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Abstract

Sequential quadratic programming (SQP) methods form a class of highly
efficient algorithms for solving nonlinearly constrained optimization problems.
Although second derivative information may often be calculated, there is little
practical theory that justifies exact-Hessian SQP methods. In particular, the
resulting quadratic programming (QP) subproblems are often nonconvex, and
thus finding their global solutions may be computationally nonviable. This
paper presents a second-derivative Sℓ1QP method based on quadratic subprob-
lems that are either convex, and thus may be solved efficiently, or need not
be solved globally. Additionally, an explicit descent constraint is imposed on
certain QP subproblems, which “guides” the iterates through areas in which
nonconvexity is a concern. Global convergence of the resulting algorithm is
established.
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1. Introduction

In this paper we present a sequential quadratic programming (SQP) method for
solving the problem

(ℓ1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖c(x)−‖1,

where the constraint vector c(x) : R
n → R

m and the objective function f(x) : R
n →

R are assumed to be twice continuously differentiable, σ is a positive scalar known as
the penalty parameter, and we have used the notation v− = min(0, v) for a generic
vector v (the minimum is understood to be component-wise). Our motivation for
solving this problem is that solutions of problem (ℓ1-σ) correspond (under certain
assumptions) to solutions of the problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

For more details on precisely how problems (ℓ1-σ) and (NP) are related see [10,19].
The precise set of properties that characterize an SQP method is often author

dependent. In fact, as the immense volume of literature on SQP methods continues
to increase, the properties that define these methods become increasingly blurred.
One may argue, however, that the backbone of every SQP method consists of “step
generation” and “step acceptance/rejection”. We describe these concepts in turn.

All SQP methods generate a sequence of trial steps, which are computed as
solutions of cleverly chosen quadratic or quadratic-related subproblems. Typically,
the QP subproblems are closely related to the optimality conditions of the under-
lying problem and thus give the potential for fast Newton-like convergence. More
precisely, the trial steps “approximately” minimize (locally) a quadratic approxi-
mation to a Lagrangian function subject to a linearization of all or a subset of the
constraint functions. Two major concerns associated with this QP subproblem are
incompatible linearized constraints and unbounded solutions. There are essentially
two approaches that have been used for handling unbounded solutions. The first
approach is to use a positive definite approximation to the Hessian in the quadratic
subproblem. The resultant convex QP is bounded with a unique minimizer. The
second approach allows for a nonconvex QP by explicitly bounding the solution via
a trust-region constraint. Both techniques have been effective in practice. The issue
of incompatible subproblems is more delicate. We first note that the QP subproblem
may be “naturally” incompatible – i.e., the set of feasible points is empty. How-
ever, even if the linearized constraints are compatible, the feasible region may still
be empty if a trust-region constraint is imposed; the trust-region may “cut-off” all
solutions to the linear system. Different techniques, such as constraint shifting [23],
a special “elastic” mode [16], and a “feasibility restoration” phase [13], have been
used to deal with incompatible subproblems.

Strategies for accepting or rejecting trial steps are sometimes referred to as
“globalization techniques” since they are the instrument for guaranteeing global
convergence. The earliest methods used so-called merit functions to measure the
quality of a trial step. A merit function is a single function that carefully balances
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the (usually) conflicting aims of reducing the objective function and satisfying the
constraints. The basic idea is that a step is accepted if it gives sufficient decrease
in the merit function; otherwise, the step is rejected, parameters updated, and a
new trial step is computed. More recently, filter methods have become an attractive
alternative to a merit function. Filter methods view problem (NP) as a bi-objective
optimization problem – minimizing the objective function f(x) and minimizing the
constraint violation ‖c(x)−‖. Filter methods use the idea of a “filter”, which is
essentially a collection of pairs (‖c(x)−‖, f(x)) such that no pair dominates another
– we say that a pair (‖c(x1)

−‖, f(x1)) dominates a pair (‖c(x2)
−‖, f(x2)) if f(x1) <

f(x2) and ‖c(x1)
−‖ < ‖c(x2)

−‖. Although the use of a merit function and a filter
are conceptually quite different, Curtis and Nocedal [11] have shown that a “flexible”
penalty approach partially bridges this gap. The flexible penalty approach may be
viewed as a continuum of methods with classical merit function and filter methods
as the extrema.

The previous two paragraphs described two properties of all SQP methods –
step computation and step acceptance or rejection – and these properties alone
may differentiate one SQP method from another. In the context of problem (NP),
a further fundamental distinction between SQP methods can be found in how the
inequality constraints are used in the QP subproblems. This distinction has spawned
a rivalry between essentially two classes of methods, which are commonly known as
SEQP and SIQP methods.

Sequential equality-constrained quadratic programming (SEQP) methods solve
problem (NP) by solving an equality constrained QP during each iterate. The lin-
earized equality constraints that are included in the subproblem may be interpreted
as an approximation to the optimal active constraint set. Determining which con-
straints to include in each subproblem is a delicate task. The approach used by
Coleman and Conn [8] includes those constraints that are nearly active at the cur-
rent point. Then they solve an equality constrained QP in which a second-order
approximation to the locally differentiable part of an exact penalty function is min-
imized subject to keeping the “nearly” active constraints fixed. An alternative ap-
proach is to use the solution of a “simpler” auxiliary subproblem as a prediction of
the optimal active constraints. Often, the simpler subproblem only uses first-order
information and results in a linear program. Merit function based variants of this
type have been studied by Fletcher and Sainz de la Maza [14], Byrd et al. [4, 5],
while filter based variants have been studied by Chin and Fletcher [7].

Sequential inequality-constrained quadratic programming (SIQP) methods solve
problem (NP) by solving a sequence of inequality constrained quadratic subprob-
lems. Contrary to the strategy of SEQP methods, SIQP methods utilize every
constraint in each subproblem and, therefore, avoid the precarious task of choosing
which constraints to include. These methods also have the potential for fast con-
vergence; under standard assumptions, methods of this type correctly identify the
optimal active-set in a finite number of iterations and thereafter rapid convergence
is guaranteed by the famous result due to Robinson [20]. Probably the greatest
disadvantage of SIQP methods is their potential cost; to solve the inequality con-
strained QP subprobelm, both active-set and interior-point algorithms may require
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the solution of many equality constrained quadratic programs. However, in the
case of moderate-sized problems, there is much empirical evidence that indicates
that the additional cost per iteration is often off-set by substantially fewer function
evaluations (similar evidence has yet to surface for large-sized problems). SIQP
methods that utilize exact second-derivatives must also deal with nonconvexity. To
our knowledge, all previous second-order SIQP methods assume that global mini-
mizers of nonconvex subproblems are computed, which is not a realistic assumption
in most cases. For these methods, the computation of a local minimizer is unsat-
isfactory because it may yield an accent direction. Line-search, trust-region, and
filter variants of SIQP methods have been proposed. The line-search method by Gill
et al. [16] avoids unbounded and non-unique QP solutions by maintaining a quasi-
Newton (sometimes limited-memory quasi-Newton) approximation to the Hessian
of the Lagrangian. The SIQP approaches by Boggs, Kearsley and Tolle [1,2] modify
the exact second derivatives to ensure that the reduced Hessian is sufficiently pos-
itive definite. Finally, the filter SIQP approach by Fletcher and Leyffer [13] deals
with infeasibility by entering a special restoration-phase to recover from bad steps.

