint problems, in
luding those listed in Se
tion 2. We will now list some 
om-plexity 
lassi�
ation results that have re
ently been obtained for these problems in theBoolean 
ase. Surprisingly, for a wide variety of su
h related problems it turns out thatthe polymorphisms of the 
onstraint language are highly relevant to the study of the
omputational 
omplexity.4.14 Theorem Let � � Rf0;1g be a Boolean 
onstraint language. The following fa
tsare known to hold for 
onstraint problems parameterized by �:� The Counting Problem is tra
table if Pol(�) 
ontains the unique aÆne operationon f0; 1g, x� y + z. Otherwise it is #P-
omplete [21℄.� The Quanti�ed Problem is tra
table if Pol(�) 
ontains an essentially non-unaryoperation. Otherwise it is PSPACE-
omplete [21, 23℄.� The Equivalen
e problem is tra
table if Pol(�) 
ontains an essentially non-unaryoperation or a 
onstant operation. Otherwise it is 
oNP-
omplete [6℄.� The Inverse Satis�ability problem is tra
table if Pol(�) 
ontains an essentiallynon-unary operation. Otherwise it is 
oNP-
omplete [49℄.� The Maximum Hamming Distan
e problem is tra
table if Pol(�) 
ontains ei-ther a 
onstant operation, or the aÆne operation and the negation operation onf0; 1g [22℄.A full des
ription of these results requires the 
areful de�nition of the relevant 
omplexity
lasses and redu
tions, whi
h is beyond the s
ope of this paper, so we refer the reader tothe 
ited papers for details.4.15 Example Re
all the relation N over f0; 1g de�ned in Example 3.4. Using generalresults from [72℄, it 
an be shown that Pol(fNg) 
ontains essentially unary operationsonly. Hen
e, by Theorem 4.14, we 
an immediately 
on
lude that:� Counting the number of solutions to an instan
e of CSP(fNg) is #P-
omplete;� De
iding whether a quanti�ed Boolean formula whose quanti�er-free part involvesonly 
onjun
tions of the predi
ate N is true is PSPACE-
omplete.� De
iding whether two instan
es of CSP(fNg) have the same solutions is 
oNP-
omplete;� De
iding whether a given set of n-tuples is the set of solutions to some instan
e ofCSP(fNg) is 
oNP-
omplete.
14



4.4 From the CSP to Algebras and VarietiesMost of the results presented in this se
tion were �rst obtained in [15, 17, 18℄.With any 
onstraint language � � RD one 
an asso
iate an algebra A � = (D;Pol(�)).In this se
tion we show that the 
omplexity of the problem CSP(�) is 
ompletely deter-mined by 
ertain properties of A � . (We refer the reader to [63℄ for a general ba
kgroundin universal algebra.)Re
all that algebras are said to be term equivalent if they have the same set of termoperations. Sin
e, the term operations of A � are pre
isely the operations in Pol(�),Theorem 4.9 implies that term equivalent algebras give rise to problem 
lasses of thesame 
omplexity.4.16 Proposition Let �1;�2 � RD, where D is �nite. If A �1 and A �2 are term equiva-lent then �1 and �2 are tra
table or NP-
omplete simultaneously.This allows us to introdu
e the notion of a tra
table algebra.4.17 De�nition An algebra A = (D;F ) is said to be tra
table if the 
onstraint languageInv(F ) is tra
table. It is said to be NP-
omplete if Inv(F ) is NP-
omplete.Thus, the 
omplexity 
lassi�
ation problem for 
onstraint languages redu
es to the
omplexity 
lassi�
ation problem for �nite algebras. Furthermore, the next results showthat it is possible to signi�
antly restri
t the 
lass of algebras whi
h need to be 
lassi�ed.Let A = (D;F ) be an algebra, and U � D. Let A U denote the algebra A U = (U;F 0),where F 0 
onsists of all operations of the form f jU (the restri
tion of f to U), for ea
hterm operation f of A su
h that f 2 Pol(U).4.18 Proposition Let A be a �nite algebra, f a unary term operation su
h that f(f(x)) =f(x) and U = f(D). Then A is tra
table if and only if A U is tra
table.Hen
e, by 
hoosing a unary term operation with a minimal range, we may restri
tourselves to 
onsidering only surje
tive algebras, that is, algebras all of whose term op-erations are surje
tive.Re
all that an operation f is 
alled idempotent if it satis�es the identity f(x; : : : ; x) =x, and the full idempotent redu
t of an algebra A = (D;F ) is the algebra Id(A ) = (D;F 0)where F 0 
onsists of all idempotent term operations of A .4.19 Proposition A surje
tive �nite algebra A is tra
table if and only if its full idem-potent redu
t is tra
table.It follows that to 
lassify the 
omplexity of arbitrary �nite algebras it is suÆ
ient to
onsider only idempotent algebras, that is, algebras whose operations are all idempotent.Next, we show that the standard algebrai
 
