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ABSTRACT : this paper develops for the first time a semantics of computation free from the 

twin drawbacks of reductionism (which leads to static modelisation) and subjectivism (which 

leads to syntactical abuses, in other terms, bureaucracy). The new approach initiated there 

rests on the use of a specific Q*-algebra A*, which has the distinguished property of bearing a 

(non associative) inner tensor product. To  each proof-as-program II of system F (or second 

order linear logic) is associated a pair (il:u) of partial symmetries, u representing the cuts of 

the proof, i.e. the dynamics. The dynamics is introduced as a way of eliminating u, namely 

forming 

EX(II?c) = (I - $).IIo(I - uII')-'.(I-u'). 
a formula which makes sense only if UII' is nilpotent. The nilpotency of uII' is the 

mathematical way of expressing strong normalisation. In fact i t  is possible to prove that uII' 
is always nilpotent, and the proof strongly relies on (the first mathematical attempt to gwe) 

the definition ex nihilo of the concept of type : a and b are orthogonal when ab is nilpotent, a 

type is a set of operators equal to its biorthogonal. As to relation with normalisation, the 

formula written above is faithful only w.r.t. a limited class of types ; this is due to a different 

conception of execution, where actions at distance (global time) are forbidden, but what is 

found is always consistent with syntax, if not always the same. This difference with syntax 

must be seen as the disparition of any kind of central unit in a network of parallel computers 

trying to compute a sequential algorithm. Coming back to A*, i t  turns out that this algebra 

manipulates very simple finite electronic circuits, and it is therefore likely that this 

modelisation could work on a concrete ad hoc machine. 
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HLS 
 via  
GS

The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:

T

X

SR

D 1

2

Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:

M M

!

!'

!

!' !''

!

!

!' !

Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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Figure 1. In-place map schematic and implementation

First, it is convenient to add linear product (tensor) explicitly to
the type system:

� ⌃ M : ⇥ �� ⌃ M � : ⇥�

�,�� ⌃ M ⇤M � : ⇥ ⇤ ⇥�

We also add a very simple form of dependent types, ⇥{N} which
is defined as

⇥{0} = 1, ⇥{N} = ⇥ ⇤ ⇥{N � 1},

where 1 is the unit type (the empty interface).
The language of indices N consists of natural number constants,

subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⇤ is adjoint to ⌅ in the type system, the following three types are
isomorphic:

⇥ ⇤ · · ·⇤ ⇥ ⌅ ⇥� ⇧ ⇥ ⌅ · · · ⌅ ⇥ ⌅ ⇥� ⇧ ⇥{N} ⌅ ⇥�.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = ⇤x : com.x : com ⌅ com

par{N} = ⇤x : com.(x || par{N � 1})
: com ⌅ com{N � 1} ⌅ com ⇧ com{N}⌅com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-

The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:
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Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:
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Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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Figure 1. In-place map schematic and implementation

First, it is convenient to add linear product (tensor) explicitly to
the type system:

� ⌃ M : ⇥ �� ⌃ M � : ⇥�

�,�� ⌃ M ⇤M � : ⇥ ⇤ ⇥�

We also add a very simple form of dependent types, ⇥{N} which
is defined as

⇥{0} = 1, ⇥{N} = ⇥ ⇤ ⇥{N � 1},

where 1 is the unit type (the empty interface).
The language of indices N consists of natural number constants,

subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⇤ is adjoint to ⌅ in the type system, the following three types are
isomorphic:

⇥ ⇤ · · ·⇤ ⇥ ⌅ ⇥� ⇧ ⇥ ⌅ · · · ⌅ ⇥ ⌅ ⇥� ⇧ ⇥{N} ⌅ ⇥�.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = ⇤x : com.x : com ⌅ com

par{N} = ⇤x : com.(x || par{N � 1})
: com ⌅ com{N � 1} ⌅ com ⇧ com{N}⌅com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-
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The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:

T

X

SR

D 1

2

Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:
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Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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First, it is convenient to add linear product (tensor) explicitly to
the type system:
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�,�� ⌃ M ⇤M � : ⇥ ⇤ ⇥�

We also add a very simple form of dependent types, ⇥{N} which
is defined as

⇥{0} = 1, ⇥{N} = ⇥ ⇤ ⇥{N � 1},

where 1 is the unit type (the empty interface).
The language of indices N consists of natural number constants,

subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⇤ is adjoint to ⌅ in the type system, the following three types are
isomorphic:

⇥ ⇤ · · ·⇤ ⇥ ⌅ ⇥� ⇧ ⇥ ⌅ · · · ⌅ ⇥ ⌅ ⇥� ⇧ ⇥{N} ⌅ ⇥�.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = ⇤x : com.x : com ⌅ com

par{N} = ⇤x : com.(x || par{N � 1})
: com ⌅ com{N � 1} ⌅ com ⇧ com{N}⌅com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-
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• monoidal structure (+)

The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:

T

X

SR

D 1

2

Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:

M M

!

