
A Formal Model of SysML Blocks using CSP for
Assured Systems Engineering

Jaco Jacobs and Andrew Simpson

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road

Oxford OX1 3QD
{jaco.jacobs, andrew.simpson}@cs.ox.ac.uk

Abstract. The Systems Modeling Language (SysML) is a semi-formal,
visual modelling language used in the specification and design of sys-
tems. In this paper, we describe how Communicating Sequential Pro-
cesses (CSP) and its associated refinement checker, Failures Divergences
Refinement (FDR), gives rise to an approach that facilitates the refine-
ment checking of the behavioural consistency of SysML diagrams. We
formalise the conjoined behaviour of key behavioural constructs — state
machines and activities — within the context of SysML. Furthermore,
blocks, the fundamental modelling construct of the SysML language, can
be combined in a compositional approach to system specification. The
use of a process-algebraic formalism enables us to explore the behaviour
of the resulting composition more rigorously. We demonstrate how CSP,
in conjunction with SysML, can be used in a formal top-down approach
to systems engineering. A small case study validates the contribution.

1 Introduction

Accidents associated with complex systems are frequently the result of unfore-
seen interactions amongst components that all satisfy their individual require-
ments [1]. These component interaction accidents are increasingly common: state
of the art systems are more interdependent on other technologically advanced
systems and interact in ways not foreseen or intended by the original designer.
The Mars Polar Lander accident is one example of such a failure: both the land-
ing legs and the control software of the descent engines functioned as specified
by their respective behavioural specifications. The systems engineers, however,
did not consider all the potential interactions between the landing legs and the
control software of the descent engines [1].

The OMG’s Systems Modeling Language (SysML) [2] is a graphical mod-
elling notation used in the specification and integration of complex, large-scale
systems. A keystone of this activity is ensuring that requirements, as imposed by
the various stakeholders, are adequately captured and subsequently addressed
when specifying a potential solution. The intention of SysML, thus, is to accu-
rately specify intended component behaviour with the expectation to minimise
interaction accidents. However, SysML is a semi-formal notation. If we are to

carry out an extensive analysis of component interactions, more mathematical
rigour is indispensable.

Reasoning about behaviour — in particular, the myriad of interactions be-
tween components — is a rather cumbersome activity for the human mind. In
addition, our cognitive ability to cope with multiple, separate descriptions of
behaviour, and ultimately fuse these into a unified interpretation, is rather lim-
ited. We need to augment our faculties with appropriate notations in order to
effectively reason about such behaviours. Moreover, if we are going to utilise
these notations in a meaningful fashion, we require mechanised tool support.
Communicating Sequential Processes (CSP) [3] is one such notation, backed up
by Failures Divergences Refinement (FDR) in the form of a refinement checker.

Activities and state machines are the core behavioural constructs used to as-
cribe behaviour to SysML blocks. The aforementioned constructs are frequently
used in combination: activities are used to assign behavioural features that ought
to execute in a particular state, or on a given transition [2]. In this paper, we pro-
vide a behavioural semantics for the conjoined behaviour of state machines and
activities. In the past, there have been several contributions where the sole focus
lied either with the formalisation of state machines, or activities. To the best of
our knowledge, this paper is the first contribution where the intention is on the
provision of a behavioural semantics that encompasses both these formalisms.

At the structural level, SysML takes a compositional stance with regards to
systems specification: a block can be comprised of other blocks, which, in turn,
might themselves consist of blocks. However, for the approach to be effective and
useful, the behavioural conduct of these blocks need to be specified in a consistent
manner. Moreover, the approach needs to enable the modeller to sufficiently
abstract away details irrelevant to a particular level of abstraction.

This paper is a companion of sorts to the work presented in [4]: it extends
the formalisation of state machines to encompass entry, exit, and do behaviours
modelled via activities. In doing so, a formal behavioural semantics is provided
for activities, in terms of CSP.