onstru
tions preserve the tra
tability ofan algebra.
15



4.20 Theorem Let A be a �nite algebra. If A is tra
table, then all of its subalgebras,homomorphi
 images and �nite dire
t powers are also tra
table. Conversely, if A hasan NP-
omplete subalgebra, homomorphi
 image, or �nite dire
t power, then it is NP-
omplete itself.For an algebra A , we denote the pseudo-variety and the variety generated by A by pvar(A )and var(A ), respe
tively.4.21 Corollary A �nite algebra A is tra
table if and only if every algebra from pvar(A )is tra
table.As is well known, if A is a �nite 
lass of �nite algebras, then the pseudo-varietygenerated by A equals the 
lass of �nite algebras from the variety generated by A.4.22 Corollary A �nite algebra A is tra
table if and only if every �nite algebra fromvar(A ) is tra
table.4.23 Corollary If A is a �nite algebra, and var(A ) 
ontains a �nite NP-
omplete alge-bra, then A is NP-
omplete.Thus, the tra
tability of an algebra is a property whi
h 
an be determined by identities.We 
all an algebra a set if it 
ontains more than one element and all of its operationsare proje
tions. By 
ombining Proposition 4.10 with Corollary 4.23, we get the followingresult.4.24 Corollary If the pseudovariety generated by a �nite idempotent algebra A 
ontainsa set then A is NP-
omplete.A homomorphi
 image of a subalgebra of an algebra A is 
alled a fa
tor of A .4.25 Proposition If A is an idempotent algebra and pvar(A ) 
ontains a set then somefa
tor of A is a set.Remarkably, the presen
e of a set as a fa
tor is the only known reason for an idem-potent algebra to be NP-
omplete. This prompts us to suggest the following 
onje
ture.4.26 Conje
ture A �nite idempotent algebra A is tra
table if and only ifnone of the fa
tors of A is a set; (No-Set)otherwise it is NP-
omplete.It was shown in [17℄ that if one weakens Conje
ture 4.26 by removing the 
ondition ofidempoten
y, or repla
ing \fa
tor" by either \subalgebra" or \homomorphi
 image", thenthe resulting 
onje
ture is false.
16



It was proved in [79℄ that a variety V generated by a �nite idempotent algebra 
ontainsno set if and only if there is an n-ary term f (
alled a Taylor term) in V su
h that Vsatis�es n identities of the formf(xi1; : : : ; xin) = f(yi1; : : : ; yin); i = 1; : : : ; n;where xij ; yij 2 fx; yg and xii 6= yii for all i; j. Therefore, Corollary 4.24 
an be restatedas follows.4.27 Corollary If a �nite idempotent algebra has no Taylor term, then it isNP-
omplete.This 
orollary was used in [58℄ to study systems of polynomial equations over �nitealgebras, where it was proved, in parti
ular, that solving systems of equations over anon-trivial algebra from a 
ongruen
e-distributive variety is NP-
omplete, and, further-more, solving systems of equations over a Mal'tsev algebra is tra
table if this algebra ispolynomially equivalent to a module, otherwise it is NP-
omplete.Using the result from [79℄ mentioned above, Conje
ture 4.26 
an be restated in termsof identities.4.28 Conje
ture A �nite idempotent algebra A is tra
table if it has a Taylor term;otherwise it is NP-
omplete.Finally, the 
ondition (No-Set) from Conje
ture 4.26 
an be expressed in terms of tame
ongruen
e theory [41℄: a �nite idempotent algebra satis�es this 
ondition if and only ifthe variety it generates \omits type 1" [15℄.4.5 Tra
table Algebras, Classi�
ation Results and Tra
tability Tests4.5.1 Tra
table AlgebrasDuring the last de
ade several parti
ular identities (parti
ular forms of Taylor term) havebeen identi�ed that guarantee the tra
tability of algebras satisfying one of these identities(that is, having a Taylor term of one of these spe
ial forms) [9, 12, 27, 43, 44, 45℄.Re
all that a binary operation � is 
alled a 2-semilatti
e operation if it satis�es theidentities x�x = x, x�y = y�x and (x�x)�y = x�(x�y). Note that a semilatti
e operation is aparti
ular 
ase of a 2-semilatti
e operation. A ternary operation f satisfying the identitiesf(x; y; y) = f(y; y; x) = x is 
alled a Mal'tsev operation, and an n-ary operation g is 
alleda near-unanimity operation if it satis�es the identitiesf(y; x; : : : ; x) = f(x; y; x; : : : ; x) = : : : = f(x; : : : ; x; y) = x:An n-ary operation is 
alled totally symmetri
 if, for all x1; : : : ; xn and y1; : : : ; yn su
hthat fx1; : : : ; xng = fy1; : : : ; yng, it satis�es the identitiesf(x1; : : : ; xn) = f(y1; : : : ; yn):(Note that, in [27℄, a family (fn)n�2 of totally symmetri
 operations, where fn is n-ary,was 
alled a set fun
tion). 17



