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Householder triangularization of a quasimatrix

LLOYD N. TREFETHEN
Oxford Computing Laboratory, Wolfson Bldg., Parks Rd.,

Oxford OX1 3QD, UK.

[Received on 4 July 2008]
A standard algorithm for computing the QR factorization of a matrix A is Householder triangularization.
Here this idea is generalized to the situation in which A is a quasimatrix, that is, a “matrix” whose
“columns” are functions defined on an interval [a,b]. Applications are mentioned to quasimatrix least-
squares fitting, singular value decomposition, and determination of ranks, norms, and condition numbers,
and numerical illustrations are presented using the chebfun system.
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1. QR factorization and Householder triangularization

Let A be an m×n matrix, m> n. A (reduced) QR factorization of A is a factorization

A= QR,
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whereQ ism×nwith orthonormal columns and R is upper-triangular. Here and in subsequent equations
we illustrate our matrix operations by schematic pictures in which x denotes an arbitrary entry, r denotes
an entry of an upper-triangular matrix, q denotes an entry of an orthonormal column, and a blank denotes
a zero. QR factorization is a fundamental step for all kinds of computations in numerical linear algebra,
including least-squares, eigenvalues, and singular value decomposition (SVD) (Björck (1996); Golub &
Van Loan (1996); Stewart (1998b); Trefethen & Bau (1997)).
One way to compute a QR factorization is by Gram–Schmidt or modified Gram–Schmidt factor-

ization, a process of triangular orthogonalization. This is fast and straightforward, but the calculation
may break down with division by zero if A is rank-deficient, that is, if its column space has dimen-
sion <n. Even if A has full rank, the matrix Q computed in floating point arithmetic may be far from
orthogonal if A is ill-conditioned, and this may have an adverse effect on the accuracy of subsequent
computations (Stewart (1998b)).
In 1958 Alston Householder introduced an alternative approach to (1.1) based on orthogonal tri-

angularization, which has become one of the standard tools of computational science (Householder
(1958)). At the first step, a unitary matrix H1 is applied that introduces zeros below the diagonal in the
first column:
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The second step applies another unitary matrix H2 that leaves the first row unchanged and introduces
zeros below the diagonal in the second column:
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After n steps, A has become upper-triangular:

Hn · · ·H2H1A= T. H
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Multiplying on the left by H∗ = H1H2 . . .Hn now gives

A= H1H2 · · ·HnT.
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We have written Hk instead of H
−1
k , for the two are the same since the Householder matrices Hk are

self-adjoint as well as unitary. In fact, Hk is a reflection matrix, which maps C
n to itself by reflection

across an (n−1)-dimensional hyperplane. This interpretation makes it clear thatH2k = I, i.e., H−1k =Hk.
Algebraically Hk takes the form

Hk = I−2vkv∗k , (1.4)

where vk is a unit vector, i.e., ‖vk‖ = 1. (Throughout this paper, ∗ is the conjugate transpose and ‖ · ‖
is the 2-norm.) To multiply a Householder reflection by a vector or matrix, one always uses this form
rather than an explicit entrywise representation, and that is why our schematic figures show H and H∗
as boxes with no entries inside them.
For any unit vector vk, (1.4) defines a reflection in the sense just defined. In the application to

QR factorization, vk is chosen orthogonal to the unit vectors e1, . . . ,ek−1, i.e., with zeros in positions
1, . . . ,k− 1, and this choice ensures that the space spanned by these vectors lies in the hyperplane that
is invariant under Hk, which in turn ensures that zeros introduced at one step are not destroyed at later
steps.
The factorization (1.3) is almost (1.1), but we are not quite there yet since the matrices H∗ and T on

the right have dimensions m×m and m×n rather than m×n and n×n. To achieve the latter we need to
delete all but the first n columns of H∗ and all but the first n rows of T , which will have no effect on the
product since the deleted rows are all zero. But if H∗ = H1 · · ·Hn is never actually formed as a matrix,
how do we delete some of its columns? We give an answer that will make the transition to quasimatrices
particularly convenient as well as clarifying the treatment of matrices with complex entries. We shall
factor T in (1.2) into a product of three matrices: an m×n “rectangular identity” E, whose columns are
the unit vectors e1, . . . ,en; an n×n “sign matrix” S= diag(s1, . . . ,sn), whose diagonal entries are real or
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complex numbers with |s j|= 1; and an n×n upper-triangular matrix R whose diagonal entries are real
and nonnegative:

Hn · · ·H2H1A= ESR. H
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This formulation makes it clear that we can compute the m×n matrix Q by applying Hn, . . . ,H1 succes-
sively to ES:

Q= H1 · · ·HnES.
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2. Generalization to quasimatrices

Our subject in this note is the generalization of these ideas to the situation in which A is not a matrix
but a quasimatrix defined on an interval [a,b]. By this we mean an “∞×nmatrix” whose “columns” are
functions of x ∈ [a,b]. Thus A represents a linear map from C

n to L2[a,b]. The term quasimatrix comes
from Stewart (1998), and the same idea was introduced with different terminology in de Boor (1991)
and (Trefethen & Bau, 1997, p. 52). We assume that each column lies in L2[a,b], so that inner products
make sense, which we shall write in vector notation v∗w ; ‖ · ‖ is now the L2 norm on [a,b]. For exam-
ple one might consider the quasimatrix with columns corresponding to the functions 1,x,x2, . . . ,xn−1
defined on [−1,1]. The columns of Q in its QR factorization will be multiples of the Legendre polyno-
mials P0, . . . ,Pn−1, and the first few entries of R are r11 = 21/2, r12 = 0, r22 = (2/3)1/2, r13 = (2/9)1/2,
r23 = 0, r33 = (8/45)1/2.
If A is a quasimatrix, the QR factorization formula (1.1) still makes sense. Now Q, like A, has

dimensions ∞×n, and it has orthonormal columns:

A= QR. q q q q
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A Gram–Schmidt computation goes exactly as before, with discrete inner products replaced by contin-
uous ones, and is susceptible to the same difficulties if A is ill-conditioned or rank-deficient. Gram–
Schmidt orthogonalization of quasimatrices was discussed in Battles & Trefethen (2004) and Battles
(2006).
Another way to compute the QR decomposition of Awould be to form A∗A, which is an n×nmatrix,

and then find its Cholesky factorization A∗A = R∗R by standard methods. One then has Q = AR−1, at
least if A has full rank so that R is nonsingular. Like Gram–Schmidt orthogonalization, this method has
difficulties if A is ill-conditioned, since it “squares the condition number.” On the other hand it provides
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an easy proof of a basic proposition: if the quasimatrix A has rank n and R has positive diagonal entries,
then the QR factorization is unique.
Our aim is to compute (2.1) by the numerically more stable method of Householder reflections,

which has apparently not been done before. The very first step introduces the crucial question. What
could it mean to map a function onto another function that is “zero below the diagonal”? The answer
we propose is that one should start from a quasimatrix analogue of (1.5):

Hn · · ·H2H1A= ESR. H e e e e
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Here E will be an ∞×n quasimatrix, fixed in advance, with orthonormal columns {e j}, and S will be an
n×n sign matrix as before. In practice we take e j to be a multiple of the ( j−1)st Legendre polynomial
Pj−1(x), scaled to [a,b]. The target of the Householder reflector Hk will be not a vector zero below
position k, but a function in the space spanned by e1, . . . ,ek. Again the signs {s j} will be chosen so that
the diagonal entries of R are real and nonnegative.
The first step of Householder quasimatrix triangularization looks like this:
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A Householder reflector H1 has been applied to A, changing all its columns and in particular changing
the first column to r11s1e1. The second step looks like this:
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The reflector H2 has now changed columns 2 through n, converting column 2 to r22s2e2. The process
continues in this fashion until the form (2.2) is achieved at step n.
The precise formulas for these computations are as follows, for each step k from 1 to n:

x= A( : ,k), rkk = ‖x‖, sk =−sign(e∗kx), y= skrkkek, v=
y− x
‖ y− x‖ , Hk = I−2vv∗, (2.3)

rk j = e
∗
k A( : , j), A( : , j) = A( : , j)− rk j ek, k+1� j � n. (2.4)