The algorithm we propose is an SIQP method that is most closely related to the
Sℓ1QP method proposed by Fletcher [12], which is a second-order method designed
for finding first-order critical points of problem (ℓ1-σ). The QP subproblem studied
by Fletcher is to minimize a second-order approximation to the ℓ1-penalty function
subject to a trust-region constraint. More precisely, the QP subproblem is obtained
by approximating f(x) and c(x) in the ℓ1-penalty function by a second- and first-
order Taylor approximation, respectively. Unfortunately, Fletcher’s method requires
the global minimizer of this (generally) nonconvex subproblem, which is known to be
a NP-hard problem. The method we propose is also a second-derivative method that
is globalized via the ℓ1-merit function, but we do not require the global minimizer
of any nonconvex QP. To achieve this goal, our procedure for computing a trial step
is necessarily more complicated than that used by Fletcher. Given an estimate xk

of a solution to problem (NP), a search direction is generated from a combination of
three steps: a predictor step sp

k is defined as a solution to a convex QP subproblem;
a Cauchy step sc

k drives convergence of the algorithm and is computed from a special
uni-variate global minimization problem; and an (optional) SQP step ss

k is computed
as a local solution of a special nonconvex QP subproblem.

The rest of the paper is organized as follows. This section proceeds to introduce
requisite notation and to catalog various model functions used throughout the paper.
Section 2 gives a complete description of how we generate the predictor, Cauchy and
SQP steps. The algorithm for computing a first-order solution to problem (ℓ1-σ)
is given in Section 3 and the global convergence of this algorithm is considered in
Section 4. Finally, Section 5 gives conclusions and future work.

1.1. Notation

Most of our notation is standard. We let e denote the vector of all ones whose
dimension is determined by the context. A local solution of (ℓ1-σ) is denoted by x∗;
g(x) is the gradient of f(x), and H(x) its (symmetric) Hessian; the matrix Hj(x) is
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the Hessian of cj(x); J(x) is the m× n Jacobian matrix of the constraints with ith
row ∇ci(x)T . For a general vector v, the notation v− = min(0, v) is used, where the
minimum is understood to be component-wise. The Lagrangian function associated
with (NP) is L(x, y) = f(x)− yT c(x). The Hessian of the Lagrangian with respect
to x is ∇2L(x, y) = H(x)−

∑m
j=1 yjHj(x).

We often consider problem functions evaluated at a specific point xk. To simplify
notation we define the following: fk = f(xk), ck = c(xk), gk = g(xk) and Jk = J(xk).
In addition, when given a pair of values (xk, yk) we define Hk = H(xk, yk). Finally,
we let Bk denote a symmetric positive semi-definite approximation to Hk.

1.2. Model functions

We define the following models of φ(x) for a given estimate xk of a solution to
problem (ℓ1-σ).

• The linear model of the merit function:

ML

k(s) := ML

k(s ; xk) = fk + gT
k s + σ‖(ck + Jks)

−‖1.

• The convex model of the merit function:

MB

k(s) := MB

k(s ; xk) = fk + gT
k s + 1

2
sT Bks + σ‖(ck + Jks)

−‖1.

• The faithful model of the merit function:

MH

k(s) := MH

k(s ;xk) = fk + gT
k s + 1

2
sT Hks + σ‖(ck + Jks)

−‖1.

• The SQP model:

MS

k(s) := MS

k(s ; xk, s
c

k) = f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks,

where f̄k = fk + gT
k sc

k + 1

2
sc

k
T Hks

c

k and sc

k is the Cauchy step (see Section 2.2).

• The change in the convex model:

∆MB

k(s) := ∆MB

k(s ;xk) = MB

k(0 ; xk)−MB

k(s ;xk).

• The change in the faithful model:

∆MH

k(s) := ∆MH

k(s ; xk) = MH

k(0 ; xk)−MH

k(s ; xk).

• The change in the SQP model:

∆MS

k(s) := ∆MS

k(s ;xk, s
c

k) = MS

k(0 ; xk, s
c

k)−MS

k(s ; xk, s
c

k).

• For a given trust-region radius ∆ ≥ 0, primal variable x, and penalty param-
eter σ, we denote the maximum decrease in the linear model to be

∆L

max(∆) := ∆L

max(x,∆) = ML

k(0 ; x)− min
‖s‖∞≤∆

ML

k(s ; x). (1.1)

Useful properties of the function ∆L
max are given in the next lemma. See Borwein

et al. [3] and Rockafellar [21] for more details.

Lemma 1.1. Consider the definition of ∆L

max as given by equation (1.1). Then the
following properties hold:
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(i) ∆L

max(x,∆) ≥ 0 for all x and all ∆ ≥ 0;

(ii) ∆L
max(x, ·) is a non-decreasing function;

(iii) ∆L
max(x, ·) is a concave function;

(iv) ∆L
max(·,∆) is continuous;

(v) For any fixed ∆ > 0, ∆L

max(x,∆) = 0 if and only if x is a stationary point for
problem (ℓ1-σ).

Properties (ii) and (iii) allow us to relate the maximum decrease in the linear
model for an arbitrary radius to the maximum decrease in the linear model for a
constant radius. For convenience, we have chosen that constant to be one. The
following corollary makes this precise.

Corollary 1.1. Let x be fixed. Then for all ∆ ≥ 0

∆L

max(∆) ≥ min(∆, 1)∆L

max(1). (1.2)

Proof. First, if ∆ ≥ 1 then part (ii) of Lemma 1.1 implies that

∆L

max(∆) ≥ ∆L

max(1). (1.3)

Second, if 0 ≤ ∆ < 1 then part (iii) of Lemma 1.1 implies

∆L

max

(

(1− α)x + αy
)

≥ (1− α)∆L

max(x) + α∆L

max(y)

for all 0 ≤ α ≤ 1. Choosing x = 0, y = 1, α = ∆, and using the fact that
∆L

max(0) = 0 yields

∆L

max(∆) ≥ ∆ ·∆L

max(1). (1.4)

Equations (1.3) and (1.4) give the required result.