4.29 Theorem If a �nite algebra is tra
table if it has (at least) one the following:{ a 2-semilatti
e term operation;{ a Mal'tsev term operation;{ a near-unanimity term operation;{ n-ary totally symmetri
 term operations for all n � 2.Another 
lass of algebras whi
h has been shown to be tra
table [25℄ is the 
lass ofpara-primal algebras, whi
h are de�ned as follows. Let % an n-ary relation on D, andI = fi1; : : : ; ikg � f1; : : : ; ng with i1 < : : : < ik. By the proje
tion of % onto I we meanthe relation %I = f(ai1 ; : : : ; aik) j (a1; : : : ; an) 2 %g. The set I is said to be %-redu
ed ifit is minimal with the property that the natural mapping % 7! %I is one-to-one. A �nitealgebra A is 
alled para-primal if for every n 2 N, every subuniverse % of A n , and every%-redu
ed set I, we have %I = Qi2I %fig. However, it is known that every para-primalalgebra has a Mal'tsev term operation (see Theorem 4.7 of [77℄), and, hen
e, tra
tabilityof para-primal algebras follows from Theorem 4.29.4.5.2 Classi�
ation resultsAlgebras of several spe
ial types have been 
ompletely 
lassi�ed with respe
t to the
omplexity of the 
orresponding 
onstraint satisfa
tion problems.Stri
tly simple algebras. A �nite algebra is said to be stri
tly simple if it issimple and has no subalgebras with more than one element. Stri
tly simple algebras are
ompletely des
ribed in [78℄.4.30 Proposition ([17, 18℄) A �nite idempotent stri
tly simple algebra is tra
table ifit is not a set; otherwise it is NP-
omplete.Homogeneous algebras An algebra is 
alled homogeneous if every permutationon its base set is an automorphism of the algebra. Finite homogeneous algebras are
ompletely des
ribed in [61℄.4.31 Proposition ([25℄) A �nite homogeneous algebra is tra
table if it satis�es the 
on-dition (No-Set); otherwise it is NP-
omplete.Finite semigroups. A semigroup is 
alled a left- [right-℄zero semigroup if x � y = x[x � y = y℄ for all x; y. It is 
alled a blo
k-group if none of its subsemigroups is a left- orright-zero semigroup. As is easily seen, blo
k-groups are exa
tly those semigroups thathave no fa
tor whi
h is a set.4.32 Proposition ([16℄) A �nite semigroup is tra
table if it is a blo
k-group; otherwiseit is NP-
omplete.Small algebras. Conje
ture 4.26 has been proved for 2- and 3-element algebras.4.33 Theorem ([75, 11℄) 18



(1) An idempotent two-element algebra is tra
table if it is not a set; otherwise it isNP-
omplete.(2) An idempotent three-element algebra is tra
table if it satis�es the 
ondition (No-Set);otherwise it is NP-
omplete.Conservative algebras. An algebra is said to be 
onservative if every subset of itsuniverse is a subalgebra, or, equivalently, if f(x1; : : : ; xn) 2 fx1; : : : ; xng for every termoperation f and all x1; : : : ; xn.4.34 Theorem ([13℄) A 
onservative algebra A is tra
table if every 2-element subalge-bra B has a term operation of one of the following types: a semilatti
e operation, a ternarynear-unanimity operation (that is, a majority operation), or a Mal'tsev operation; other-wise A is NP-
omplete.It is not hard to 
he
k that the 
onditions stated in Theorem 4.34 are equivalent to(No-Set) for 
onservative algebras.4.5.3 Testing Tra
tabilityWe now 
onsider the problem of de
iding whether a given 
onstraint language or idem-potent algebra is tra
table. Following [21℄, we 
all su
h a problem a meta-problem. Apriori, there is no upper 
omplexity bound for this problem, it may even be unde
idable.However, if Conje
ture 4.26 is true, then, given the basi
 operations of an idempotentalgebra, one 
an straightforwardly 
he
k whether any fa
tor of the algebra is a set. If weare given a �nite 
onstraint language � on a �nite set A, then the presen
e of a fa
torwhi
h is a set 
an be dete
ted by examining all polymorphisms of � of arity at most jAj.Thus, the meta-problem is de
idable, assuming Conje
ture 4.26 holds. In this se
tion westudy its 
omplexity.For a 
onstraint language �, let f 2 Pol(�) be a unary operation with minimal rangeU , and let f(�) = ff(%) j % 2 �g where f(%) = ff(~a) j ~a 2 %g. Denote by � the 
onstraintlanguage f(�)[ffag j a 2 Ug. It follows from Propositions 4.18 and 4.19 that � tra
tableif and only if � is tra
table. Moreover, the algebra A � = (U;Pol(�)) is idempotent.We 
onsider three 
ombinatorial de
ision problems related to the 
ondition (No-Set).CSP-Tra
tability-of-algebraInstan
e. A �nite set A and operation tables of idempotent operations f1; : : : ; fn on A.Question. Does the algebra A = (A; ff1; : : : ; fng) satisfy (No-set)?CSP-Tra
tabilityInstan
e. A �nite set A and a �nite 
onstraint language � on A.Question. Does the algebra A = (U;Pol(�)) satisfy (No-set)?CSP-Tra
tability(k)Instan
e. A �nite set A, jAj � k, and a �nite 
onstraint language � on A.Question. Does the algebra A = (U;Pol(�)) satisfy (No-set)?4.35 Theorem ([15℄) 19