!'

!

!' !''

!

!

!' !

Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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First, it is convenient to add linear product (tensor) explicitly to
the type system:

� ⌃ M : ⇥ �� ⌃ M � : ⇥�

�,�� ⌃ M ⇤M � : ⇥ ⇤ ⇥�

We also add a very simple form of dependent types, ⇥{N} which
is defined as

⇥{0} = 1, ⇥{N} = ⇥ ⇤ ⇥{N � 1},

where 1 is the unit type (the empty interface).
The language of indices N consists of natural number constants,

subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⇤ is adjoint to ⌅ in the type system, the following three types are
isomorphic:

⇥ ⇤ · · ·⇤ ⇥ ⌅ ⇥� ⇧ ⇥ ⌅ · · · ⌅ ⇥ ⌅ ⇥� ⇧ ⇥{N} ⌅ ⇥�.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = ⇤x : com.x : com ⌅ com

par{N} = ⇤x : com.(x || par{N � 1})
: com ⌅ com{N � 1} ⌅ com ⇧ com{N}⌅com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-
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• monoidal structure (+)
• interpretation of constants (+)

The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:

T

X

SR

D 1

2

Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:

M M

!

!'

!

!' !''

!

!

!' !

Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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First, it is convenient to add linear product (tensor) explicitly to
the type system:

� ⌃ M : ⇥ �� ⌃ M � : ⇥�

�,�� ⌃ M ⇤M � : ⇥ ⇤ ⇥�

We also add a very simple form of dependent types, ⇥{N} which
is defined as

⇥{0} = 1, ⇥{N} = ⇥ ⇤ ⇥{N � 1},

where 1 is the unit type (the empty interface).
The language of indices N consists of natural number constants,

subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⇤ is adjoint to ⌅ in the type system, the following three types are
isomorphic:

⇥ ⇤ · · ·⇤ ⇥ ⌅ ⇥� ⇧ ⇥ ⌅ · · · ⌅ ⇥ ⌅ ⇥� ⇧ ⇥{N} ⌅ ⇥�.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = ⇤x : com.x : com ⌅ com

par{N} = ⇤x : com.(x || par{N � 1})
: com ⌅ com{N � 1} ⌅ com ⇧ com{N}⌅com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-
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An evaluation of  
HLS from GS

• monoidal structure (+)
• interpretation of constants (+)

• concurrency / parallelism (+)

The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:

T

X

SR

D 1

2

Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:
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Commutativity is rearranging ports in the interface, weakening
is the addition of dummy ports and identities are typed buses.

Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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Figure 1. In-place map schematic and implementation

First, it is convenient to add linear product (tensor) explicitly to
the type system:

� ⌃ M : ⇥ �� ⌃ M � : ⇥�

�,�� ⌃ M ⇤M � : ⇥ ⇤ ⇥�

We also add a very simple form of dependent types, ⇥{N} which
is defined as

⇥{0} = 1, ⇥{N} = ⇥ ⇤ ⇥{N � 1},

where 1 is the unit type (the empty interface).
The language of indices N consists of natural number constants,

subtraction and division (over natural numbers). This will guaran-
tee that recursive definitions have finite unfoldings. Note that since
⇤ is adjoint to ⌅ in the type system, the following three types are
isomorphic:

⇥ ⇤ · · ·⇤ ⇥ ⌅ ⇥� ⇧ ⇥ ⌅ · · · ⌅ ⇥ ⌅ ⇥� ⇧ ⇥{N} ⌅ ⇥�.

For example, an N -ary parallel execution operator can be recur-
sively defined, for example, as:

par{1} = ⇤x : com.x : com ⌅ com

par{N} = ⇤x : com.(x || par{N � 1})
: com ⌅ com{N � 1} ⌅ com ⇧ com{N}⌅com.

Recursive definitions in this dependent-type metalanguage are
elaborated first into SCI by unfolding the definitions until all in-
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The diagonal circuit is behaviourally similar to a stateful
multiplexer-demultiplexer. It routes an input signal from the
interfaces on the right to the shared interface on the left while
storing the source of the signal in a set-reset register. From the
semantic model we know that any output signal in the shared
interface is followed by an input signal in the same interface,
which is routed to the originating component using the demul-
tiplexer T . SR registers are needed for all initial questions and
T blocks use the registers for the matching question.
In the simplest case, for �com the circuit looks like this:
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Note that this diagonal introduces a unit delay, which is not
strictly necessary for correctness. A lower-latency diagonal that
correctly handles instant feedback without the delay D can be
implemented, but is more complex.