The structure of the remainder of this paper is as follows. In Section 2, we
provide a brief introduction to SysML. Section 3 outlines our process-algebraic
approach to formalise SysML activities, state machines, and blocks. We show
how CSP can be employed to analyse expositions composed of multiple, commu-
nicating state machine and activity constructs. In Section 4, we employ a small
case study to illuminate and validate the contribution. Section 5 summarises
the contributions of this paper, and places it in context with respect to other
research.

2 Background

In this section, we give a necessarily brief introduction to SysML. We assume
familiarity with CSP.

Blocks Blocks are the fundamental modelling constructs of SysML and provide
the context in which behaviours execute. A block is often composed of other
blocks, termed parts, each of which has its own associated behaviour. The clas-
sifier behaviour of a block can serve as an abstraction of the behaviours of its
parts. Thus, the abstraction serves as a specification that the parts must realise:
the parts must interact in such a way that their combined behaviour conforms to
the abstraction. This interpretation also sits well with the concept of refinement
and abstraction in CSP.

The classifier behaviour is the main behaviour of a block, and executes from
the instant the instance is created until the point of destruction. The modelling
construct most frequently used to represent the classifier behaviour is a state ma-
chine. In most systems engineering methodologies, activities are typically used
as a complementary modelling notation to state machines: it is the behavioural
formalism normally associated with the effect component of a transition; alter-
natively, it is used to model behaviours related to a particular state.

Typically, two block instances communicate using signal events. The initiat-
ing block sends a signal event to a target block. This signal event is defined as
part of the supplementary behaviours — described using activities — associated
with the initiating state machine: the entry or exit behaviours of the active state;
or the effect component of the enabled transition. The receipt of the signal event
in the target block may subsequently trigger a transition in its state machine.
The approach described above is popular when modelling event-based systems.

A signal is a classifier that types the asynchronous messages that are commu-
nicated between blocks. Each signal optionally has an associated set of attributes
which correspond to the parameters that make up the content of the message.
A connector connects two or more parts or references. The connection formally
allows the connected components to interact, although the connector does not
characterise the nature of the interaction. Instead, the interaction is stipulated
by the behaviours of the connected blocks.

Activities Activities allow the modeller to describe complex routes along which
actions execute. These routes are termed flows. In SysML activities there are two
types of flows: control flows and object flows.

Actions are the fundamental building blocks of activities and always execute
within the context of an activity. An action accepts inputs and produces outputs.
The flow of input and output items between actions are described using object
flows. Control flows, on the other hand, impose additional constraints on the
execution of actions. When a control flow connects one action to another, the
target action cannot start until the source action has completed. Control nodes
are used in the specification of control flow: they are used to impose control logic
on the execution of actions. The control nodes are the fork, join, decision, merge,
initial and final nodes.

Several types of actions exist: the send signal event action sends a signal
event; the receive signal event action waits on the receipt of a particular signal
event; and the value specification action allows the specification of a particular

value to an input of an action. Opaque actions allow the specification of actions
in a language external to SysML.

State machines State machines graphically depict state-dependent behaviour
in terms of nodes and labelled edges: nodes represent states, whereas the edges
correspond to transitions between states.

In SysML, a state is an abstraction of the mode that the owning block finds
itself in. A change of state is effected by the arrival of a triggering event, causing
an appropriate transition to fire. A transition consists of a trigger, a guard and
an effect. The trigger denotes the event that serves as stimulus for the transition
to fire; the guard is a conditional expression used to decide whether the transition
is to fire at all; and the effect is a supplementary behaviour that executes on the
transition.

3 A CSP view of SysML blocks

This section outlines an approach to integrate the semi-formal SysML notation
with the process algebra CSP. In order to define a formal semantics for blocks,
parts and state machines, we need a precise description of their syntax. To this
end, we define simple mathematical constructs that are closely related to the
syntactical structure of their corresponding SysML counterparts.

Activities Broadly speaking, our approach maps every node and every edge
in an activity diagram to a CSP process. We restrict actions to either have
either a single outgoing control or object flow, but not both; our semantics
allows for simple forks and joins in the sense that a fork node splits control into
multiple flows that eventually all end in a corresponding join node. We present
the formalisation as it relates to a single activity A; A denotes the set containing
all activities in our universe of discourse.