(The function sign(z) returns z/‖z‖ if z �= 0, 1 if z= 0.) The operations of (2.4) subtract off projections
of the current vector ek from the remaining columns of A.
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After triangularization is completed, the computation of Q if it is needed goes as in (1.6):

Q= H1 · · ·HnES. q q q q H∗ e e e e

s
s
s
s (2.5)

Here is our algorithm written in MATLAB-style pseudocode. The input is an ∞× n quasimatrix
A, and the output is an ∞× n orthonormal quasimatrix Q and an n× n upper-triangular matrix R with
nonnegative diagonal entries satisfying (2.1). One difference from the description above is that, instead
of accumulating the signs sk, we replace ek by skek at step k before moving on to step k+ 1. Another
is that an additional line has been added to “improve orthogonality” of the direction vector vk to the
previous target vectors e1, . . . ,ek−1. In exact arithmetic this would not be needed, but in floating point
arithmetic it makes a significant difference.

HOUSEHOLDER TRIANGULARIZATION OF AN ∞×n QUASIMATRIX A

E = ∞×n quasimatrix with orthonormal columns
V = storage allocation for ∞×n quasimatrix
R= storage allocation for n×n matrix
for k = 1:n TRIANGULARIZATION
e= E( : ,k) target for this reflection
x= A( : ,k) vector to be mapped to e
ρ = ‖x‖, R(k,k) = ρ
α = e∗x
if α = 0, s= 1, else s=−α/‖α‖, end compute real or complex sign
e= se, E( : ,k) = e modify e to take account of sign
v= ρ e− x vector defining reflection
v= v−E( : ,1:k−1)(E( : ,1:k−1)∗v) improve orthogonality
σ = ‖v‖
if σ = 0, v= e, else v= v/σ , end If zero column, arbitrary reflection
V ( : ,k) = v store Householder vector
J = (k+1:n) convenient abbreviation
A( : , J) = A( : , J)−2v(v∗A( : , J)) apply reflection
rT = e∗A( : , J)
R(k, J) = rT entries of row k of R
A( : , J) = A( : , J)− erT

end
Q= E
for k = n :−1:1 FORMATION OF Q
v=V ( : ,k) retrieve Householder vector
J = (k :n) convenient abbreviation
Q( : , J) = Q( : , J)−2v(v∗Q( : , J)) apply reflection

end
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3. Least-squares and pseudoinverse

The most basic application of QR factorization is to the solution of least-squares problems (Björck
(1996)). The techniques used here carry over from matrices to quasimatrices with virtually no changes.
Given a quasimatrix A of full rank and a function f , both defined on [a,b], we seek a vector c such that

‖Ac− f‖=minimum. (3.1)

As first worked out fully in Golub (1965), the solution can be obtained by solving the triangular system
of equations

Rc= Q∗ f , (3.2)

with Q and R defined by (2.1). For this computation it is not necessary to form Q; it is enough if the
Householder vectors vk are stored and then used to compute Q∗ f . One can also write (3.2) as c= A+ f ,
where A+ is the pseudoinverse of A, defined by

A+ = R−1Q∗. (3.3)

The pseudoinverse is an n×∞ quasimatrix: it has n “rows,” each of which is a function on [a,b].

4. Singular value decomposition and related computations

Once the QR factorization (2.1) of a quasimatrix A is known, it is an easy matter to compute its singular
value decomposition A =UΣV ∗. Following Battles & Trefethen (2004), we compute first the singular
value decomposition U1ΣV ∗ of R, a standard problem since R is an ordinary matrix. We then set U =
QU1, giving

A= (QU1)ΣV ∗ =UΣV ∗. (4.1)

Here U is ∞× n, Σ is n× n with diagonal form and nonincreasing nonnegative diagonal entries {σ j},
and V is n×n and unitary. This also gives us an alternative and numerically more stable formula for the
pseudoinverse:

A+ =VΣ−1U∗. (4.2)

As in the case of QR factorization, an alternative but less stable way to compute the SVD would be
to compute A∗A and then work from the SVD of this n×n matrix.
From the SVD of A we can extract its norm,

‖A‖= σ1, (4.3)

and its condition number,
κ(A) = σ1/σn, (4.4)

where σ1 and σn denote the largest and smallest singular values, respectively. Geometrically, these
numbers have their usual interpretations as the lengths of the largest and smallest semiaxes of the n-
dimensional hyperellipsoid that is the image under A of the unit ball in C

n; the only difference from
the matrix case is that this hyperellipsoid, while still itself finite-dimensional, is now a subset of the
infinite-dimensional space L2[a,b]. If some of the singular values are zero, then A is rank-deficient, and
its rank can be determined by counting the nonzero singular values. For a numerical rank determination
algorithm one introduces a tolerance defining an approximate notion of “nonzero”.
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The method of computation of the SVD summarized in (4.1), making use of a preliminary QR fac-
torization, is in the matrix case sometimes known as the “Lawson–Hanson–Chan SVD” (Chan (1982);
Lawson & Hanson (1974); Trefethen & Bau (1997)). For m× n matrices it is recommended in cases
with m > 5n/3, so it seems natural that it should be appropriate in the quasimatrix case “m = ∞”. On
the other hand it is also possible to devise a quasimatrix SVD algorithm of the “Golub–Kahan” variety,
in which one proceeds directly to bidiagonal form without a preliminary QR factorization (Golub &
Kahan (1965)). This would involve n quasimatrix Householder reflections on the left, as we have used
already, interleaved with n−1 matrix Householder reflections on the right. If G∗ denotes the product of
these matrix Householder reflections, then the form that results from Golub–Kahan bidiagonalization is

HA= EBG∗, (4.5)

where B is an n× n upper-bidiagonal matrix and G is n n× n unitary matrix of dimensions n× n. If
U1ΣV ∗1 is an SVD of B, then the SVD of A can be written

A= (H∗EU1)Σ(GV1)∗. (4.6)

5. Further algorithmic details

Operation counts. For matrix QR decomposition, the Gram–Schmidt algorithm requires ∼ n2/2 inner
products and ∼ n2/2 saxpys (scalar times vector plus vector). For m� n, this corresponds to a total
operation count of ∼ 2mn2 flops, where a flop is an addition, subtraction, multiplication or division.
Householder triangularization costs the same if you only need R, but if Q must be formed as well, the
operation counts double to ∼ n2 inner products and ∼ n2 saxpys.
In the quasimatrix case, the Gram–Schmidt numbers are again ∼ n2/2 inner products and ∼ n2/2

saxpys (scalar times vector plus vector). Of course, in this context the meaning of an inner prod-
uct or a saxpy is different, since functions and quadrature are involved rather than discrete vectors.
As for Householder triangularization of a quasimatrix, the second phase of forming Q again requires
∼ n2/2 inner products and ∼ n2/2 saxpys. The triangularization, however, is three times as expensive
as before, at least with the extra line to “improve orthogonality,” requiring ∼ 3n2/2 inner products and
∼ 3n2/2 saxpys. Thus roughly speaking, whereas Householder QR factorization is twice as expensive
than Gram–Schmidt for matrices, it is three or four times as expensive for quasimatrices. The reason
are the extra orthogonalization operations needed at two points in the algorithm, which for matrices are
bypassed since they are implied by the sparsity structure. We suspect it may be possible to improve
these figures.
Sparsity and Givens rotations. For matrix QR factorization, an alternative to Householder reflections

is Givens rotations, which act on two rows at a time rather than O(m) rows. Though more expensive
when the matrix is dense, this technique may have advantages when the matrix is sparse. Now, what
might it mean to say that a quasimatrix A is sparse? A possible answer would be that each column of
A is orthogonal to most columns of E, assuming that E is specified in advance. Perhaps there may be
problems where this property arises and analogues of Givens operations would be useful, but we have
not pursued this idea.