2. Step Computation

During each iterate of our proposed method we compute a trial step sk that is
calculated from three steps: a predictor step sp

k, a Cauchy step sc

k, and an SQP step
ss
k. The predictor step is defined as the solution of a convex model for which the

global minimum is unique and computable in polynomial time. The Cauchy step is
then computed as the global minimizer of a specialized one-dimensional optimization
problem involving the faithful model MH

k and is also computable in polynomial time.
It will be shown that the Cauchy step alone is enough for proving convergence but we
allow the option for computing an additional SQP step. The SQP step is computed
using the faithful model and is, generally speaking, intended to increase the efficiency
of the method. We begin by discussing the predictor step.
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2.1. The predictor step sp

k

The predictor step sp

k plays a role in our method analogous to the role played by the
direction of steepest descent in unconstrained trust-region methods. During each
iterate of a classical unconstrained trust-region method, a quadratic model of the
objective function is minimized in the direction of steepest descent. The resulting
step, known as the Cauchy step, gives a decrease in the quadratic model that is
sufficient for proving convergence (see Conn et al. [9]). A vector that is directly
analogous is the vector that minimizes the linearization of the ℓ1-merit function
within a trust-region constraint. However, since we want to incorporate second-
order information, we define the predictor step to be a solution to

minimize
s∈Rn

MB

k(s) subject to ‖s‖∞ ≤ ∆p

k , (2.1)

where Bk is any symmetric positive semi-definite approximation to the Hessian, and
∆p

k > 0 is the predictor trust-region radius. If Bk is positive definite then problem
(2.1) is strictly convex and the minimizer is unique. However, if Bk is only positive
semi-definite, then the problem is convex and therefore has a unique minimum, but
there may be more than one minimizer. We note that

∆MB

k(s
p

k) ≥ 0, (2.2)

since MB

k(s
p

k) ≤ MB

k(0) and that problem (2.1) is a non-differentiable minimization
problem. In fact, it is not differentiable at any point for which the constraint
linearization is zero. In practice, we solve the equivalent smooth ”elastic” problem
defined as

minimize
s∈Rn,v∈Rm

fk + gT
k s + 1

2
sT Bks + σke

T v

subject to ck + Jks + v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ∆p

k,
(2.3)

where e is a vector of ones of length m.
Problem (2.3) is a smooth linearly-constrained convex quadratic program that

may be solved using a number of software packages such as LOQO [22] and QPOPT [15],
as well as the QP solvers QPA, QPB, and QPC that are part of the GALAHAD [17] library.
In addition, if Bk is chosen to be diagonal, then the GALAHAD package LSQP may be
used since problem (2.1) is then a separable convex quadratic program. Note that
this includes the simplest choice of Bk ≡ 0.

The following estimate is Lemma 2.2 by Yuan [24] transcribed into our notation.

Lemma 2.1. For a given xk and σk the following inequality holds:

∆MB

k(s
p

k) ≥
1
2
∆L

max(∆p

k)min

(

1,
∆L

max(∆
p

k)

‖Bk‖2∆
p

k
2

)

. (2.4)

We note that the proof by Yuan requires the global minimum of the predictor sub-
problem. For a general symmetric matrix Bk this requirement is not practical since
finding the global minimum of a nonconvex QP is NP-hard. This is likely the great-
est drawback of any previous methods utilizing both exact second derivatives and
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the ℓ1-penalty function. In our situation, however, the matrix Bk is positive semi-
definite by construction and therefore the global minimum can be found efficiently.

We may further bound ∆MB

k(s
p

k) by applying Corollary 1.1.

Corollary 2.1.

∆MB

k(s
p

k) ≥
1
2
∆L

max(1)min

(

1,∆p

k ,
∆L

max(1)

‖Bk‖2
,

∆L
max(1)

‖Bk‖2∆
p

k
2

)

. (2.5)

Proof. Follows directly from Corollary 1.1 and Lemma 2.1.

The previous corollary bounds the change in the convex model at the predictor
step in terms of the maximum change in the linear model within a unit trust-region.
Since we wish to drive convergence using the faithful model, we must derive a useful
bound on the change in the faithful model. This essential bound is derived from the
Cauchy point and is the topic of the next section.

2.2. The Cauchy step sc

k

In the beginning of Section 2 we stated that the Cauchy step induces global con-
vergence of our proposed method. However, it is also true that the predictor step
may be used to drive convergence for a slightly different method; this modified al-
gorithm may crudely be described as follows. At each iterate the ratio of actual
versus predicted decrease in the merit function is computed, where the predicted
decrease is given by the change in the convex model MB

k(s) at sp

k. Based on this
ratio, the trust-region radius and iterate xk may be updated using standard trust-
region techniques. Using this idea and assuming standard conditions on the iterates
generated by this procedure, one may prove convergence to a first-order solution of
problem (ℓ1-σ). However, our intention is to stay as faithful to the problem functions
as possible. Therefore, in computing the ratio of actual versus predicted decrease
in the merit function, we use the decrease in the faithful model MH

k(s) instead of
the convex model MB

k(s). Unfortunately, since the predictor step is computed using
the approximate Hessian Bk, the point sp

k is not directly appropriate as a means for
ensuring convergence. In fact, it is possible that MH

k(sp

k) < 0, which implies that the
predictor step gives an increase in the faithful model. However, a reasonable point
is close-at-hand and is what we call the Cauchy step. The basic idea behind the
Cauchy step is to make improvement in the faithful model in the direction sp

k. This
is done by finding the global minimizer of MH

k(αsp

k) for 0 ≤ α ≤ 1. We will see that
the Cauchy step allows us to prove convergence by using the quantity ∆MH

k(s
c

k) as
a prediction of the decrease in the merit function.

To be more precise, the Cauchy step is defined as sc

k = αks
p

k where αk is the
solution to

minimize
0≤α≤1

MH

k(αsp

k). (2.6)

The function MH

k(αsp

k) is a piecewise-continuous quadratic function of α for which
the exact global minimizer may be found efficiently. Before discussing the properties
of the Cauchy step, we give the following simple lemma.
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Lemma 2.2. Let c ∈ R
m, J ∈ R

m×n, and s ∈ R
n. Then the following inequality

holds for all 0 ≤ α ≤ 1:

‖(c + αJs)−‖1 ≤ α‖(c + Js)−‖1 + (1− α)‖c−‖1. (2.7)

Proof. From the convexity of ‖(·)−‖1 it follows that

‖(c + αJs)−‖1 = ‖
(

α(c + Js) + (1− α)c
)−
‖1 ≤ α‖(c + Js)−‖1 + (1− α)‖c−‖1.