An activity A ∈ A consists of a finite collection of nodes, denoted NA, and
edges between those nodes, denoted EA. We partition NA such that N I

A repre-
sents the set of initial nodes, N F

A the set of final nodes, N FK
A the set of fork

nodes, N JN
A the set of join nodes, N SS

A the send signal event actions, N RS
A the

receive signal event actions, N O
A the opaque actions, and N PN

A the set of activity
parameter nodes. The edges are partitioned such that EOF

A represents the object
flows, and ECF

A represents the set of control flows.
We define the following functions, to return for a particular flow f ∈ EA:

the source node, source : EA → NA; and the target node, target : EA → NA.
Additionally, we define functions to return for a particular node n ∈ NA: the set
of outgoing control flows, outgoingcf : NA 7→ PECF

A ; and the outgoing object
flow, outgoingof : NA 7→ EOF

A . Assume that the construction name(n) returns
the name of the send or receive signal event, or opaque action for n ∈ N SS

A ∪
N RS

A ∪N O
A .

The formalisation makes use of a mapping function F . In particular, F(A, c)
is the process modelling the construct c, either an edge or a node, of activity A.

Activity parameter node. An activity parameter node n ∈ N PN
A , models a pa-

rameter, p, that can be used within the context of the activity. In CSP, the node
is modelled as an argument to the process modelling the activity. Diagrammat-
ically, an object flow of ∈ EOF

A connects the parameter node with other nodes
that use this as a parameter. For the purpose of this paper we assume that a
single argument is represented by each activity parameter node that serve as
input to the activity. The activity’s behaviour starts as the process modelling
the initial node n0 ∈ N I

A

A(p) =
let
F(A,n0) = . . .

within
F(A,n0)

An activity without a parameter is modelled similarly, but the process parameter
p is elided.

Control flow edge. A control flow cf ∈ ECF
A can be thought of as a CSP

process. The behaviour of this process is dependent on the target node of the
control flow, given by target(cf). If the target is not a join node, i.e. target(cf) /∈
N JN

A , the process simply designates its behaviour to be that of the target node.

F(A, cf) =
F(A, target(cf)) if target(cf) /∈ N JN

A

Join(cf) otherwise

In the case where target(cf) ∈ N JN
A , there will be, based on our assumption of

activities above, k−1 other control flows which terminate in the same join node.
Let the control flows be cf0 . . cfk−1. Exactly one of the control flows, cf0, will
exhibit the behaviour of the join node.

Join(e) =
join → Skip if e 6= cf0
join → F(A, target(e)) otherwise

The above construction ensures that exactly one of the previously forked flows
continues after the join. Many interpretations of activity diagrams assume con-
trol flows to have associated guards, typically expressed in natural language.
Due to obvious reasons natural language guards are not suitable for a precise
behavioural semantics and are thus excluded.

Object flow edge. An object flow of ∈ EOF
A is used to model the passing of

parameters1 between activity parameter nodes, call behaviour actions or send
and receive signal events. The behaviour of an object flow edge is a parametrised
process that takes as input the value of the argument, say p, passed along the

1 We restrict ourselves to signal parameters here, although in SysML these can be any
classifier that can serve as an input to an activity.

object flow. Throughout, process arguments are placed within square brackets
to denote them as such.

F(A, of)[p] = F(A, target(of))[p]

Initial node. An initial node n ∈ N I
A has a single outgoing edge, a control flow

cf ∈ outgoingcf (n). The process behaves like the control flow edge emanating
from the initial node.

F(A,n) = F(A, cf)

Send signal event action. A send signal event action n1 ∈ N SS
A has a single

outgoing control flow cf ∈ outgoingcf (n1).

F(A,n1) = name(n1)→ F(A, cf)

Optionally, an incoming object flow of is possible, which serves as input to the
send signal event action, and models the parameters send as part of the send
signal event. In our semantics, the object flow of , if present, emanates from an
activity parameter node n2 ∈ N PN

A and terminates on send signal event2 node
n1

3. The construction par(n2) is the parameter available within the context of
the owing activity (defined within the let within construct).