Structural rules Finally, we give constructions for commutativity,
weakening and identity. They are represented by the circuits
below:
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Commutativity is rearranging ports in the interface, weakening
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Example. The GoS approach allows the compilation of higher-
order, open terms. Consider for example a program that exe-
cutes in-place map on a data structure equipped with an iterator:
⇤f : exp ⌅ exp.init;while(more)(curr := f(!curr); next) : com,
where init : com, curr : var, next : com,more : exp. The interface
of the iterator consists of an initialiser, access to the current ele-
ment, advance to the next element and test if there are more ele-
ments in the store. Since SCI is call-by-name all free identifiers are
thunks. The block diagram of the circuit is given in Fig. 1: The full
schematic of the circuit for in-place map is also given in Fig. 1; for
clarity we have identified what ports correspond to what identifiers.
The ports on the right correspond to the term type com. Note that
we can optimise away the diagonal for variable identifier curr be-
cause the first instance is used for writing while the second one for
reading.

4. Unfolding finite recursion in space
In its simplest instance recursion can be seen simply as an unfold-
ing of a circuit definition. Such recursive definitions can only apply
to well-founded definitions as infinite unfoldings cannot be synthe-
sised. To support finite recursion via unfolding we augment the SCI
type system with a rudimentary form of dependent typing.
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The masquerade

A higher-order version of RPC seems to require the sending of functions
(code) from the caller to the callee and vice versa, because functions can now
be both arguments and results. One solution is that all nodes have access to a
local instance of each function in the program and can send references to such
functions (possibly paired with some free variables, forming a closure). Erlang [1]
and Cloud Haskell [4] take this approach. Erlang, which runs in a virtual machine,
even allows the sending of syntax trees for terms that do not exist on the remote
node. However, both these approaches have the disadvantage that a program
running on a single node needs to be “ported” to the distributed setting by
including significant amounts of non-trivial boilerplate code.

What we will describe in this paper is a seamless approach to distributed
programming: the distributed program is syntactically and semantically identical
to the same program running on the single node, except for annotations (labels)
indicating the names of the nodes where particular terms are to be executed.
There is no language-induced restriction regarding the way locations are assigned:
any syntactic sub-term of the program can be given an arbitrary node label,
which will mean that it will be executed on the node of that label. There is no
explicit communication between nodes, all the interaction being automatically
handled “under the hood” by the generated code.

Example To illustrate this point consider the same program written in Erlang
versus PCF annotated with location information. Consider the PCF program
let f = �x. x ⇤ x in f 3 + f 4, and suppose that we want to delegate the
execution of the multiplication operation on a node C while the rest of the
program executes on the (main) node A. The annotated PCF code is simply:
(let f = (�x. x ⇤ x) @ C in f 3 + f 4) @A

In Erlang, things are much more complicated. The f function can be set up
as a server which receives request messages:

c(A_pid) -> receive X -> A_pid ! X * X end, c(A_pid).

main() ->

C_pid = spawn(f, c, [self()]), C_pid ! 3,

receive X -> C_pid ! 4, receive Y -> X + Y end

end.

Arguably, the logical structure of the program is lost in the detail. Moreover, if
we want to further delegate the addition to a server B, the annotated PCF is
(let f = (�x. x ⇤x)@C in (f 3+ f 4)@B)@A whereas the Erlang version of the
three-server distribution is even more complicated than the two-server version,
which further obscures its logical structure:

c() -> receive {Pid, X} -> Pid ! X * X end, c().

b(A_pid, C_pid) ->

receive

request0 -> C_pid ! {self(), 3}, receive X -> A_pid ! X end;

request1 -> C_pid ! {self(), 4}, receive X -> A_pid ! X end

end,

b(A_pid, C_pid).

main() ->

C_pid = spawn(f2, c, []),

B_pid = spawn(f2, b, [self(), C_pid]),

B_pid ! request0,

receive X -> B_pid ! request1, receive Y -> X + Y end

end.

Contribution The main technical challenge we address in this paper is handling
higher-order and recursive computation. To be able to give a focussed and techni-
cally thorough treatment we will handle the paradigmatic functional programming
language PCF [13], a language which is well understood semantically and which
lies at the foundation of practical programming languages such as Haskell.

Conceptually, what makes the seamless distribution of PCF programs possible
is an interpretation inspired by game semantics [6] and the Geometry of Interac-
tion (GoI) [10]. These models are built on the principle of reducing function call
to communication and computation to interaction.

