Compiling conventional
languages to unconventional
architectures

Dan R. Ghica

joint work with Alex Smith and Olle Fredriksson

OASIS 10th
24 November 2014

1

with or without game

semantics

Compiling conventional
languages to unconventional
architectures

Dan R. Ghica

joint work with Alex Smith and Olle Fredriksson

OASIS 10th
24 November 2014

1

Unconventional
architectures

1 |
: 5 0

S Y S N 0 S P S
...i'.“E ——fH

—Fi [o [B :
I 30 CMPAE 3O MR RERE 4 200 ENOME € M MY £ IEM0 2 |1 NN A)
o> P PN 5 0 N 0 S DS S) S R B O
- __.__I.ll __II.I____I_I'I__ _L — ___.'I
5 ﬁ % ﬁ
3

2wt

Control vs. communication

CPS-calculus Appel’s datatype cexp
(Y1 ... Y;) APP(VAR z,[VAR yy,...,VAR y,;]1)
M{n{zy...2;)=N} | FIX([(n, [z1,...,2;1,N)], M)

The binding of continuations in CPS can be implemented not only by
“passing” (using the A-calculus), but equally by “sending” (w-calculus) or
“grabbing” (using callcc)

. "‘ B
-

_—

CPS and self-adjointness
H. Thielecke, 1996

3

INnteraction semantics

e
.

Control

Interaction

Communication

INnteraction semantics

Logic Colloquium 88
Ferro, Bonotto, Valentini and Zanardo (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989 221

GEOMETRY OF INTERACTION 1:
INTERPRETATION OF SYSTEM F

jean—yves girard
équipe de logique, UA 753 du CNRS
mathématiques, Université Paris VII

conception of execution, where actions at distance (global fime) are forbidden, but what 1is
found 1s always consistent with syntax, if not always the same. This difference with syntax
must be seen as the disparition of any kind of central unit in a network of parallel computers
trying to compute a sequential algorithm. Coming back to A*, it turns out that this algebra
mampulates very simple fimite electronic circuits, and it is therefore likely that this

modelisation could work on a concrete ad hoc machine.

Functions as Processes
Les Fonctions vues comme des Processus

Robin Milner
University of Edinburgh
June 1989

Abstract This paper exhibits accurate encodings of the A-calculus in the x-
calculus. The former is canonical for calculation with functions, while the latter is a

recent step i'l2| towards a canonical treatment of concurrent processes. With quite

[z:=M] € ! zw).[M]w

In passing, note particularly the replication. This is not needed if M will be
called at most once; therefore the linear A-calculus, in which each variable z
must occur exactly once in its scope, may be encoded in the fragment of -
calculus without replication. The link with Girard’s ‘of course’ connective
‘I’ of linear logic [8] should be explored; his notation for it has been chosen
here deliberately.

1S

level synthesi
with Game Semantics

N

mlfe

Af 1 exp — exp.init; while(more)(curr := f(!curr); next) : com,

L -
it !
' . »D
:4: X |
more : HLS
- .
. : /
o | via
T 4 D >
I D GS
. -
f.
. -
\
B D
next + %

9 Ghica, Singh, Smith, ICFP*11

An evaluation of

HLS from GS‘

1

10

e monoidal structure (+)

An evaluation of

HLS from GS

1

10

e monoidal structure (+)

* interpretation of constants (+)

An evaluation of

HLS from GS

1

10

An evaluation of

HLS from GS‘

» monoidal structure (+) fall
* nterpretation of constants (+) f‘;f
e concurrency / parallelism (+) - = P

10

An evaluation of

HLS from GS‘

» monoidal structure (+) fall
* nterpretation of constants (+) f‘;f
e concurrency / parallelism (+) - = P
* flexibility w.rt. type systems (+) nE |
- '

10

An evaluation of

HLS from GS‘

* monoidal structure (+)

more

* interpretation of constants (+)

e concurrency / parallelism (+)

e flexibility w.r.t. type systems (+)

» efficiency seems good (+)

10

An evaluation of

HLS from GS‘

monoidal structure (+)

g X

1

more . :

interpretation of constants (+) =

» concurrency / parallelism (+) =
flexibility w.r.t. type systems (+) s —— | D
efficiency seems good (+) 5

some optimisations required (7)

10

An evaluation of
HLS from GS‘

monoidal structure (+)

g X

more .

interpretation of constants (+)

1

e concurrency / parallelism (+) = 7T 7

flexibility w.r.t. type systems (+) =

efficiency seems good (+) Ry

some optimisations required (7)

extensible to heterogeneous compilation (+)

10

An evaluation of
HLS from GS‘

monoidal structure (+)