F(A,n1) = name(n1).par(n2)→ F(A, cf)

Alternatively, the send signal event has a single incoming object flow, but no
incoming control flow. In this case the process modelling the send signal event
action would have an input argument, p, passed from the process modelling
the object flow. The outgoing control flow is given by cf ∈ outgoingcf (n1). The
formalisation follows.

F(A,n1)[p] = name(n1).p → F(A, cf)

The above models the case where the parameter comes from: an object flow
emanating from a value specification action; the output of an opaque action; or
the output of a receive signal event action.

Receive signal event action. A receive signal event action n ∈ N RS
A has a

single outgoing control flow cf ∈ outgoingcf (n). Note that it is not possible to
have an outgoing object flow if an outgoing control flow is present.

F(A,n) = name(n)→ F(A, cf)

Alternatively, the receive signal event may be passed a parameter as part of the
event. In this case it is conceivable that an object flow will exit the action. The
formalisation follows.

F(A,n) = name(n)?p → F(A, outgoingof (n))[p]

2 A value specification action, rather than an activity parameter node, connected via
an object flow, can be used for constants.

3 Note that an incoming control flow is still present and also terminates on n1.

The input p on the CSP channel corresponds to the parameter passed as part
of the receive signal event.

Final node. A final node n ∈ N F
A has no outgoing edges. It is trivially mod-

elled as the CSP Skip process.

F(A,n) = Skip

Fork node. A fork node n ∈ N FK
A splits the control flow in k parallel flows

cf0 . . cfk−1.

F(A,n) = [|join |] j : outgoingcf (n) • F(A, j)

The above alphabetised indexed parallel construction ensures that all the differ-
ent threads of control only synchronise on the join event; all other events are
interleaved.

Join node. A join node n ∈ N JN
A synchronises k parallel control flows and

has a single outgoing control flow cf = outgoingcf (n).

F(A,n) = F(A, cf)

State machines This paper is a companion of sorts to the work presented
in [4]: it extends the formalisation of state machines to encompass entry, exit,
and do behaviours modelled via activities. This hybrid approach is typical of
most systems engineering methodologies used in practice today. In addition, as
the activities execute within the context of an owing state machine, the run
to completion execution semantics of state machines are applicable. We briefly
reprise the necessary mathematical structures and CSP descriptions of [4] to
ensure this paper is self-contained. We restrict ourselves to non-hierarchical state
machines and ignore guard conditions on transitions in order to simplify the
presentation here. The interested reader can refer to [4] for an account of more
complex state machines.

A state machine M ∈ M consists of a finite set of states, denoted SM , and
transitions between those states, denoted TM . We partition SM such that S I

M

represents the set of initial states, SF
M the set of final states, SS

M the set of simple
states. A function outgoing : SM → PTM returns the set of outgoing transitions
for a given state.

We define the following functions, to return for a transition t ∈ TM : the
source state, source : TM → SM ; the target state, target : TM → SM ; the
trigger, trigger : TM → S; and the effect, given by effect : TM → A. S is the set
of signals.

The entry and exit behaviours of a particular state are given by the following
functions: entry : SM → A; and exit : SM → A. In each case, an activity
modelling the behaviour is returned.

A mapping function F is used to formalise the behaviour; F(M , s) is a process
that describes the behaviour of M in state s.

Initial state. An initial state s ∈ S I
M has a single outgoing transition t that

defines its unique starting point. Optionally, an effect component can be specified

for the transition using an activity A ∈ A. In the following: effect(t) returns a
behaviour specified via an activity; similarly, entry(target(t)) returns the entry
behaviour of the target state specified via an activity.

F(M , s) = effect(t) o
9 entry(target(t)) o

9 F(M , target(t))

Simple state. The CSP channel local is used for communicating with the
event queue of the state machine M . The arrival of a SysML signal event serves
as the trigger; consequently this is made available as a CSP event. If the signal
signature has a data component associated with it, this is made available as an
input along with the channel modelling the event4.