Note that the idea of reducing computation to interaction also appeared
in the context of process calculi [11]. This was a development independent of
game semantics and GoI which happened around the same time. Compilation
of distributed languages via process calculi is also possible, in languages such
as Pict [12], but the methodology is di↵erent. Whereas we aim to hide all the
communication by making it implicit in function call, Pict and related languages
embedded process calculus syntax to develop communication protocols. A further
significant development in compilation based on process calculi was the idea
of mobile code, where software agents are explicitly sent across the network
between running processes [3, 14]. By contrast, in our methodology no code needs
to be transmitted. Also note that GoI itself has been used before to compile
PCF-like programs to unconventional architectures, namely reconfigurable digital
circuits [7].1

The GoI model reduces a program to a static network of elementary nodes.
Although this is eminently suitable for hardware synthesis, where the elementary
nodes become elementary circuits and the network becomes the circuit intercon-
nect, it is too fine grained for distributed compilation. We address this technical
challenge by introducing a new style of abstract machine which has elementary
instructions for both control (jumps) and communication. These machines can
be (almost) arbitrarily combined by replacing communication with jumps, which
gives a high degree of control over the granularity of the network.

Our compiler works in several stages. First it creates the fine-grained network
of elementary communicating abstract machines. Then, using node annotations
(labels), it combines all machines which arise out of the compilation of terms
using the same label. The final step is to compile the abstract machines down to
executable code using C for local execution and MPI for inter-machine communi-
cation.

1 Tool available at http://veritygos.org.
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explicit communication between nodes, all the interaction being automatically
handled “under the hood” by the generated code.

Example To illustrate this point consider the same program written in Erlang
versus PCF annotated with location information. Consider the PCF program
let f = �x. x ⇤ x in f 3 + f 4, and suppose that we want to delegate the
execution of the multiplication operation on a node C while the rest of the
program executes on the (main) node A. The annotated PCF code is simply:
(let f = (�x. x ⇤ x) @ C in f 3 + f 4) @A

In Erlang, things are much more complicated. The f function can be set up
as a server which receives request messages:

c(A_pid) -> receive X -> A_pid ! X * X end, c(A_pid).

main() ->

C_pid = spawn(f, c, [self()]), C_pid ! 3,

receive X -> C_pid ! 4, receive Y -> X + Y end

end.

Arguably, the logical structure of the program is lost in the detail. Moreover, if
we want to further delegate the addition to a server B, the annotated PCF is
(let f = (�x. x ⇤x)@C in (f 3+ f 4)@B)@A whereas the Erlang version of the
three-server distribution is even more complicated than the two-server version,
which further obscures its logical structure:

c() -> receive {Pid, X} -> Pid ! X * X end, c().

b(A_pid, C_pid) ->

receive

request0 -> C_pid ! {self(), 3}, receive X -> A_pid ! X end;

request1 -> C_pid ! {self(), 4}, receive X -> A_pid ! X end

end,

becomes this:

12
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(let f = (�x. x ⇤ x)@B in f 3 + f 4)@A

⇤
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Compilation from GoI

jumps to labels given by the port mappings.

combine(M
1

,M

2

) = h(P
1

[ P

2

) � (⇡(M
1

)�⇡(M
2

)),

(L
1

[ L

2

)[send p/jump P (p) | p 2 ⇡(M
1

) \ ⇡(M
2

)]i.

There are two abuses of notation above. First, the union P

1

[ P

2

above is on
functions taken as sets of pairs and it may not result in a proper function. However,
the restriction to ⇡(M

1

)�⇡(M
2

) always produces a proper function. Second,
⇡(M

1

) \ ⇡(M
2

) is a set and not a list. However, the result of this substitution is
independent of the order in which the elements of this set are taken from any of
its possible list representations.

A network is said to be combinable if combining any of its components does
not change the overall network behaviour

Definition 1. A deterministic network of machines N = M

1

, . . . ,M

k

is com-
binable if whenever

h{hp, di} | Ni �!⇤ h{hp0, d0i} | N 0i

for some N

0
, p in inputs(N), p0 in outputs(N), then for any N

combined

obtained

from N by replacing M

i

,M

j

with combine(M
i

,M

j

) for some i 6= j we have that

h{hp, di} | N
combined

i �!⇤ h{hp0, d0i} | N 0
combined

i

for some N

0
combined

.

Note that the combined net is not equivalent to the original net (for a suitable
notion of equivalence such as bisimilarity) because it will have fewer observable
messages being exchanged.

Lemma 1. If a net N is combinable then N

combined

is also combinable.

The set of combinable machines is hard to define exactly, so we would just
like to find a sound characterisation of such machines which covers all the basic
components we used and their combinations.

Definition 2. A machine description M = hP,Li is stack-neutral if for all

stacks S and S

0
, p in inputs(M), p0 in outputs(M), if

h{hp, di} | hpassive, S, P, Lii �!⇤ h{hp0, d0i} | hpassive, S0
, P, Lii

then S = S

0
.