We now give a precise lower bound for the change in the faithful model obtained
from the Cauchy step.

Lemma 2.3. Let sp

k and sc

k be defined as previously. Then

∆MH

k(sc

k) ≥
1
2
∆MB

k(s
p

k)min

(

1,
∆MB

k(s
p

k)

n‖Bk −Hk‖2∆
p

k
2

)

. (2.8)

Proof. For all 0 ≤ α ≤ 1, we have

∆MH

k(sc

k) ≥ ∆MH

k(αsp

k) (2.9)

= σ
(

‖c−k ‖1 − ‖(ck + αJks
p

k)
−‖1

)

− αgT
k sp

k −
α2

2
sp

k
T Hks

p

k (2.10)

= σ
(

‖c−k ‖1 − ‖(ck + αJks
p

k)
−‖1

)

− αgT
k sp

k −
α2

2
sp

k
T Bks

p

k +
α2

2
sp

k
T (Bk −Hk)s

p

k. (2.11)

Equation (2.9) follows since sc

k minimizes MH

k(αsp

k) for 0 ≤ α ≤ 1. Equations (2.10)
and (2.11) follow from the definition of MH

k and from simple algebra. Continuing to
bound the change in the faithful model, we have

∆MH

k(sc

k) ≥ σ
(

‖c−k ‖1 − α‖(ck + Jks
p

k)
−‖1 − (1− α)‖c−k ‖1

)

− αgT
k sp

k −
α

2
sp

k
T Bks

p

k +
α2

2
sp

k
T (Bk −Hk)s

p

k (2.12)

= ασ
(

‖c−k ‖1 − ‖(ck + Jks
p

k)
−‖1

)

− αgT
k sp

k −
α

2
sp

k
T Bks

p

k +
α2

2
sp

k
T (Bk −Hk)s

p

k (2.13)

= α∆MB

k(s
p

k) +
α2

2
sp

k
T (Bk −Hk)s

p

k. (2.14)

Equation (2.12) follows from equation (2.11), Lemma 2.2 and the inequality α2 ≤ α,
which holds since 0 ≤ α ≤ 1. Finally, equations (2.13) and (2.14) follow from
simplification of equation (2.12) and from the definition of ∆MB

k(s
p

k).
The previous string of inequalities holds for all 0 ≤ α ≤ 1, so it must hold

for the value of α that maximizes the right-hand-side. As a function of α, the
right-hand-side may be written as q(α) = aα2 + bα where

a = 1
2
sp

k
T (Bk −Hk)s

p

k and b = ∆MB

k(s
p

k) ≥ 0.
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There are three cases to consider.
Case 1 : a ≥ 0
In this case the quadratic function q(α) is convex and the maximizer on the interval
[0, 1] must occur at x = 1. Thus, the maximum of q on the interval [0, 1] is q(1) and
may be bounded by

q(1) = a + b ≥ b ≥ 1
2
b = 1

2
∆MB

k(s
p

k)

since b ≥ 0 and a ≥ 0.
Case 2 : a < 0 and −b/2a ≤ 1
In this case the maximizer on the interval [0, 1] must occur at α = −b/2a. Therefore,
the maximum of q on the interval [0, 1] is given by

q(−b/2a) = a
b2

4a2
+ b
−b

2a
= −

b2

4a
.

Substituting for a and b, using the Cauchy-Schwarz inequality, and applying norm
inequalities shows

q(−b/2a) =
∆MB

k(s
p

k)
2

2|sp

k
T (Bk −Hk)s

p

k|
≥

∆MB

k(s
p

k)
2

2‖Bk −Hk‖2‖s
p

k‖
2
2

≥
∆MB

k(s
p

k)
2

2n‖Bk −Hk‖2‖s
p

k‖
2
∞

.

Finally, since ‖sp

k‖∞ ≤ ∆p

k , we have

q(−b/2a) ≥
∆MB

k(s
p

k)
2

2n‖Bk −Hk‖2∆
p

k
2
.

Case 3 : a < 0 and −b/2a > 1
In this case the maximizer of q on the interval [0, 1] is given by α = 1. Therefore,
the maximum of q on the interval [0, 1] is given by q(1) and is bounded by

q(1) = a + b > −1
2
b + b = 1

2
b = 1

2
∆MB

k(s
p

k),

since the inequality −b/2a > 1 implies a > −b/2.
If we denote the maximizer of q(α) on the interval [0, 1] by α∗, then consideration

of all three cases shows that

q(α∗) ≥ 1

2
∆MB

k(s
p

k)min

(

1,
∆MB

k(s
p

k)

n‖Bk −Hk‖2∆
p

k
2

)

. (2.15)

Returning to equation (2.14), we have

∆MH

k(sc

k) ≥ q(α∗) ≥ 1
2
∆MB

k(s
p

k)min

(

1,
∆MB

k(s
p

k)

n‖Bk −Hk‖2∆
p

k
2

)

,

which completes the proof.

We note that in the special case Bk = Hk, the term ∆MB

k(s
p

k)/
(

n‖Bk−Hk‖2∆
p

k
2)

should be interpreted as infinity, and then Lemma 2.3 reduces to

∆MH

k(sc

k) ≥
1
2
∆MB

k(s
p

k), (2.16)
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which trivially holds since Bk = Hk and sc

k = sp

k.
We may further bound the change in the faithful model obtained from the Cauchy

step by employing Corollary 2.1

Corollary 2.2. Let sp

k and sc

k be defined as previously. Then

∆MH

k(sc

k) ≥
1
4
∆L

max(1)min(S)

where

S =
{

1, ∆p

k ,
∆L

max(1)

‖Bk‖2
,

∆L
max(1)

‖Bk‖2∆
p

k
2
,

∆L
max(1)

2n‖Bk −Hk‖2
,

∆L
max(1)

2n‖Bk −Hk‖2∆
p

k
2
,

∆L

max(1)3

2n‖Bk −Hk‖2‖Bk‖
2
2∆

p

k
2
,

∆L

max(1)3

2n‖Bk −Hk‖2‖Bk‖
2
2∆

p

k
6
,
}

.

Proof. The bound follows from Corollary 2.1 and Lemma 2.3.

Corollary 2.2 provides the necessary bound for proving convergence of our pro-
posed algorithm. However, the derivation of this bound relied on minimizing the
faithful model along a single direction, namely the predictor step sp

k. If the predictor
step is a bad search direction for the faithful model (most likely because Bk is, in
some sense, a poor approximate to Hk), then convergence is likely to be slow. In
order to improve efficiency we may need to make “better” use of the faithful model;
the SQP step serves this purpose.