(1) The problem CSP-Tra
tability-of-algebra is tra
table.(2) The problem CSP-Tra
tability(k) is tra
table.(3) The problem CSP-Tra
tability is NP-
omplete.The algorithm solving CSP-Tra
tability-of-algebra is, in fa
t, an adapted versionof the algorithm presented in [3℄ for �nding the type set of a �nite algebra. Sin
e thisalgorithm uses operations of arity bounded by the size of the algebra, it 
an be furthertransformed to an algorithm for solving CSP-Tra
tability(k). Finally, it is possible toshow that CSP-Tra
tability is in NP and to redu
e the NP-
omplete problem Not-All-Equal-Satisfiability (see Example 3.4) to CSP-Tra
tability in polynomialtime.4.6 The Counting CSPIn this se
tion we dis
uss Problem 3.6 for the 
ounting 
onstraint satisfa
tion problem(#CSP), whi
h is the problem of 
ounting solutions to an instan
e of CSP. Using thelogi
al and the homomorphism forms of the CSP (see Se
tion 1) this problem 
an also beformulated as the problem of 
ounting satisfying assignments to a 
onjun
tive formula,that is, a formula of the form %1 ^ : : :^%n, where ea
h %i is an atomi
 formula, in a giveninterpretation, or alternatively as the problem of �nding the number of homomorphismsbetween two �nite relational stru
tures. For any 
onstraint language �, giving rise to thede
ision 
onstraint satisfa
tion problem CSP(�), we also de�ne the 
orresponding 
lass#CSP(�) of 
ounting problems.The results of this se
tion were �rst obtained in [14℄.4.36 Example An instan
e of the #3-SAT problem [20, 21, 81, 82℄ is spe
i�ed by givingan instan
e of the 3-satisfiability problem (see Example 1.3) and asking how manyassignments satisfy it. Therefore, #3-SAT is equivalent to #CSP(�) where � is the setof ternary Boolean relations whi
h are expressible by 
lauses.4.37 Example In the problem Anti
hain [73℄, we are given a �nite poset (P ;�), andwe aim to 
ompute the number of anti
hains in P . This problem 
an be expressed in the#CSP-form as follows. Let %� be the predi
ate of the natural order on f0; 1g. We assign avariable xa to ea
h element a 2 P . Then the #CSP(f%�g) instan
e � = Va�b %�(xa; xb)
an be shown to be equivalent to the original Anti
hain instan
e.To show this, noti
e that every model ' to � satis�es the following 
ondition: if'(xa) = 1 and a � b then '(xb) = 1. This means that the set F' = fa 2 P j '(xa) = 1gis a �lter of P . Hen
e the models of � 
orrespond one-to-one to the �lters of P , and
onsequently, to the anti
hains of P .On the other hand, any #CSP(f%�g) instan
e is redu
ible to an Anti
hain in-stan
e, though not so straightforwardly (see [14℄). Thus Anti
hain is equivalent to#CSP(f%�g). 20



The general #CSP is known to be #P-
omplete, as follows from Theorem 4.14, or theresults of [82℄ and the examples above. We 
all a 
onstraint language � #-tra
table if, forevery �nite �0 � �, the problem #CSP(�0) is polynomial time solvable. The language �is said to be #P-
omplete if #CSP(�0) is #P-
omplete for a 
ertain �nite �0 � �.The expressive power and the polymorphisms of a 
onstraint language again play
ru
ial roles in determining the 
omplexity of #CSP(�).4.38 Proposition For any 
onstraint languages, �;�0, on a �nite set D, with �0 �nite,if �0 � h�i, then #CSP(�0) is redu
ible to #CSP(�) in polynomial time.4.39 Proposition For any 
onstraint languages �;�0, on a �nite set D, with �0 �nite,if Pol(�) � Pol(�0), then #CSP(�0) is redu
ible to #CSP(�) in polynomial time.Proposition 4.39 implies that, as with the de
ision CSP, the algebra A � fully determinesthe 
ounting 
omplexity of a 
onstraint language �. We will say that a �nite algebraA = (D;F ) is #-tra
table [#P-
omplete℄ if so is the 
onstraint language Inv(F ).The next result shows that, on
e again, standard 
onstru
tions preserve tra
tability.4.40 Theorem Let A be a �nite algebra. If A is #-tra
table, then all of its subalgebras,homomorphi
 images and �nite dire
t powers are also #-tra
table. Conversely, if A hasa #P-
omplete subalgebra, homomorphi
 image, or �nite dire
t power, then A is #P-
omplete itself.4.41 Theorem A �nite algebra is #-tra
table (#P-
omplete) if and only if its full idem-potent redu
t is #-tra
table (#P-
omplete).The ben
hmark hard 
ounting problems arise from binary re
exive non-symmetri
 rela-tions.4.42 Proposition If % is a binary re
exive non-symmetri
 relation on a �nite set, then#CSP(f%g) is #P-
omplete.Theorem 4.40, Proposition 4.42, and the results from [41℄, provide a link between the
omplexity of #CSP and Mal'tsev operations, whi
h we will now investigate. The nextstatement follows from Theorem 9.13 of [41℄.4.43 Theorem For a �nite algebra A the following 
onditions are equivalent:(1) A does not have a Mal'tsev term operation.(2) There is a �nite algebra B = (B;F ) 2 var(A ), su
h that Inv(F ) 
ontains a binaryre
exive non-symmetri
 relation.By Proposition 4.42, the algebra B from Theorem 4.43(2) is #P-
omplete. Furthermore,Theorem 4.40 implies that A is also #P-
omplete.4.44 Corollary Every �nite algebra having no Mal'tsev term operation is #P-
omplete.21