. < X

more .

interpretation of constants (+)

1

e concurrency / parallelism (+) = 7T 7

flexibility w.r.t. type systems (+) =

efficiency seems good (+) 5
some optimisations required (7)
extensible to heterogeneous compilation (+)

a unigue success: failed before many times

10

Distributed
compilation of A

I'he masquerade

(let f = (A\z.2x2)QC in (f3+ f4)@Q@B)Q A

becomes this;

c() -> receive {Pid, X} -> Pid ! X * X end, c().
b(A_pid, C_pid) ->
receive
request0 -> C_pid ! {self(), 3}, receive X -> A_pid ! X end;
requestl -> C_pid ! {self(), 4}, receive X -> A_pid ! X end
end,

b(A_pid, C_pid).
main() ->
C_pid = spawn(f2, c, [1),
B_pid = spawn(f2, b, [self(), C_pidl),
B_pid ! requestO,
receive X -> B_pid ! requestl, receive Y -> X + Y end
end. »

Compilation from Gol

(letf = (M. xxx)QBinf 3+ f 4)QA

kredriksson and Ghica. TGC'12

14

Compilation using
games

(Games are a trace
semantics...

M.f (Ax.f (Ay. x)) M.f (Ax.f (Ay.y))
(1= t2) = 13) = ta) (1= 2) = 13) = ta)
95 95

... of what machine?

16

Instr =1+« newj,k
1,] «— get k
update,]
freei
flipi,]

1 < set]
ZOiCl 8)

Fredriksson and Ghica. LICS'13

Composition wot”

19

Distributing conventional
abstract machines

B BB

Krivine & SECD machines

* add remote versions of all operations
* extend data structures with remote pointers

* prove correctness via simulation with single node
machine

* machine-checked so we can sleep at night (Agda)

frredriksson and Ghica. ICFP’14

Single-node performance

arith fib root
Baseline| 100% (0.34s)| 100% (0.094s) 100% (0.009s)
GOI|3,042% (10.35)2,832% (2.7s)]20,222% (0.18s)
GAMC| 765% (2.6s)| 395% (0.53s) 356% (0.032s)
DKrivine| 131% (0.44s)| 141% (0.13s) 233% (0.0215)

22

Distribution overheads

arith fib root
time avg. size max. size time avg. size max. size time avg.size max size
GOI | 114% (11.6s) 107 172 | 4,017% (3.8s) 302 444 | 19,422% (1.7s) 717 1,312
GAMC | 193% (5.0s) 20 24 | 1,481% (7.8s) 20 24 | 22,872% (7.3s) 20 24
DKrivine | 140% (0.62s) 32 40 238% (0.32s) 32 40 890% (0.19s) 32 40

23

24

SECD (call-by-value)

trees |nqueens |gsort |primes| tak | fib

FLOSKEL | 91.2s | 12.2s | 9.45s | 19.3s |16.55(10.0s
ocamlopt | 43.0s | 3.10s | 3.21Is | 6.67s |2.85s|1.68s
relative 2.12 3.94 2.94 29 | 577 15.95

Figure 1. Single-node performance.

trees |nqueens |qsort |primes | tak | fib
ws/remote call | 618 382 477 | 13.4 [6.94|6.87
B/remote call | 1490 | 25.8 28.1 | 27.0 [32.0|24.0

Figure 2. Distribution overheads.

25

26

Conclusions

Conclusions

* Interaction-based compilation is inefticient

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad
e 100 much jumping around (CPS-style)

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad
e 100 much jumping around (CPS-style)
e for HLS it doesn’t matter

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad
e 100 much jumping around (CPS-style)
e for HLS it doesn’t matter

e easler to prove correctness

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad
e 100 much jumping around (CPS-style)
e for HLS it doesn’t matter
e easler to prove correctness
e compositionality

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad
e 100 much jumping around (CPS-style)
e for HLS it doesn’t matter
e easler to prove correctness
e compositionality
* seamless switch control / communication

27

Conclusions

* Interaction-based compilation is inefticient
e memory overhead not too bad
e 100 much jumping around (CPS-style)
e for HLS it doesn’t matter
e easler to prove correctness
e compositionality
* seamless switch control / communication

e opportunities for optimisation not explored enough

27

“More recently | discovered why the use of the go to
statement has such disastrous effects, and | became
convinced that the go to statement should be abolished
from all higher level programming languages.”

Go To Statement Considered Harmful
Edsger W. Dijkstra

28

“More recently | discovered why the use of the send
statement has such disastrous effects, and | became
convinced that the send statement should be abolished
from all higher level programming languages.”

28

— the end —

29