2.3. The SQP step ss
k

We begin by discussing three primary motivations for an SQP step ss
k; we use the

word “an” instead of “the” since we propose many reasonable alternatives. The first
motivation of the SQP step is to improve the rate-of-convergence. The predictor
step sp

k uses a positive semi-definite approximation Bk to the true Hessian Hk. Since
the Cauchy step sc

k is computed as a minimization problem in the direction sp

k, the
ultimate quality of the Cauchy step is constrained by how well Bk approximates
Hk (when restricted to the null-space of the Jacobian). The simplest and cheapest
choice is Bk = 0, but this would result in at best first-order convergence. In general,
if Bk is chosen to more closely approximate Hk then the predictor step sp

k becomes
more costly to compute, but would likely lead to better convergence. Of course as
Bk is required to be positive semi-definite and since Hk is usually indefinite, this
is typically not even possible. However, if a quasi-Newton approach was used to
update Bk at each iterate using, for example, a quasi-Newton BFGS update, then
one might expect to establish super-linear convergence.

The previous paragraph may do the Cauchy step injustice; not only does the
Cauchy step guarantee convergence of the algorithm, but it may happen that the
Cauchy step is an excellent direction. In fact, if we are allowed the choice Bk = Hk

and pick σk sufficiently large, then provided the trust-region radius ∆p

k is inactive,
the resulting Cauchy step sc

k(= sp

k) is the classical SQP step for problem (NP).
This means that the Cauchy step may be the “ideal” step. As previously stated,
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the choice Bk = Hk will generally not be permissible. However, if a quasi-Newton
or limited-memory quasi-Newton approach is used that maintains positive definite
approximations Bk, then good convergence properties may be expected. We sum-
marize by saying that the quality of the Cauchy step is strongly dependent on how
well Bk approximates Hk (possibly when restricted to the null-space of the Jacobian
matrix).

Unfortunately, even if the Cauchy step is an “excellent” direction, it may still
suffer from the Maratos effect [9, 18]. The Maratos effect occurs when the linear
approximation to the constraints in problem (2.1) does not adequately capture the
nonlinear behavior of the constraints. As a result, although the unit step may make
excellent progress towards finding a solution of problem (NP), it is in fact rejected by
the merit function and subsequently the trust-region radius is reduced; this inhibits
the natural convergence of Newton’s Method. Avoiding the Maratos effect is the
second motivation for the SQP step.

The third motivation for the SQP step is to improve the general performance of
our method. Since the quadratic model used in computing the SQP step is allowed
to use the exact Hessian Hk, it is generally a more faithful model of the merit
function.

2.3.1. Explicitly-constrained SQP steps

This section discusses a class of SQP steps computed from explicitly-constrained
subproblems. We use the terminology “explicitly-constrained” to emphasize that we
include a “constraint-like” restriction explicitly in the subproblem. Useful estimates
may be shown for rather general explicit constraints, but in terms of efficiency there
are three natural choices that may be used. We define an explicitly-constrained SQP
step as a solution to

(SQP-E) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks = MS

k(s)

subject to χ(s) ≥ 0
(gk + Hks

c

k)
T s ≤ 0

‖s‖∞ ≤ ∆s

k,

where χ(s) is any concave vector-valued function defined for all ‖s‖∞ ≤ ∆s

k, and
f̄k = fk + gT

k sc

k + 1
2
sc

k
T Hks

c

k. The artificial constraint (gk + Hks
c

k)
T s ≤ 0 is imposed

to ensure that all local solutions are non-accent directions for the SQP model; it is
clear that a local minimizer of a nonconvex QP may be an ascent direction. The
following lemma gives a bound on the change in the SQP model MS

k(s) at a local
solution of problem (SQP-E).

Lemma 2.4. Assume that χ(0) ≥ 0. Then if ss
k is a local solution for problem

(SQP-E), the following bound on the change in the quadratic model holds at ss
k:

∆MS

k(s
s
k) = MS

k(0) −MS

k(s
s
k) ≥

1
2

max
(

−(gk + Hks
c

k)
T ss

k, |s
s
k
T Hks

s
k|
)

.

Moreover;
if ss

k
T Hks

s
k > 0 then (gk + Hks

c

k)
T ss

k < 0.
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Proof. We consider two cases.
Case 1. : ss

k
T Hks

s
k ≤ 0

In this case we have

∆MS

k(s
s
k) = −(gk + Hks

c

k)
T ss

k −
1
2
ss
k
T Hks

s
k.

Since ss
k
T Hks

s
k ≤ 0 by assumption and the inequality (gk +Hks

c

k)
T ss

k ≤ 0 is enforced
as an explicit constraint in problem (SQP-E), it follows that

∆MS

k(s
s
k) ≥ max

(

−(gk + Hks
c

k)
T ss

k,
1

2
|ss

k
T Hks

s
k|
)

≥ 1
2
max

(

−(gk + Hks
c

k)
T ss

k, |s
s
k
T Hks

s
k|
)

,

and case 1 is complete.
Case 2. : ss

k
T Hks

s
k > 0

Recall that the descent constraint ensures that the inequality (gk + Hks
c

k)
T ss

k ≤ 0
holds. We first show that (gk + Hks

c

k)
T ss

k < 0. For proof by contradiction, assume
that (gk + Hks

c

k)
T ss

k = 0. Since 0 and ss
k are both feasible for problem (SQP-E),

and since χ(s) is a concave function by assumption, it is clear that αss
k is feasible

for problem (SQP-E) for 0 ≤ α ≤ 1. Furthermore, the directional derivative of MS

k

at ss
k in the direction −ss

k exists and is given by

∇MS

k(s
s
k)

T (−ss
k) = −

(

gk + Hk(s
c

k + ss
k)
)T

ss
k = −ss

k
T Hks

s
k < 0,

where we have used the fact that (gk + Hks
c

k)
T ss

k = 0 and that ss
k
T Hks

s
k > 0. This

contradicts that ss
k is a local solution to problem (SQP-E) since −ss

k is a feasible
descent direction. Therefore, (gk + Hks

c

k)
T ss

k < 0 must be true.
Now we show the bound on ∆MS

k(s
s
k). We define the quadratic function

q(α) = aα2 + bα + e,

where

a = 1
2
ss
k
T Hks

s
k > 0, b = (gk + Hks

c

k)
T ss

k < 0, and e = f̄k.

With this definition, it follows that q(α) = MS

k(αss
k) and that ∆MS

k(s
s
k) = q(0)−q(1).