We need to consider the eventuality where the state machine receives a signal
event not expected in the current state s. Here, the state machine discards the
unexpected event. In the following, assume that unexpected(s) returns the set
of unexpected events for state s (receive signal events that are valid in other
states of SM but not in s). The components proc and disc denote the event
being processed and discarded, respectively. In both cases, it is removed from
the event queue.

F(M , s) =

2 t : outgoing(s) • local .proc.trigger(t)→
exit(s) o

9 effect(t) o
9 entry(target(t)) o

9 F(M , target(t))
2

2 t : unexpected(s) • local .disc.trigger(t)→ F(M , s)

Final state. Consider a final state s ∈ SF
M . A final state has no outgoing

transitions and is trivially modelled as the deadlocked process.

F(M , s) = Skip

Event queue. The state machine as a whole is modelled with a single process
that contains all the localised process descriptions defined above. The overall
structure is similar to that given by Davies and Crichton [5]. The state machine
receives all communications through an event queue, modelled as a CSP buffer
of size 1. It communicates with this buffer on a CSP channel, local . Each of the
localised processes has access to this channel in order to receive communications
from the event queue. The overall process M (queue, local) initially behaves as
the process associated with the initial state F(M , s0). Throughout, the state
machine behaves like the various processes until it possibly reaches a final state,
after which it behaves as F(M , sf). The local process EQ models the event queue.
Here, we assume a queue with a maximum capacity of 1; the queue blocks when
full. The datatype Dispatcthed , communicated along with the event on channel

4 Next, the guard (if it exists) is evaluated and if false the event is discarded without
effect. Conversely, if the guard evaluates to true the behavioural construct speci-
fied for the effect are executed before behaving as the process associated with the
destination state. Guards are omitted in this paper due to space restrictions.

local , models the dispatching of an event: an event can either be processed, proc
or, if the state machine is in a state where the dispatched event is not expected,
discarded, disc.

M (queue, local) =
let
F(M , s0) = . . .
. . .
F(M , sf) = Stop
EQ = queue?e → local?p!e → EQ

within
F(M , s0) [| {| in |} |] EQ

The state machine of a block Bi only receives (through its event queue)
the provided receptions. The required features are communicated across the
connectors linking parts. In our formalisation, the name of the part is used as
the channel name.

Blocks The formalisation above additionally allows us to showcase how CSP
can be used in a compositional approach to specification and refinement within
the context of systems engineering.

Assume a block Bi ∈ B composed of K constituent blocks B0 . .BK−1, where
i ≥ K . We known that the aggregate behaviour exhibited by blocks B0 . .BK−1

must adhere to that of the composite block Bi ; Bi is an abstract specification
block that the more concrete implementation blocks B0 . .BK−1 must implement.
Stated in terms of CSP: the characteristic process of Bi serves as the specification
process and B0 . .BK−1, suitably combined using parallel composition, form the
implementation process.

Assume that classifier(B) represents the classifier behaviour of a SysML
block. Using CSP the conformance of the implementation process to that of the
specification can be stated thus.

classifier(Bi) v ‖P : {B0 . . BK−1} • classifier(P)

Events introduced at the lower level of implementation are excluded from the
above observation; the hiding operator of CSP can be used to conceal such events.

Using this approach, and assuming the refinement holds, Bi can be safely sub-
stituted for the concrete composition B0 . . BK−1. This stepwise, compositional
approach to systems specification and design sits well with CSP’s approach to
refinement. This statement is not necessarily true for conventional model check-
ers that rely on temporal logics to assert safety or liveness properties. In a system
of systems, Bi , previously our system of interest, is now just a component block
representing one of the subsystems.