By making use of Corollary 4.44 we 
an obtain a very easy proof of the di
hotomytheorem for the Boolean #CSP ([20℄, see Theorem 4.14). First, it follows from the resultsof [72℄, that any Boolean relation whi
h is invariant under some Mal'tsev operation onf0; 1g is also invariant under the unique aÆne operation on f0; 1g, x� y + z. Hen
e, byCorollary 4.44, any Boolean 
onstraint language is either #P-
omplete, or else a subsetof Inv(fx� y + zg). Any relation belonging to Inv(fx� y + zg) is the solution spa
e ofa system of linear equations over the 2-element �eld, so it is possible to �nd a basis forthis set in polynomial time. Furthermore, the number of solutions in this set equals 2n,where n is the number of ve
tors in the basis.4.45 Example The #H-
oloring problem is the 
ounting version of the Graph H-
oloring problem (see Example 3.5). In this problem, the goal is to �nd the number ofhomomorphisms from a given graph G to the �xed graph H.If the #H-
oloring problem is restri
ted to undire
ted graphs then, as provedin [29℄, the problem is tra
table if every 
onne
ted 
omponent of H is either an isolatedvertex, or a 
omplete graph with all loops, or a 
omplete unlooped bipartite graph;otherwise the problem is #P-
omplete. The tra
tability part of this result is easy, andthe hardness part 
an be easily derived from Corollary 4.44, sin
e symmetri
 relations(or graphs) invariant under a Mal'tsev operation must be of the form spe
i�ed above.Mal'tsev operations on a three-element set, and the stru
ture of relations invariantwith respe
t to them, are exhaustively studied in [10℄. Making use of these results, three-element algebras have been 
ompletely 
lassi�ed with respe
t to 
ounting 
omplexity [14℄.4.46 Theorem A three-element algebra is #-tra
table if it is Mal'tsev; otherwise it is#P-
omplete.An algebra is said to be uniform if, for any subalgebra B , the blo
ks of every 
ongruen
eof B are of the same size. Clearly, all two-element algebras, groups and quasi-groups areuniform.4.47 Theorem Every uniform Mal'tsev algebra is #-tra
table.Theorems 4.46 and 4.47 prompt a natural 
onje
ture: a �nite algebra is #-tra
table ifand only if it is Mal'tsev; otherwise it is #P-
omplete. However, this 
onje
ture does nothold, sin
e there is a 5-element Mal'tsev algebra that 
an be proved to be #P-
omplete.4.7 The Quanti�ed CSPThe standard 
onstraint satisfa
tion problem over an arbitrary �nite domain 
an beexpressed as follows: given a �rst-order senten
e of the form 9x1 : : : 9xl(%1 ^ : : : %q),where ea
h %i is an atomi
 formula, and x1; : : : ; xl are the variables appearing in the %i,determine whether the senten
e is true (see Se
tion 1). In this subse
tion we 
onsidera more general framework whi
h allows arbitrary quanti�ers over 
onstrained variables,rather than just existential quanti�ers. This form of the CSP is 
alled the quanti�ed CSP,or QCSP for short. The Boolean QCSP (also known as QSAT or QBF), and some of its22



restri
tions (su
h as Q3SAT), have always been standard examples of PSPACE-
ompleteproblems [33, 67, 75℄.All the results presented in this se
tion were �rst obtained in [8, 19℄.4.48 De�nition For a 
onstraint language � � RD, an instan
e of QCSP(�) is a �rst-order senten
e Q1x1 : : :Qlxl (%1 ^ : : :^ %q), where ea
h %i is an atomi
 formula involvinga predi
ate from �, x1; : : : ; xl are the variables appearing in the %i, and Q1; : : : ;Ql arearbitrary quanti�ers. The question is whether the senten
e is true.Clearly, an instan
e of CSP(�) 
orresponds to an instan
e of QCSP(�) in whi
h all thequanti�ers happen to be existential.We note that in the Boolean 
ase, the 
omplexity of QCSP(�) has been 
ompletely
lassi�ed (see Theorem 4.11). For problems over larger domains no 
omplete 
lassi�
ationhas yet been obtained, but there are a number of known results 
on
erning the 
omplexityof spe
ial 
ases.4.49 Example Consider the following Coloring Constru
tion Game played by twoplayers, Player 1 and Player 2: given an undire
ted graph G = (V;E), a linear orderingon V (i.e., a bije
tion f : V ! f1; : : : ; jV jg), an ownership fun
tion w : V ! f1; 2g, and a�nite set of 
olours D with jDj � 3. In the i'th move, the player who owns vertex f�1(i)(that is, Player w(f�1(i))) 
olours it in su
h a way that its 
olour is di�erent from the
olours of all its neighbours that are already 
oloured. Player 1 wins if all verti
es are
oloured at the end of the game.De
iding whether Player 1 has a winning strategy in an instan
e of this game 
an betranslated into an instan
e of the quanti�ed version of the Graph jDj-
olorabilityproblem, QCSP(f6=Dg). To make this translation we view elements from V as variables,elements of E as 
onstraint s
opes, the relation 6=D as the only available 
onstraintrelation, the variables from w�1(1) as existentially quanti�ed, the variables from w�1(2)as universally quanti�ed, and the order of quanti�
ation as spe
i�ed by the fun
tion f .Sin
e the problem of determining whether Player 1 has a winning strategy in thisgame was shown to be PSPACE-
omplete in [5℄, it follows that QCSP(f6=Dg) is alsoPSPACE-
omplete.It 
an be shown that, for quanti�ed 
onstraint satisfa
tion problems, surje
tive poly-morphisms play a similar role to that played by arbitrary polymorphisms for ordinaryCSPs (
f. Theorem 4.9). Let s-Pol(�) denote the set of all surje
tive operations fromPol(�).4.50 Theorem For any 
onstraint languages �;�0 � RD, with �0 �nite, if s-Pol(�) �s-Pol(�0), then QCSP(�0) is redu
ible to QCSP(�) in polynomial time.This theorem follows immediately from the next two propositions.4.51 De�nition For any set � � RD, the set [�℄ 
onsists of all predi
ates that 
an beexpressed using 23