Since q(α) is a strictly convex quadratic function and q(1) is a minimizer for q on
the interval [0, 1], it follows that −b/2a ≥ 1. Using this inequality we have

∆MS

k(s
s
k) = −a− b ≥ max(−1

2
b, a) = 1

2
max

(

−(gk + Hks
c

k)
T ss

k, |s
s
k
T Hks

s
k|
)

,

which completes case 2.

This result shows that an (SQP-E) step will never cause the SQP model to
increase and, in general, it will decrease. The only situation in which the SQP
model does not decrease is when the step ss

k is a direction of zero curvature for Hk

and the explicit descent constraint is active. It is of interest to consider a sequence
of iterates {xk} converging to a solution of problem (NP) for which the second-order
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sufficient conditions are satisfied. In this case, we expect that for k sufficiently large
the condition ss

k
T Hks

s
k > 0 would be satisfied. Then, Lemma 2.4 implies that the

artificial constraint (gk + Hks
c

k)
T s ≤ 0 will be inactive. This property is essential if

we expect to recover fast convergence since the artificial constraint may impede the
natural convergence of Newton’s Method. However, when far from a solution, the
artificial constraint stabilizes the method by “guiding” the iterates through areas of
indefiniteness by ensuring that the SQP step does not increase the model MS

k.

We now provide three specific concave functions χ(s) and the resultant explicitly-
constrained SQP subproblem; these choices have been made with our primary goals
in mind. We use the notation cck = c(xk + sc

k) and Jc

k = J(xk + sc

k).

• The choice

χ(s) = ck + Jks−min(ck,−Jks
c

k)

leads to the following explicitly-constrained SQP subproblem:

(SQP-E1) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sTHks

subject to ck + Jks ≥ min (ck,−Jks
c

k),
(gk + Hks

c

k)
T s ≤ 0,

‖s‖∞ ≤ ∆s

k.

• The choice

χ(s) = cck + Jks−min
(

cck, 0
)

leads to the following explicitly-constrained SQP subproblem:

(SQP-E2) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sTHks

subject to cck + Jks ≥ min
(

cck, 0
)

,
(gk + Hks

c

k)
T s ≤ 0,

‖s‖∞ ≤ ∆s

k.

• The choice

χ(s) = cck + Jc

ks−min
(

cck, 0
)

leads to the following explicitly-constrained SQP subproblem:

(SQP-E3) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sTHks

subject to cck + Jc

k s ≥ min(cck, 0),
(gk + Hks

c

k)
T s ≤ 0,

‖s‖∞ ≤ ∆s

k.

First, we note that the value s = 0 is feasible for all three subproblems. Second, we
note that subproblems (SQP-E2) and (SQP-E3) are closely related to subproblems
typically used to avoid the Maratos effect in SQP methods for equality constraints
(see [9], for example). However, we emphasize that we are not claiming that these
subproblems avoid the Maratos effect.
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We now give a brief interpretation of χ(s) for each subproblem. For subproblem
(SQP-E1), the constraint χ(s) ensures that the linearized constraint violation at the
step sc

k + ss
k is no larger than the linearized constraint violation at sc

k. We will soon
see that this property results in a useful bound on ∆MH

k(sc

k + ss
k). For subproblem

(SQP-E2), the constraint χ(s) may allow for further minimization of the model
function MS

k for all constraints i that “bend backwards”, i.e. constraints i for which
ci(xk + sc

k) is feasible. Finally, the constraint χ(s) for subproblem (SQP-E3) is a
“tilted” version of (SQP-E2).

2.3.2. Implicitly-constrained SQP steps

This section discusses several choices for computing an SQP step from implicitly-
constrained SQP subproblems. We use the terminology implicitly-constrained be-
cause we are attempting to satisfy a “constraint-like” function implicitly by penal-
izing the violation of that constraint. The primary advantage of these subproblems
over explicitly-constrained SQP subproblems is their direct connection to standard
techniques for avoiding the Maratos effect. Their main disadvantage is that we are
no longer guaranteed that the sum of the Cauchy step and the SQP step will give us
sufficient decrease in the faithful model MH

k. However, since these steps are intended
to avoid the Maratos effect, they would mostly be used asymptotically and this is
precisely the situation in which we expect the implicitly-constrained SQP steps to
give sufficient decrease in the faithful model.

We define an implicitly-constrained SQP step as a solution to

(SQP-I) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks + σ̄‖χ(s)−‖1

subject to ‖s‖∞ ≤ ∆s

k,

where χ(s) is any vector-valued function defined for all ‖s‖∞ ≤ ∆s

k, f̄k = fk +
gT
k sc

k + 1
2
sc

k
T Hks

c

k, and σ̄ > 0 is a positive penalty parameter that may or may not
be equal to σ.

We now provide two specific vector-valued functions χ(s) and the resultant
implicitly-constrained SQP subproblem; these choices have been made with the
Maratos effect in mind. Again, we use the notation cck = c(xk + sc

k) and Jc

k =
J(xk + sc

k).

• The choice

χ(s) = cck + Jks

leads to the following implicitly-constrained SQP subproblem:

(SQP-I1) minimize
s∈Rn

fk + (gk + Hks
c

k)
T s + 1

2
sT Hks + σ̄‖(cck + Jks)

−‖1

subject to ‖s‖∞ ≤ ∆s

k.

• The choice

χ(s) = cck + Jc

k s
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leads to the following implicitly-constrained SQP subproblem:

(SQP-I2) minimize
s∈Rn

fk + (gk + Hks
c

k)
T s + 1

2
sT Hks + σ̄‖(cck + Jc

k s)−‖1

subject to ‖s‖∞ ≤ ∆s

k.

2.4. The full step sk

In Sections 2.1 and 2.2 we discussed how to compute the predictor step and the
Cauchy step. The Cauchy step sc

k was carefully constructed from the predictor
step to ensure that it gave decrease in the faithful model MH

k. Next, Section 2.3
discussed many options for computing an SQP step ss

k; they were categorized as
either explicitly- or implicitly-constrained SQP steps. This section analyzes the full
step sk = sc

k + ss
k.

We first examine the full step sk when the SQP step is computed from any
of the explicitly-constrained SQP subproblems. These subproblems were carefully
constructed to ensure that any local minimizer results in a decrease in the model
MS

k. We now must investigate the decrease in the faithful model obtained from the
full step. The next lemma gives a condition that guarantees that the decrease in
the faithful model obtained from the full step is at least as great as the decrease
obtained from the Cauchy point.