4 A robotic arm

In this section we apply the concepts central to our methodology to an illustrative
case study. We study a single component, a robotic arm, of a fully fledged case

«block»
Arm

«block»
Controller

«block»
Magnet

«block»
BDMotor

«block»
PDMeter

bdd Arm

pd0
pd1
pd2

«enumeration»
PD

fwd
rev

«enumeration»
Direction

bdd Enumerations

bdd Signals

d: Direction

«signal»
BDMotorOn

«signal»
OnPD

«signal»
BDMotorOff

«signal»
MagnetOn

«signal»
MagnetOff

pd: PD

«signal»
NotifyPD

pd: PD

«signal»
Grasp

pd: PD

«signal»
Drop

«signal»
Ready

pd: PD

«signal»
PickUp

pd: PD

«signal»
PutDown

ibd Arm

: Controller

: Magnet

: PDMeter

: BDMotor

magnet

bdmotor

pdmeter

controller

controller controller

Fig. 1. The block definition and internal block diagrams of the arm system.

ready

PutDown(e)
PickUp(e)

stm Arm

onoff

stm Magnet

MagnetOn/ActivateMagnet

MagnetOff/DeactivateMagnet

senseidle

stm PDMeter

/OnSense

NotifyPD(d)

onoff

stm BDMotor

BDMotorOn(d)/TurnOnBDMotor(d)

BDMotorOff/TurnOffBDMotor

busy

/SetReady
idle

grasp

entry: Magnetise

drop

entry: Demagnetise

Grasp(e)/Extend(e) Drop(e)/Extend(e)

/Retract /Retract

stm Controller

Fig. 2. The state machine diagrams of the arm system.

study that is well known in the formal methods community. The production cell
is an industrial installation of a metal processing plant located in Karlsruhe,
Germany [6]. However, in the interest of brevity and clarity, we consider the
arm as our system of interest. The arm is one subsystem of the travelling crane,
which is yet another component of the much bigger system — the production
cell.

A bidirectional motor can operate in two opposing directions. An electro-
magnet can activate or deactivate a magnetic field using an electric current. A
potentiometer provides a value within certain limits so as to indicate the range
of extension.

The arm is equipped with a bidirectional motor responsible for vertical ex-
tension. An electromagnet is placed at the front of the arm for handling metal
objects; a potentiometer is present to indicate the range of extension of the arm.

Refer to Figure 1. The structural aspects of the system are modelled us-
ing blocks for the controller, bidirectional motor, electromagnet, and the po-
tentiometer; signals and enumeration definitions further illuminate the design
by introducing the messages and associated parameters communicated between
state machines and activities.

Figures 2 and 3 show the state machines and activities of the arm system.

The channels used by the state machine of the bidirectional motor can be
defined thus. The Direction enumeration of Figure 1 can be represented with a
CSP datatype. Channel and datatype definitions for other state machines are
similar.

datatype Dispatched = proc | disc
datatype Direction = fwd | rev
datatype BDMotorSignal =

BDMotorOn.Direction | BDMotorOff
channel bdmotor : BDMotorSignal
channel bdmotorlocal : Dispatched .BDMotorSignal

In the above, the channel bdmotor is used by other state machines to com-
municate with the state machine of the bidirectional motor via its associated
event queue; the channel bdmotorlocal is used by the event queue of the bidirec-
tional motor to dispatch events (to the bidirectional motor’s state machine) for
processing.

The CSP process modelling the characteristic behaviour of the Controller
follows. The activity Extend is associated with the effect component of the tran-
sitions emanating from the idle state; the activity Magnetise represents the en-
try behaviour of the grasp state. CSP datatype definitions are used to type the
provided receptions of the Controller block; these serve as triggers for the clas-
sifying state machine. The name of the instance is used as the channel name
when communicating with a state machine; a channel with the same name and
the suffix local is used to model the internal event queue of the corresponding
state machine.

Controller(queue, local) =
let

I0 = IDLE
IDLE =

local .proc.Grasp?e →
Extend(local , e) o

9 Magnetise o
9 GRASP

2

local .proc.Drop?e →
Extend(local , e) o

9 Demagnetise o
9 DROP

2

local .disc?e : {| OnPD |} → IDLE
GRASP =

Retract(local) o
9 IDLE

2

local .disc?e : {| Grasp,Drop,OnPD |} → GRASP
DROP = . . .
EQ = queue?e → local?p!e → EQ

within
I0 [| {| local |} |] EQ

CONTROLLER = Controller(controller , controllerlocal)

αCONTROLLER =
Union({{| controller , controllerlocal |},
αMagnetise, αDemagnetise, αExtend , αRetract})

The processes Magnetise and Extend , modelling the activities used in the
CONTROLLER process, follows. The event queue is passed in as the activity
executes within the context of its owing state machine.