6. Chebfun examples

This work was motivated by the chebfun software system, which makes it possible to compute with
quasimatrices in MATLAB (Driscoll et al. (2008)). Chebfun Version 1 used Gram–Schmidt orthogo-
nalization, but beginning with Chebfun Version 2.0308 in July 2008, we have replaced Gram–Schmidt
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orthogonalization by Householder triangularization in all QR factorizations. We close with a few exam-
ples involving QR factorization and SVD computations in this system.
First, here is a computation of the norm and condition number of the set of functions 1,x,x2, . . . ,x5

over [−1,1]:

>> x = chebfun(’x’,[-1 1]);
>> A = [1 x x.ˆ2 x.ˆ3 x.ˆ4 x.ˆ5];
>> norm(A)
ans = 1.532062889375341
>> cond(A)
ans = 43.247975704139819

If [−1,1] is changed to [0,1], the norm decreases to 1.272359956507724 and the condition number
increases to 3866.659881620226.
Similarly, suppose we want to know the dimension of the space spanned by the functions 1, sin2(x),

and cos2(x). The following result comes out the same with either of the choices of domain of x men-
tioned above:

>> rank([1 sin(x).ˆ2 cos(x).ˆ2])
>> ans = 2

Here is an example involving piecewise smooth chebfuns. The commands

x = chebfun(’x’); A = [];
for j = 0:6

A = [A max(0,1-abs(3*(x+1)-j))];
end

construct an ∞× 7 quasimatrix on [−1,1] whose columns correspond to triangular hat functions of
width 1/3 centered at −1,−2/3,−1/3, . . . ,1. Linear combinations of these functions are piecewise
linear functions on [−1,1] with breakpoints at −2/3,−1/3, . . . ,2/3. The following code computes the
least-squares fit by such piecewise linear functions to f (x) = ex sin(6x) and produces the plot shown in
Figure 1:

f = exp(x).*sin(6*x);
c = A\f;
ffit = A*c;
plot(f), hold on, plot(ffit,’--’)

Here is the norm of the residual:

>> norm(f-ffit)
ans = 0.301000501411522
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FIG. 1. Quasimatrix least-squares fit by piecewise linear functions computed with the “\” command in the chebfun system. The
residual norm minimized is defined by integrals, not point values. This quasimatrix has condition number 1.974212678743394.

All these computations are continuous, involving integrals, not just point values.
Finally, we recall that the advantage of Householder triangularization over Gram–Schmidt orthog-

onalization is that it delivers an orthonormal quasimatrix Q, even when A is rank-deficient. We can
verify this numerically by considering the highly rank-deficient quasimatrix consisting of two copies of
A placed beside each other:

>> rank(A)
ans = 7
>> AA = [A A];
>> rank(AA)
ans = 7
>> [Q,R] = qr(AA);
>> cond(Q)
>> ans = 1.000000000000002
>> norm(AA-Q*R)
ans = 8.400509803176009e-16

The chebfun system is freely available, together with users guides and sample codes and other
materials, at http://www.comlab.ox.ac.uk/chebfun.

7. Discussion

What is the essential algorithmic difference between factorizations of matrices and quasimatrices? Per-
haps the main answer has to do with the notion of zero entries and associated matters of structures and
sparsity. With ordinary matrices, the problem has already been formulated in the basis e1,e2, . . . : to find
out if a vector has zero component in a direction e j, we need only check if a certain number is zero.
With quasimatrices, there is no basis given a priori. We must choose one to work with in practice—here
we have taken suitably scaled Legendre polynomials—but the check of whether a function has zero
component in a direction e j now requires the computation of an inner product.
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This note is a contribution to a larger project: to reconstruct the subject of numerical linear algebra
in the context of functions rather than vectors. The project has an intellectual side, as it forces us to
confront fundamental questions of the deeper meanings of the algorithms we know and trust so well;
and it has a practical side, a long-term enterprise indeed, which is to enable computational science and
engineering to work directly with functions, with details of discretizations hidden away just as details
of floating point arithmetic are today hidden away when we work with numbers.
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