Lemma 2.5. If ss
k is computed from an explicitly-constrained SQP subproblem and

if the following inequality holds

‖(ck + Jksk)
−‖1 ≡ ‖

(

ck + Jk(s
c

k + ss
k)
)−
‖1 ≤ ‖(ck + Jks

c

k)
−‖1 (2.17)

then the following three estimates hold

∆MH

k(sk) ≥ ∆MS

k(s
s
k) + ∆MH

k(s
c

k), (2.18)

∆MH

k(sk) ≥ ∆MS

k(s
s
k), (2.19)

∆MH

k(sk) ≥ ∆MH

k(sc

k). (2.20)

Proof. We begin by noticing that equations (2.19) and (2.20) follow immediately
from equation (2.18) since ∆MH

k(sc

k) ≥ 0 and ∆MS

k(s
s
k) ≥ 0 by Lemma 2.3 and

Lemma 2.4. It remains to show (2.18).

Using the definition of ∆MH

k and simplifying, we have

∆MH

k(sk) = MH

k(0)−MH

k(sk) (2.21)

= σ
(

‖c−k ‖1 − ‖(ck + Jksk)
−‖1

)

− gT
k sk −

1
2
sT
k Hksk (2.22)

= σ
(

‖c−k ‖1 − ‖(ck + Jksk)
−‖1

)

− ss
k
T (gk + Hks

c

k)

− 1
2
ss
k
T Hks

s
k − gT

k sc

k −
1
2
sc

k
T Hks

c

k (2.23)

= ∆MS

k(s
s
k) + σ

(

‖c−k ‖1 − ‖(ck + Jksk)
−‖1

)

− gT
k sc

k −
1
2
sc

k
T Hks

c

k (2.24)

≥ ∆MS

k(s
s
k) + σ

(

‖c−k ‖1 − ‖(ck + Jks
c

k)
−‖1

)

− gT
k sc

k −
1
2
sc

k
T Hks

c

k (2.25)

= ∆MS

k(s
s
k) + ∆MH

k(sc

k). (2.26)
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Equations (2.21) and (2.22) follow from the definitions of ∆MH

k and MH

k. Equa-
tion (2.23) follows from the definition of sk and from gathering like terms, while
equation (2.24) follows from the definition of ∆MS

k. Finally, equations (2.25) and
(2.26) follow from the assumption in this lemma and the definition of ∆MH

k.

The previous lemma has the following interpretation: if the linearized constraint
violation at the full step is no greater than the linearized constraint violation at the
Cauchy step, then the decrease in the faithful model at the full step is no less than
the decrease in the faithful model obtained from the Cauchy step. The next lemma
gives a condition that guarantees that inequality (2.17) is satisfied.

Lemma 2.6. Let sk = sc

k + ss
k. Then inequality (2.17) holds if

Jks
s
k ≥ min

(

0,−(ck + Jks
c

k)
)

. (2.27)

Proof. Inequality (2.17) holds if

min(0, ck + Jks
c

k) ≤ min
(

0, ck + Jk(s
c

k + ss
k)
)

. (2.28)

We consider a generic component i. If [ck + Jks
c

k]i ≥ 0, then inequality (2.28) holds
if and only if [Jks

s
k]i ≥ −[ck + Jks

c

k]i. On the contrary, if [ck + Jks
c

k]i < 0, then
inequality (2.28) holds if and only if [Jks

s
k]i ≥ 0. These conditions are precisely

those given by inequality (2.27).

We now give a bound on the decrease in the model MH

k provided the explicitly-
constrained SQP step is computed from problem (SQP-E1).

Lemma 2.7. Define sk = sc

k + ss
k, where sc

k is computed as described in Section 2.2
and ss

k is any feasible point for problem (SQP-E1). Then the following bounds on
the decrease of MH

k(sk) hold:

∆MH

k(sk) ≥ ∆MS

k(s
s
k) + ∆MH

k(s
c

k),

∆MH

k(sk) ≥ ∆MS

k(s
s
k),

∆MH

k(sk) ≥ ∆MH

k(sc

k).

In particular, if ss
k is a local solution to problem (SQP-E1), then the previous esti-

mates hold.

Proof. Subtracting the term ck from both sides of the general constraint for prob-
lem (SQP-E1) shows that any feasible point satisfies equation (2.27) and therefore
inequality (2.17) holds. Lemma 2.5 then implies the result.

The previous lemma shows that the full step sk = sc

k + ss
k is guaranteed to

produce a good decrease in the model Hk. More specifically, the lemma shows that
the decrease in the model MH

k obtained from the full step sk is at least as large as the
decrease obtained from the Cauchy point, which in turn was carefully constructed
to guarantee convergence.
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We are not guaranteed that inequality (2.17) holds for the explicitly-constrained
SQP subproblems (SQP-E2) and (SQP-E3) and therefore an estimate like that found
in Lemma 2.7 is not guaranteed to be satisfied; the same situation exists for every
implicitly-constrained SQP subproblem. Hence, when the SQP step is computed
from any of these subproblems we should monitor the change in the model MH

k to
ensure that the change is “sufficient”. By sufficient, we mean that the inequality

∆MH

k(sk) ≥ η∆MH

k(sc

k) (2.29)

is satisfied for some constant 0 < η ≤ 1 independent of k. If subproblem (SQP-E1)
is used to compute the SQP step, then Lemma 2.7 guarantees that inequality (2.29)
holds with η = 1. For any other SQP subproblem, if inequality (2.29) is satisfied
then we defined sk = sc

k + ss
k; otherwise, we set ss

k = 0 so that sk = sc

k and
inequality (2.29) holds for η = 1.

3. The Algorithm

This section presents an algorithm for minimizing problem (ℓ1-σ); the algorithm
is given by Algorithm 3.1. First, the user supplies an initial guess (x0, y0) of a
solution to problem (ℓ1-σ). Next, “success” parameters 0 < ηS ≤ ηVS < 1, a
maximum allowed predictor trust-region radius ∆̄, and expansion and contraction
factors 0 < τc < 1 < τe are defined.

With parameters set, the main “do-while” loop begins. First, the problem func-
tions are evaluated at the current point (xk, yk). Next, a symmetric positive semi-
definite matrix Bk is defined and the predictor step sp

k is computed as a solution to
problem (2.1). Simple choices for Bk would be the zero matrix, the identity matrix,
or perhaps a scaled diagonal matrix that attempts to model the “essential proper-
ties” of the matrix Hk. However, computing Bk via a limited-memory quasi Newton
update is an attractive option. We leave further discussion of the matrix Bk to a
separate paper.