(1) predi
ates from �, together with the binary equality predi
ate =D on D,(2) 
onjun
tion,(3) existential quanti�
ation,(4) universal quanti�
ation.4.52 Proposition For any 
onstraint languages �;�0 � RD, with �0 �nite, if [�0℄ � [�℄,then QCSP(�0) is redu
ible to QCSP(�) in polynomial time.4.53 Proposition For any 
onstraint language � over a �nite set, [�℄ = Inv(s-Pol(�)).Note that Proposition 4.53 intuitively means that the expressive power of 
onstraintsin the QCSP is determined by their surje
tive polymorphisms. Hen
e, in order to showthat some relation % belongs to [�℄, one does not have give an expli
it 
onstru
tion, butinstead one 
an show that % is invariant under all surje
tive polymorphisms of �, whi
hoften turns out to be signi�
antly easier.We remark that the operators Inv() and s-Pol() used in Proposition 4.53 form a Ga-lois 
onne
tion between RD and the set of all surje
tive members of OD whi
h has notpreviously been investigated (see, e.g., survey [70℄).Using Theorem 4.50, together with Example 4.49, we 
an obtain a suÆ
ient 
onditionfor PSPACE-
ompleteness of QCSP(�), in terms of the surje
tive polymorphisms of �.4.54 Theorem For any �nite set D with jDj � 3, and any � � RD, if every f 2 s-Pol(�)is of the form f(x1; : : : ; xn) = g(xi) for some 1 � i � n and some permutation g on D,then QCSP(�) is PSPACE-
omplete.The next example uses this result to show that even predi
ates that give rise to trivial
onstraint satisfa
tion problems 
an give rise to intra
table quanti�ed 
onstraint satis-fa
tion problems. This 
an happen be
ause non-surje
tive polymorphisms, whi
h mayguarantee the tra
tability of the CSP, do not a�e
t the 
omplexity of the QCSP.4.55 Example Let �s be the s-ary \not-all-distin
t" predi
ate holding on a tuple (a1; : : : ; as)if and only if jfa1; : : : ; asgj < s. Note that �s � f(a; : : : ; a) j a 2 Dg, so every instan
eof CSP(f�sg) is trivially satis�able by assigning the same value to all variables.However, by Lemma 2.2.4 of [71℄, the set Pol(f�jDjg) 
onsists of all non-surje
tiveoperations on D, together with all operations of the form given in Theorem 4.54. Hen
e,f�jDjg satis�es the 
onditions of Theorem 4.54, and QCSP(f�jDjg) is PSPACE-
omplete.Similar arguments 
an be used to show that QCSP(f�sg) is PSPACE-
omplete, for anys in the range 3 � s � jDj.On the tra
tability side, we have the following result. We 
all a semilatti
e operationbounded if the 
orresponding partial order is bounded (that is, it is a latti
e order). Re
allthat the dual dis
riminator operation is de�ned by the ruled(x; y; z) = � y if y = z,x otherwise.Note that the dual dis
riminator is a spe
ial type of near-unanimity operation.24



4.56 Theorem For any 
onstraint language � over a �nite set:(1) if Pol(�) 
ontains a Mal'tsev operation, or a near-unanimity operation, or a boundedsemilatti
e operation, then QCSP(�) is tra
table;(2) if Pol(�) 
ontains the dual dis
riminator operation, then QCSP(�) is in NL.Re
all that the graph of a permutation � is the binary relation f(x; y) j y = �(x)g (orthe binary predi
ate �(x) = y), For the spe
ial 
ase when � 
ontains the set � of all graphsof permutations, there is a tri
hotomy result whi
h says that su
h problems are eithertra
table, or NP-
omplete, or PSPACE-
omplete. (We remark that the 
omplexity ofthe standard CSP(�) for su
h sets � was 
ompletely 
lassi�ed in [25℄.)To state this tri
hotomy result we need to de�ne two additional surje
tive operations:� The k-ary near proje
tion operation,lk(x1; : : : ; xk) = � x1 if x1; : : : ; xk are all di�erent,xk otherwise.� The ternary swit
hing operation,s(x; y; z) =8<: x if y = z,y if x = z,z otherwise.4.57 Theorem Let � � � � RD, and jDj � 3.- If s-Pol(�) 
ontains the dual dis
riminator d, or the swit
hing operation s, or (whenjDj 2 f3; 4g) an aÆne operation, then QCSP(�) is in PTIME;- else, if s-Pol(�) 
ontains ljDj, then QCSP(�) is NP-
omplete;- else QCSP(�) is PSPACE-
omplete.5 The In�nite-Valued CSPThere are many 
omputational problems whi
h 
an be represented as 
onstraint satis-fa
tion problems, but require an in�nite set of values. In order to avoid representationproblems for in�nite obje
ts, we will 
onsider CSPs with in�nite sets of values in thefollowing form: �x an in�nite relational stru
ture B of �nite signature; the input thenis a �nite stru
ture A of the same signature, and the question is whether there is ahomomorphism from A to B.Here are two well-known examples of problems with an in�nite set of possible values.5.1 Example An instan
e of the A
y
li
 Digraph problem is a dire
ted graph G, andthe question is whether G is a
y
li
, that is, 
ontains no dire
ted 
y
les. It is easy to seethat this problem is equivalent to Hom(B) where B = (N;<), sin
e a dire
ted graph isa
y
li
 if and only if its verti
es 
an be numbered in su
h a way that every ar
 leads froma vertex with smaller number to a vertex with a greater one. This problem is tra
table.25