Definition 3. A machine network N of k machines described by port mappings

P

i

and label mappings L

i

is stack-neutral, if for all stacks S

i

and S

0
i

, p in

inputs(N), p0 in outputs(N), if

h{hp, di} | [hpassive, S
i

, P

i

, L

i

i | i 2 {1, . . . , k}]i �!⇤

h{hp0, d0i} | [hpassive, S0
i

, P

i

, L

i

i | i 2 {1, . . . , k}]i

then all S

i

= S

0
i

.
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Games are a trace 
semantics…
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… of what machine?
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HRAMS

Instructions ::= i new j, k
| i, j get k
| update i, j
| free i
| flip i, j
| i set j
| ifzero i c1 c2
| spark a
| · · ·

Fredriksson and Ghica. LICS’1317
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Distributing conventional 
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Krivine & SECD machines

• add remote versions of all operations 

• extend data structures with remote pointers 

• prove correctness via simulation with single node 
machine 

• machine-checked so we can sleep at night (Agda)

Fredriksson and Ghica. ICFP’1421



Single-node performance

arith fib root

Baseline 100% (0.34s) 100% (0.094s) 100% (0.009s)
GOI 3,042% (10.3s) 2,832% (2.7s) 20,222% (0.18s)

GAMC 765% (2.6s) 395% (0.53s) 356% (0.032s)
DKrivine 131% (0.44s) 141% (0.13s) 233% (0.021s)

Single node baseline. We measure each compiler using its own
single-node performance as a reference point and we split the
program in two nodes such that a large communication overhead
is introduced. We measure it both in terms of relative execution
time and in terms of average and maximum size of the messages,
in bytes. Note that the overheads are only due to the processing
required by the node to send and receive the nodes and not due to
network latencies. In order to factor them out we run all the (virtual)
MPI nodes on the same physical computer.

The data is shown in Tab. 1 and we can see that the DKrivine
compiler is not only faster for local execution, but also has a com-
paratively small communication overhead. Each time entry in the
table is relative to the same compiler’s local execution time, and
the absolute time is shown in parentheses. We can see that DKriv-
ine is well ahead of the others in terms of absolute execution time.
Both GAMC and DKrivine use messages of a bound size, whereas
GOI’s messages grow, sometimes significantly, during execution.
The high overhead across all three compilers for the root bench-
mark is because it does a relatively small amount of local compu-
tations before it needs to communicate. We suspect that the high
overhead for GOI and GAMC in many benchmarks is also due to
the large amount of “bookkeeping” C code that is required, even
for simple terms. The way the C compiler optimiser works plays an
important role in the performance gap between single node and dis-
tribution. When all the code is on the same node the functions are
aggressively inlined because they belong to the same binary out-
put. When the code is distributed this is no longer possible. Also,
an analysis of the produced code shows that the C optimiser gen-
erally struggles with the code for the distributed nodes, because it
does not have a view of the whole program.

6. Previous and related work
Programming languages and libraries for distributed and client-
server computing (which can be seen as a particularly simple form
of distribution) are a vast area of research. Relevant to us are
functional programming languages for distributed execution, and
several surveys are available [21, 32].

Functional programming languages for distributed systems take
different approaches in terms of process and communication man-
agement. Languages such as ERLANG, which are meant for system-
level development offer a fairly low-level view of distribution in
which both process and communication are managed explicitly;
this is the language we used for contrasting effect in the intro-
duction. To tame communication some languages in this category
use mechanisms imported from process-calculi, such as PICT [33].
Programming languages do not need to be created from scratch
to include improved language support for communication. Session
types have been used to extend a variety of languages, including
functional languages, with better communication primitives [34]
or, alternatively, to provide language-independent frameworks for
integrating distributed applications, such as SCRIBBLE 1.

Our approach is, however, quite different. We aim to make com-
munication implicit, or seamless. In some sense this is already
widely used in programming practice, especially in the context of
client-server applications, in the form of remote procedure calls
(RPC) and related technologies such as Simple Object Access Pro-
tocol (SOAP). What we aim to do is to integrate these approaches

1
https://www.jboss.org/scribble

into the programming language so that from a programmer perspec-
tive there is no distinction between a remote and local call, even at
higher order. Perhaps the closest to our aim is Remote Evaluation
(REV) [31], another generalisation of RPC, which enables the use
of higher-order functions across node boundaries. The main differ-
ences between REV and our work is that REV relies on sending
unevaluated code. The REV approach evolved into a variety of mo-
bile code languages [7] which add several layers of sophistication
to this approach, but have evolved in a direction that is not directly
relevant to transparent distribution.

The EDEN project [22], an implementation of parallel HASKELL
for distributed systems which keeps most communication implicit,
is also close to our aims. Another similarity to our work is that
the specification of the language is tiered: an operational seman-
tics at the level of the language and an abstract-machine semantics
for execution environment, the Distributed Eden Abstract Machine
(DREAM) [5]. EDEN is not perfectly seamless: a small set of syn-
tactic constructs are used to manage processes explicitly and com-
munication is always performed using head-strict lazy lists. There
are significant technical differences between DREAM and Kriv-
ine Nets since the DREAM is a mechanism of distribution for the
Spineless Tagless G-machine [18] whereas we develop the Krivine
machine. Also, in terms of emphasis, EDEN is an implementation-
focussed project whereas we want to create a firm theoretical foun-
dation on which compilation to distributed platforms can be carried
out. Whereas (as far as we know) no soundness results exist for the
DREAM, we provide a fully formalised proof.