Magnetise =
let

I0 = SS0

SS0 = magnet .magnetOn → F0

F0 = Skip
within

I0
αMagnetise = {| magnet .MagnetOn |}

Extend(local , pd) =
let

I0 = VS0

VS0 = SS0(fwd)
SS0(o) = bdmotor .BDMotorOn.o → SS1

SS1 = pdmeter .NotifyPD .pd → RS0

RS0 =
local .proc.OnPD → SS2

2

local .disc?ev : {| Grasp,Drop |} → RS0

SS2 = bdmotor .BDMotorOff → F0

F0 = Skip
within

I0
αExtend =
{| bdmotor .BDMotorOn.fwd , bdmotor .BDMotorOff ,

pdmeter .NotifyPD |}

The processes, along with their respective alphabets, denoting concrete parts
for the magnet, bidirectional motor and potentiometer can be similarly defined,
but are excluded here due to space constraints. Activities and alphabets used
within these state machines can also be similarly defined.

MAGNET = Magnet(magnet ,magnetlocal)
BDMOTOR = BDMotor(bdmotor , bdmotorlocal)
PDMETER = PDMeter(pdmeter , pdmeterlocal)

The definition of the process ARM , modelling the abstract block that serves
as the specification that the parts must realise, follows.

Arm(queue, local) =

let
I0 = READY
READY = . . .
BUSY =

SetReady o
9 READY

2

local .disc?e : {| PickUp,PutDown |} → BUSY
EQ = queue?e → local?p!e → EQ

within
I0 [| {| local |} |] EQ

ARM = Arm(arm, armlocal)
αARM =

Union({{| arm, armlocal |}, αSetReady})
Assuming that P = {CONTROLLER,MAGNET ,BDMOTOR,PDMETER}

we then have CONCRETE = ‖ p : P • [αp]p. In the aforementioned, αp de-
notes the set of events communicable by P . The set of processes P represent the
concrete implementation blocks whose conjoined behaviour must be that of the
block arm that serves as its specification. The similarity with CSP here is strik-
ing: refinement in CSP is expressed between specification and implementation
processes.

CONCRETER is the process with events suitably renamed to ensure com-
patible alphabets.

CONCRETER =
CONCRETE [controller .Grasp.pd0← arm.PickUp.pd0,

controller .Drop.pd0← arm.PutDown.pd0,
controller .Grasp.pd1← arm.PickUp.pd1 . . .]

The set Hidden are those events not present in the alphabet of the abstract
specification process ARM ; Σ denotes the set of all CSP events within the
context of the specification. Thus

Hidden = Σ \ {| arm.PickUp, arm.PutDown,
armlocal .proc.PickUp, armlocal .proc.PutDown,
armlocal .disc.PickUp, armlocal .disc.PutDown,
client |}

FDR verifies the assertion

ARM v CONCRETER \ Hidden [v holds]

Given that the refinement holds, ARM can be substituted for its parts in
the complete system: the behaviour of the concrete implementation processes,
denoted by CONCRETE , can neither refuse nor accept an event that ARM can.
Stated another way, the characteristic behaviour of CONCRETE is completely
contained within that of ARM . The compositional approach presented above
is effective in alleviating the state space explosion problem: subsystems can be
developed and formally verified in isolation and subsequently combined to form
an integrated system description.

fwd::Direction
«values specification»

BDMotorOn

NotifyPD

OnPD

act Extend

d: PD

BDMotorOff

BDMotorOn

NotifyPD
OnPD

act Retract

rev::Direction
«values specification»

pd0
«values specification»

BDMotorOff

Ready

d: Direction

EngineFwd
«opaque»

EngineRev
«opaque»

act TurnOnBDMotor

[d=fwd]

[else]

MagnetOn

MagnetOff

act Magnetise

act Demagnetise

act ActivateMagnet

act DeactivateMagnet

EMFOn
«opaque»

EMFOff
«opaque»

act OnSense

OnPD

act TurnOffBDMotor

EngineOff
«opaque»

act S
etR

eady

R
eady

Fig. 3. The activity diagrams of the arm system.