5.2 Example An instan
e of the Betweenness problem is a pair (A; T ) where A is a�nite set and T � A3; the question is whether there is a fun
tion f : A ! f1; : : : ; jAjgsu
h that, for every triple (a; b; 
) 2 T , we have either f(a) < f(b) < f(
) or f(a) >f(b) > f(
). This problem is equivalent to Hom(B) with B = (N; R) whereR = f(x; y; z) 2 N3 j x < y < z or x > y > zg:This problem is NP-
omplete [33℄.It 
an be shown that neither of the above two problems 
an be represented as CSP(�)for any 
onstraint language � over a �nite set D.5.1 Appli
ability of PolymorphismsIn order to investigate the appli
ability of the algebrai
 approa
h, des
ribed in previousse
tions, to the in�nite-valued CSP, the �rst question to be asked is whether the 
om-plexity is determined by the polymorphisms of the 
onstraint relations; that is, whetherh�i = Inv(Pol(�)) when � is a �nite 
onstraint language over an in�nite domain. It is nothard to see that the in
lusion h�i � Inv(Pol(�)) always holds. However, this in
lusion
an be stri
t, as the next example shows.5.3 Example Consider � = fR1; R2; R3g on N, where R1 = f(a; b; 
; d) j a = b or 
 = dg,R2 = f(1)g, and R3 = f(a; a + 1) j a 2 Ng. It is not diÆ
ult to show that everypolymorphism of � is a proje
tion, and hen
e Inv(Pol(�)) is the set of all relations onN. However, one 
an 
he
k that, for example, the unary relation 
onsisting of all evennumbers does not belong to h�i.However, for some 
ountable stru
tures B, the required equality does hold, as thenext result indi
ates.A 
ountable stru
ture B (of �nite signature) is 
alled homogeneous if every isomor-phism between any pair of substru
tures is indu
ed by an automorphism of B. A 
ountablestru
ture is 
alled !-
ategori
al if it is determined (up to isomorphism) by its �rst-ordertheory. It is known that every 
ountable homogeneous stru
ture is !-
ategori
al, andthat a 
ountable stru
ture is !-
ategori
al if and only if its automorphism group, whena
ting on the set of all n-tuples (for any n) of elements from the stru
ture, has only�nitely many orbits (see, e.g., [42℄).5.4 Theorem ([4℄) If B� is a 
ountable !-
ategori
al stru
ture then h�i = Inv(Pol(�)).Many examples of 
ountable homogeneous stru
tures, as well as remarks on the 
omplex-ity of the 
orresponding 
onstraint satisfa
tion problems, 
an be found in [4℄.5.2 The Interval-Valued CSPOne form of in�nite-valued CSP whi
h has been widely studied in arti�
ial intelliegen
eis the 
ase where the values taken by the variables are intervals on the real line. This26



Basi
 relation Example EndpointsI pre
edes J p III I+ < J�J pre
eded by I p�1 JJJI meets J m IIII I+ = J�J met by I m�1 JJJJI overlaps J o IIII I� < J� < I+,J overl. by I o�1 JJJJ I+ < J+I during J d III I� > J�,J in
ludes I d�1 JJJJJJJ I+ < J+I starts J s III I� = J�,J started by I s�1 JJJJJJJ I+ < J+I �nishes J f III I+ = J+,J �nished by I f�1 JJJJJJJ I� > J�I equals J � IIII I� = J�,JJJJ I+ = J+Table 1: The 13 basi
 relations in Allen's interval algebra.setting is used to model temporal behaviour of systems, where the intervals represent timeintervals during whi
h events o

ur. The most popular su
h formalism is Allen's intervalalgebra (AIA for short), introdu
ed in [1℄, whi
h 
on
erns binary qualitative relationsbetween intervals. This algebra 
ontains 13 basi
 relations (see Table 1), 
orrespondingto the 13 distin
t ways in whi
h two given intervals 
an be related. The 
omplete set ofrelations in AIA 
onsists of the 213 = 8192 possible unions of the basi
 relations.Let � be a 
onstraint language over the set of intervals on the real line, whose ele-ments are members of Allen's interval algebra, and let B� be the 
orresponding relationalstru
ture. It is not hard to see that every instan
e of CSP(�) 
an also be (more graph-i
ally) viewed as a dire
ted graph whose verti
es represent the variables and whose ar
sare ea
h labelled with a relation from �. The question would then be whether one 
anassign intervals to the verti
es so that all 
onstraints on the ar
s are satis�ed.Some well-known 
ombinatorial problems 
an be represented as CSP(�) for a suitablesubset � of AIA, as the next example indi
ates.5.5 Example An undire
ted graph is 
alled an interval graph if it possible to assign(open) intervals to its nodes so that two intervals interse
t if and and only if the 
or-responding nodes are adja
ent. An instan
e of the Interval Graph Sandwi
h prob-lem [35℄ 
onsists of two (undire
ted) graphs G1 = (V;E1) and G2 = (V;E2) su
h thatE1 � E2. The question is whether there is E su
h that E1 � E � E2 and G = (V;E) isan interval graph. This problem is known to be NP-
omplete [35℄.This problem 
an be represented as CSP(�) where � 
onsists of two relations: \dis-joint" (given by p [ p�1 [ m [ m�1) and its 
omplement, \interse
t" (the union of the27