Other similar implementation-oriented projects are for tierless
client-server computing such as LINKS [8], where “tierless” has a
similar meaning to our use of “seamless”. The execution mecha-
nism that LINKS builds on, the client/server calculus [9], is spe-
cialised to systems with two nodes, namely client and server. The
two nodes are not equal peers: the server is designed to be state-
less to be able to handle a large number of clients. The work on
the client/server calculus also spawned work on a more general
parallel abstract machine, LSAM, that handles an arbitrary num-
ber of nodes [26]. A predecessor to LSAM, called DML, uses a
similar abstract machine but for a richer language [28]. The main
difference between these machines and Krivine Nets is that they
are based on higher-level machines for call-by-value lambda cal-
culi, that use explicit substitutions and are therefore less straight-
forward to use as a basis for compilation. In contrast to our work,
they also assume synchronous communication models.

Abstract machines for distributed systems have also been stud-
ied. In fact, as early as 1980 a formal proposal for standardising
distributed computing using an abstract machine model was put
forth, although it did not catch on [30]. The DREAM, DML and
the LSAM are, as far as we are aware, the only abstract machines
for general distributed systems which, like the DKrivine machine,
combine conventional execution mechanisms with communication
primitives. Abstract machines for communication only have been
proposed [16], inspired by the CHAM (which we also take inspi-
ration from, to model the communication network), but they only
deal with half the problem when it comes to compiling conven-
tional languages.

Finally, we mention the compilation of conventional program-
ming languages to (possibly) distributed architectures via process
calculi, such as PICT [33], which also uses an abstract machine
with communication primitives. We have studied techniques based
on interaction semantics in prior work, using the Geometry of In-
teraction [13] or Game Semantics [14]. Although such more ex-
otic approaches can be effective at creating correct and transparent
distribution, it seems to be the case that the single-node execution
model is bound to be less efficient than that of conventional abstract
machines. Without over-emphasising efficiency at this early stage,
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Distribution overheads

arith fib root

time avg. size max. size time avg. size max. size time avg. size max size
GOI 114% (11.6s) 107 172 4,017% (3.8s) 302 444 19,422% (1.7s) 717 1,312

GAMC 193% (5.0s) 20 24 1,481% (7.8s) 20 24 22,872% (7.3s) 20 24
DKrivine 140% (0.62s) 32 40 238% (0.32s) 32 40 890% (0.19s) 32 40

Table 1. Benchmarks for distribution overheads

it is also the case that interfacing code compiled using conventional
techniques with code compiled using exotic techniques is difficult
and leads to problems with interoperability via foreign-function in-
terfaces. To us this is a significant short-coming which the current
work seeks to avoid.

7. Conclusion
In this paper we have presented a method of distributing the execu-
tion of the Krivine machine into what we call a Krivine Net. This
gives us a principled compilation model of the applied CBN lambda
calculus to an abstract distributed architecture. Our main results
are a rigorous, fully formalised, proof of correctness of the Kriv-
ine Net by comparing it to the conventional Krivine machine, and
a proof-of-concept compiler which allows us to compare this com-
pilation scheme with alternative methods based on other abstract
machines and more exotic semantics such as Geometry of Interac-
tion and Games. Compared to the more implementation-oriented
prior work on transparent (or tierless or seamless) compilation to
distributed or client-server architectures, our emphasis is on cor-
rectness. We believe that our main contribution is a theoretical firm
starting point for the principled study of compilation targetting such
architectures.

A broader question worth asking is whether this transparent and
integrated approach to distributed computing is practical. There are
two main possible objections:

Performance Some might say that higher-level languages have
poorer performance than system-oriented programming lan-
guage, which makes them impractical. This debate started when
Backus proposed FORTRAN as a machine-independent pro-
gramming language, and has carried on fruitlessly ever since.
We believe that the full spectrum of languages, from machine
code to the most abstract, are worth investigating seriously.
Seamless computing focusses on the latter, somewhat in the ex-
treme, in the belief that the principled study of heterogeneous
(not just distributed, but also reconfigurable etc.) compilation
techniques will broaden and deepen our understanding of pro-
gramming languages in general. And, if we are lucky and dili-
gent, it may even yield a practical and very useful programming
paradigm.