5 Conclusions

There is a wealth of literature on the formalisation of activity and state machine
diagrams, primarily within the context of UML. In order to limit the scope we
only report on approaches that utilise CSP.

Ng and Butler [7] proposed the formalisation of UML state machine diagrams
using CSP as the semantic domain [7]. They define the translation in terms
of a mapping function from structural diagrammatic constructs to their CSP
counterparts. The work of Yeung and colleagues [8] built on that of Ng and
Butler by generalising inter-level transitions.

Xu et al. [9] formalised activity diagrams in CSP. A transformation function is
defined that maps the mathematical representation of an activity to the semantic
domain of CSP. The goal in [9] is on providing a formal semantics for activities
in terms of CSP, rather than checking behavioural conformance. Only a limited
number of diagrammatic constructs are considered and object flows are omitted.
Constructs such as send and receive event actions are not addressed.

Our work is different than the aforementioned contributions in a number of
ways. This paper presents a compositional approach to refinement and speci-
fication, evaluated within the context of SysML. In addition, we consider the
behaviour of several interacting state machines, supplemented with behaviours
described via activities. In contrast, previous approaches placed emphasis on the
formalisation of a single state machine (or activity); considering the execution
semantics in terms of interaction with other state machines (or activities) was
not their primary focus.

The choice of CSP is due to a number of factors. The behavioural aspects of
SysML can be modelled naturally by a process-algebraic formalism such as CSP,
resulting in a formal framework where assertions about requirements can be
proved or refuted with relative ease [4]. CSP’s approach to process composition,
combined with the fact that refinement is preserved within context, would allow
us to decompose a complex design of a system (or system of systems) in such a
way that the automated analysis is computationally feasible. In particular, the

decompositional approach to specification, as illuminated by the case study in
Section 4, allows us to substitute a collection of blocks with a single block that
depicts the intended behaviour of the whole. Furthermore, CSP’s approach to
establish refinement — by comparing the behaviour of a characteristic specifi-
cation process to that of a concrete implementation process — coincides with
SysML’s compositional outlook to specification and the notion that a block can
act as a specification of constituent blocks. In contrast, in conventional model
checking approaches where there is no concept of refinement, this distinction is
less clear.

References

1. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
MIT Press (2012)

2. Object Management Group: Systems Modeling Language Specification, version 1.3.
(2012) Available at: http://www.omg.org/spec/SysML/1.3, [2014, March].

3. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
4. Jacobs, J., Simpson, A.: Towards a process algebra framework for supporting be-

havioural consistency and requirements traceability in SysML. In: Proceedings of
the 15th International Conference on Formal Engineering Methods (ICFEM 2013).
Volume 8144 of Lecture Notes in Computer Science. Springer (2013) 266–281

5. Davies, J.W.M., Crichton, C.R.: Concurrency and refinement in the Unified Mod-
eling Language. Electronic Notes in Theoretical Computer Science 70(3) (2002)
217–243

6. Lewerentz, C., Lindner, T.: Case study Production Cell. In: Formal Development
of Reactive Systems. Volume 891 of Lecture Notes in Computer Science. Springer
(1995)

7. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Pro-
ceedings of the 1st International Conference on Software Engineering and Formal
Methods (SEFM 2003), IEEE (2003) 138–147

8. Yeung, W.L., Leung, K.R.P.H., Dong, W., Wang, J.: Improvements towards formal-
izing UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC 2005), IEEE (2005) 176–182

9. Xu, D., Philbert, N., Liu, Z., Liu, W.: Towards formalizing UML activity diagrams
in CSP. In: Proceedings of the 2008 International Symposium on Computer Science
and Computational Technology (ISCSCT 2008), IEEE (2008) 450–453