other nine basi
 relations). Indeed, let V be the set of variables, then, to any edge e 2 E1assign the 
onstraint \interse
t", to any edge e 62 E2 assign the 
onstraint \disjoint", andleave all other pairs of variables unrelated. Solutions of this CSP pre
isely 
orrespond tointerval graph sandwi
hes.Note that the 
ase when G1 = G2 is known as the Interval Graph Re
ognitionproblem, whi
h is tra
table, but this problem is not of the form CSP(�) be
ause in theInterval Graph Re
ognition problem we 
annot leave any pair of variables unrelated.Choosing other pairs of 
omplementary relations, one 
an obtain other graph sandwi
hproblems, su
h as the Overlap (or Cir
le) Graph Sandwi
h problem [35, 55℄The general CSP problem for AIA is NP-
omplete, as follows from the above example.The problem of 
lassifying subsets of AIA with respe
t to the 
omplexity of the 
orre-sponding CSP has attra
ted mu
h attention in arti�
ial intelligen
e (see, for example,[76℄).Allen's interval algebra has three operations on relations: 
omposition, interse
tion,and inversion. Note that these three operations 
an ea
h be represented by using 
on-jun
tion and existential quanti�
ation, so, for any subset � of AIA, the subalgebra �0 ofAIA generated by � has the property that �0 � h�i. It follows from Corollary 4.6 thatCSP(�) and CSP(�0) are polynomial-time equivalent. Hen
e it is suÆ
ient to 
lassify allsubalgebras of AIA.Using 
omputations in subalgebras of AIA, manipulations with primitive positiveformulas (
alled derivations in [55℄) and a number of new NP-
ompleteness results, a
omplete 
lassi�
ation of the 
omplexity of all subsets of AIA was a

omplished in [55℄,where the following result was obtained.5.6 Theorem Let � be a subset of Allen's interval algebra. If � is 
ontained in oneof the eighteen subalgebras listed in Table 2, then CSP(�) is tra
table; otherwise it isNP-
omplete.In Table 2, for the sake of brevity, relations between intervals are written as 
olle
tionsof basi
 relations. So, for instan
e, we write (pmod) instead of p [m [ o [ d. We also usethe symbol �, whi
h should be interpreted as follows: a 
ondition involving � means the
onjun
tion of two 
onditions, one 
orresponding to + and one 
orresponding to �. Forexample, the 
ondition (o)�1 � r , (d)�1 � r means that both (o) � r , (d) � r and(o�1) � r , (d�1) � r hold.It follows from Theorem 5.6 that CSP(frg), where r is a single relation in AIA, is NP-
omplete if and only if r either satis�es r\ r�1 = (mm�1) or is a relation with r\ r�1 = ;and su
h that neither r nor r�1 is 
ontained in one of (pmod�1sf�1), (pmod�1s�1f�1),(pmodsf) and (pmodsf�1).It was noted in [4℄ that AIA (without its operations) is in fa
t a homogeneous relationalstru
ture. Sin
e we may assume, without loss of generality, that all intervals under
onsideration have rational endpoints, we obtain a 
ountable homogeneous stru
ture of�nite signature. Therefore, by Theorem 5.4, the 
omplexity 
lassi�
ation problem forsubsets of AIA 
an be ta
kled using polymorphisms. Su
h an approa
h may provide aroute to simplifying the involved 
lassi�
ation proof given in [55℄.28



Sp = fr j r \ (pmod�1f�1)�1 6= ; ) (p)�1 � rgSd = fr j r \ (pmod�1f�1)�1 6= ; ) (d�1)�1 � rgSo = fr j r \ (pmod�1f�1)�1 6= ; ) (o)�1 � rgA1 = fr j r \ (pmod�1f�1)�1 6= ; ) (s�1)�1 � rgA2 = fr j r \ (pmod�1f�1)�1 6= ; ) (s)�1 � rgA3 = fr j r \ (pmodf)�1 6= ; ) (s)�1 � rgA4 = fr j r \ (pmodf�1)�1 6= ; ) (s)�1 � rgEp = fr j r \ (pmods)�1 6= ; ) (p)�1 � rgEd = fr j r \ (pmods)�1 6= ; ) (d)�1 � rgEo = fr j r \ (pmods)�1 6= ; ) (o)�1 � rgB1 = fr j r \ (pmods)�1 6= ; ) (f�1)�1 � rgB2 = fr j r \ (pmods)�1 6= ; ) (f)�1 � rgB3 = fr j r \ (pmod�1s�1)�1 6= ; ) (f�1)�1 � rgB4 = fr j r \ (pmod�1s)�1 6= ; ) (f�1)�1 � rgE� = (r ����� 1) r \ (pmod)�1 6= ; ) (s)�1 � r, and2) r \ (ff�1) 6= ; ) (�) � r )
S� = (r ����� 1) r \ (pmod�1)�1 6= ; ) (f�1)�1 � r, and2) r \ (ss�1) 6= ; ) (�) � r )
H =8><>:r ������� 1) r \ (os)�1 6= ; & r \ (o�1f)�1 6= ; ) (d)�1 � r, and2) r \ (ds)�1 6= ; & r \ (d�1f�1)�1 6= ; ) (o)�1 � r, and3) r \ (pm)�1 6= ; & r 6� (pm)�1 ) (o)�1 � r 9>=>;A� = fr j r 6= ; ) (�) � rgTable 2: The 18 maximal tra
table subalgebras of Allen's algebra.
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