Control Distributed computing raises certain specific obstacles in
the way of using higher-level languages seamlessly, and this
leads to more cogent arguments against their use. A distributed
architecture is more volatile than a single node because indi-
vidual nodes may fail, communication links may break and
messages may get lost. Because of this, a remote call may fail
in ways that a local call may not. Is it reasonable to present
them to the programmer as if they are the same thing? We ar-
gue that there is a significant class of applications where the
answer is yes. If the programmer’s objectives are algorithmic
rather than the development of systems, it does not seem right to
burden them with the often onerous task of failure management
in a distributed system. Another argument against higher-level
languages is that they may hide the details of the program’s
dataflow and not provide enough control to eliminate bottle-

necks. To us it seems that the right way to manage both fail-
ure and dataflow issues in distributed algorithmic programming
requires a separation of concerns. Suitable runtime systems
must present a more robust programming interface; MAPRE-
DUCE [10] and CIEL [25] are examples of execution engines
with runtime systems that automatically handle configuration
and failure management aspects, the latter supporting dynamic
dataflow dependencies. If more fine-grained control is required,
then separate deployment and configuration policies which are
transparent to the programmer should be employed. In general,
we believe that the role and the scope of orchestration lan-
guages [6] should be greatly expanded to this end.

7.1 Further work
In this paper we largely ignored the finer issues of efficiency. Our
aim was to support in-principle efficient single-node compilation,
which happens when the DKrivine machine executes trivially on a
single node as a Krivine machine, and to reduce the communication
overhead by sending only small (bounded-size) messages which are
necessary. For example, our use of views of remote stack extensions
avoids the need to send pop messages. In the future we would
like to examine the possibility of efficient compilation on a hunch
that this could be a practical programming paradigm for distributed
computing. In order to do this several immediate efficiency issues
must and can be addressed.

Remote pointers In the RPC literature it is sometimes argued that
a shared or virtual address space, which is where our dis-
tributed heap of continuation stacks lives, is prohibitively ex-
pensive. However, research progress in tagged pointer repre-
sentation [24] suggests that we can use pointer tags to distin-
guish between local and remote pointers without even having
to dereference them. With such tags we would pay a very low,
if any, performance penalty for the local pointers.

Garbage collection The execution of the Krivine Net creates
garbage in the machines. Distributed garbage collection can be
a serious problem [29], but we have strong reasons to believe
that it can be avoided here, because the heap structures that
get created are quite simple. Most importantly, there are never
circular linked structures, otherwise the relations would not be
well founded. This means that a simpler method, reference-
counting, can be used [4]. We also know that efficient mem-
ory management is possible when compiling CBN functional
programming languages to distributed architectures. The GOI
compiler is purely stack-based, while the GAMC compiler uses
heaps but does explicit deallocations of locations that are no
longer needed.

Shortcut forwarding One of the most unpleasant features of the
current Krivine Net approach is the excessive forwarding of
data, especially on remote RETURN. A way to alleviate this
issue might be to not create indirections when a node has a
stack consisting only of a stack extension at the time of a remote
invocation, meaning that the remote node could return directly
to the current node’s invoker. However, the implementation is
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SECD (call-by-value)
trees nqueens qsort primes tak fib

FLOSKEL 91.2s 12.2s 9.45s 19.3s 16.5s 10.0s
ocamlopt 43.0s 3.10s 3.21s 6.67s 2.85s 1.68s

relative 2.12 3.94 2.94 2.9 5.77 5.95

Figure 1. Single-node performance.

trees nqueens qsort primes tak fib
µs/remote call 618 382 4.77 13.4 6.94 6.87
B/remote call 1490 25.8 28.1 27.0 32.0 24.0

Figure 2. Distribution overheads.

whereas a considerable amount of time and effort has been put into
ocamlopt.

Moreover, our compiler only produces C code rather than as-
sembly. Compiling to C rather than assembly, especially in the style
we use, prevents the C compiler from using whole-program optimi-
sations and is, therefore, a serious source of inefficiencies.

Distribution overhead We measure the overhead of our imple-
mentation of native remote procedure calls by running the same
programs as above, but distributed to between two and nine nodes.
The distribution is done by adding node annotations in ways that
generate large amounts of communication. We run the benchmarks
on a single physical computer with local virtual nodes, which
means that the contributions of network latencies are factored out.
These measurements give the overhead of the other factors related
to remote calls, like serialisation and deserialisation. The results
are shown in Fig. 2. The first row, µs/remote call, is obtained by
running the same benchmark with and without node annotations,
taking the delta-time of those two, and then dividing by the number
of remote invocations in the distributed program. The second row
measures the amount of data transmitted per remote invocation, in
bytes.

It is expected that this benchmark depends largely on the kinds
of invocations that are done, since it is more costly to serialise and
send a long list or a big closure than an integer. The benchmark
hints at this; we appear to get a higher cost for remote calls that are
big.

An outlier is the nqueens benchmark, which does not do remote
invocations with large arguments, but still has a high overhead per
call, because it intentionally uses many localised functions.

3. Abstract machines and nets
Having introduced the programming language, its compiler and its
run-time system we now present the theoretical foundation for the
correctness of the compiler. We start with the standard abstract
machine model of CBV computation, which we refine, in several
steps, into increasingly expressive abstract machines with heap
and networking capabilities, while showing along the way that
correctness is preserved, via bisimulation results. All definitions
and theorems are formalised using the proof assistant Agda, the
syntax of which we will follow. We give some of the key definitions
and examples in Agda syntax, but most of the description of the
formalisation is intended as a high-level guide to the Agda code.
In order to help the reader navigate the code when a significant
theorem or lemma is mentioned the fully qualified Agda name is
given in a footnote. Note that we shall not formalise the whole of
FLOSKEL but only a core language which coincides with Plotkin’s
(untyped) call-by-value PCF [35].

3.1 The CES machine
The starting point is a variation of Landin’s SECD machine [24]
called Modern SECD [25], which can be traced to the SECD
machine variation of Henderson [21] and to the CEK machine of
Felleisen [14], which we call CES (Agda module CES). Just like the
machine of Henderson, it uses bytecode for the control component
of the machine, and just like the CEK it places the continuations
that originally resided in the dump directly on the stack, simplifying
the machine configurations.

A CES configuration (Config) is a tuple consisting of a fragment
of code (Code), an environment (Env), and a stack (Stack). Evalua-
tion begins with an empty stack and environment, and then follows
a stack discipline. Sub-terms push their result on the stack so that
their super-terms can consume them. When (and if) the evaluation
terminates, the program’s result is the sole stack element.

Source language The source language has constructors for
lambda abstractions (� t), applications (t $ t’), and variables (var n),
represented using De Bruijn indices [12], so a variable is a natural
number. Additionally, we have natural number literals (lit n), bi-
nary operations (op f t t’), and a conditional (if0 t then t0 else t1).
Because the language is untyped, we can express a fixed-point
combinator without adding additional constructors.

The machine operates on bytecode and does not directly inter-
pret the source terms, so the terms need to be compiled before they
can be executed. The main work of compilation is done by the func-
tion compile’, which takes a term t and a fragment of code c used as
a postlude. The bold upper-case names (CLOS, VAR, and so on)
are the bytecode instructions, which are sequenced using _;_. In-
structions can be seen to correspond to the constructs of the source
language, sequentialised.

compile’ : Term ! Code ! Code
compile’ (� t) c = CLOS (compile’ t RET) ; c
compile’ (t $ t’) c = compile’ t (compile’ t’ (APPL ; c))
compile’ (var x) c = VAR x ; c
compile’ (lit n) c = LIT n ; c
compile’ (op f t t’) c = compile’ t’ (compile’ t (OP f ; c))
compile’ (if0 b then t else f) c =

compile’ b (COND (compile’ t c) (compile’ f c))

Example 3.1 (codeExample). To compile a term t we supply END
as a postlude: compile t = compile’ t END. The term t =
(�x. x) (�x y. x) is compiled as follows:

compile ((� var 0) $ (� (� var 1))) = CLOS (VAR 0 ; RET) ;
CLOS (CLOS (VAR 1 ; RET) ; RET) ; APPL ; END

Environments (Env) are lists of values (List Value), which are ei-
ther natural numbers (nat n) or closures (clos cl). A closure (Closure)
is a fragment of code paired with an environment (Code ⇥ Env).
Stacks (Stack) are lists of stack elements (List StackElem), which are
either values (val v) or continuations (cont cl), represented by clo-
sures.

Fig. 3 shows the definition of the transition relation for con-
figurations of the CES machine. A note on Agda syntax: The in-
struction constructor names are overloaded as constructors for the
relation; their usage is disambiguated by context. Arguments in
curly braces are implicit and can be automatically inferred. Equal-
ity (propositional) is written _⌘_.

Stack discipline is clear in the definition of the transition rela-
tion. When e.g. VAR is executed, the CES machine looks up the
value of the variable in the environment and pushes it on the stack.
A somewhat subtle part of the relation is the interplay between the
APPL instruction and the RET instruction. When performing an ap-
plication, two values are required on the stack, one of which has
to be a closure. The machine enters the closure, adding the value
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• interaction-based compilation is inefficient

• memory overhead not too bad
• too much jumping around (CPS-style)
• for HLS it doesn’t matter

• easier to prove correctness
• compositionality
• seamless switch control / communication

• opportunities for  optimisation not explored enough
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“More recently I discovered why the use of the go to 
statement has such disastrous effects, and I became 

convinced that the go to statement should be abolished 
from all higher level programming languages.”!

!
Go To Statement Considered Harmful 

Edsger W. Dijkstra
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“More recently I discovered why the use of the send 
statement has such disastrous effects, and I became 

convinced that the send statement should be abolished 
from all higher level programming languages.”
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— the end —
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