Next, we solve problem (2.6) for the Cauchy step sc

k. As given, the Hessian
Hk is evaluated at (xk, yk). However, it is also possible to compute the matrix Hk

after the predictor step is computed using the multiplier vector from the predictor
subproblem. In either case, once the Cauchy step is computed we calculate the
decrease in the model MH

k at the Cauchy step, which is given by ∆MH

k(s
c

k). Next,
we must compute an SQP step satisfying inequality (2.29). This may be done in
three ways. First, the SQP subproblem may be skipped entirely so that ss

k = 0
and condition (2.29) is trivially satisfied. Second, the SQP step may be defined as
the solution to the SQP problem (SQP-E1), since Lemma 2.7 guarantees that the
full step will satisfy condition (2.29). Third, we may solve any of the other SQP
subproblems discussed in Section 2.3 and check a-posteriori whether condition (2.29)
is satisfied. If the condition is satisfied we accept the step; otherwise, we set ss

k = 0
so that condition (2.29) is once again satisfied. Once the SQP step is computed, we
set sk = sc

k + ss
k, evaluate φ(xk + sk) and ∆MH

k(sk), and compute the ratio rk of
actual versus predicted decrease in the merit function.
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Our strategy for updating the predictor trust-region radius and for accepting or
rejecting candidate steps is identical to that used by Fletcher [12] and is determined
by the ratio rk. More precisely, if the ratio rk of actual versus predicted decrease
in the ℓ1-merit function is larger than ηVS , then we believe that the model is a very
accurate representation of the true merit function within the current trust-region.
Therefore we increase the predictor trust-region radius with the belief that the cur-
rent trust-region radius may be overly restrictive. If the ratio is greater than ηS , then
we believe the model is sufficiently accurate and we keep the predictor trust-region
radius fixed. Otherwise, the ratio indicates that there is poor agreement between the
model MH

k and the merit function. Therefore we decrease the predictor trust-region
radius with the hope that the model will accurately capture the behavior of the
merit function over the smaller trust-region. As for step acceptance or rejection, we
accept any iterate for which rk is positive, since this indicates that the merit func-
tion has decreased. We note that the precise update used for the dual variables yk+1

is not important for proving convergence; we do not specify any particular update
in the algorithm. However, the precise update used is essential when considering
performance; the multiplier vector from the SQP subproblem is the most obvious
candidate. In the case that the SQP step is not computed, then the most obvious
multiplier update becomes the multiplier vector from the predictor subproblem. We
also note that a least-squares multiplier update is also possible, but would require
solving a specialized inequality-constrained linear program.

Finally, we have the additional responsibility of updating the SQP trust-region
radius. In Algorithm 3.1 we set the SQP trust-region radius to a constant multiple
of the predictor trust-region radius although the condition ∆s

k+1
≤ τf ·∆

p

k+1
for some

constant τf is also sufficient. Although this update is simple and may be viewed as
“obvious”, we believe that it deserves extra discussion. If the predictor trust-region
radius is not converging to zero on any subsequence, then the algorithm must be
making good progress in reducing the merit function. The delicate situation is when
the predictor trust-region radius is converging to zero on some subsequence. Since
the predictor step must also be converging to zero, it seems natural to require that
the full step also converges to zero. Therefore it seems intuitive to require that if
{xkj
}j≥0 is any subsequence such that limj→∞ ‖s

p

kj
‖∞ = 0, then the sequence

{∆s

kj/‖s
p

kj
‖∞}j≥0 remain bounded. (3.1)

A simple way to ensure this condition is by defining the SQP trust-region radius as
∆s

k+1
← τf · ‖s

p

k‖∞, i.e. set the SQP trust-region radius to be a constant multiple of
the size of the predictor step. This condition is sufficient for proving convergence,
but we prefer the alternate update ∆s

k+1 ← τf ·∆
p

k+1
, i.e. set the SQP trust-region

radius to be a constant multiple of the size of predictor radius. Asymptotically they
are equivalent since Corollary 4.1 shows that if we are not converging to a solution,
then ‖sp

k‖∞ = ∆p

k for ∆p

k sufficiently small. However, the update ∆s

k+1 ← τf ·∆
p

k+1

allows for larger value of ∆s

k globally and has been observed to perform better in
our initial tests.
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Algorithm 3.1. Minimizing the ℓ1-penalty function
Input: (x0, y0)
Set parameters 0 < ηS ≤ ηVS < 1, and ∆̄ > 0.
Set expansion and contraction factors 0 < τc < 1 < τe.
k ← 0
do

Evaluate fk, gk, ck, Jk, Hk, and then compute φk.
Define Bk to be a positive semi-definite approximation to Hk.
Solve problem (2.1) for sp

k.

Solve problem (2.6) for sc

k and compute ∆MH

k(sc

k).
Compute an SQP-correction step ss

k satisfying (2.29).
sk ← sc

k + ss
k

Evaluate φ(xk + sk) and ∆MH

k(sk).
Compute rk =

(

φk − φ(xk + sk)
)

/∆MH

k(sk).
if rk ≥ ηVS [very successful]

∆p

k+1
← min( τe ·∆

p

k , ∆̄ ) [increase predictor radius]

else if rk ≥ ηS [successful]
∆p

k+1
← ∆p

k [keep predictor radius]

else [unsuccessful]
∆p

k+1
← τc ·∆

p

k [decrease predictor radius]

end

if rk > 0 [accept step]

xk+1 ← xk + sk

yk+1 ← whatever you want
else [reject step]

xk+1 ← xk

yk+1 ← yk

end

∆s

k+1
← τf ·∆

p

k+1
[update SQP radius]

k ← k + 1
end do

4. Convergence

This section shows that Algorithm 3.1 is globally convergent. Our man result is that
under certain assumptions, there exists a subsequence of the iterates generated by
Algorithm 3.1 that converges to a first-order solution of problem (ℓ1-σ). The proof
requires two preliminary results as well as two estimates. First, since f(x) and c(x)
are continuously differentiable by assumption, there exists a positive constant M
such that

∥

∥

∥

∥

(

g(x)T

J(x)

)∥

∥

∥

∥

2

≤M for all x ∈ B, (4.1)
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where B is a closed and bounded subset of R
n. Second, since the function h(f, c) =

f + σ‖c−‖1 is convex, there exists a positive constant L such that

|h(f1, c1)− h(f2, c2)| ≤ L

∥

∥

∥

∥

(

f1 − f2

c1 − c2

)
∥

∥

∥

∥

2

(4.2)

for all (f1, c1) and (f2, c2) ∈
(

f(B), c(B)
)

[21, Theorem 10.4]. Using these bounds
we may now state the following lemma, which provides a lower bound on the size
of the predictor step. This is essentially [24, Lemma 3.2] except for the use of the
infinity norm.

Lemma 4.1. Let xk ∈ B so that equations (4.1) and (4.2) hold. Then, if ‖sp

k‖∞ <
∆p

k then

‖sp

k‖∞ ≥
1
2
∆L

max(xk, 1)min

(

1

LM
,

1

n(1 + ∆̄)‖Bk‖

)

. (4.3)

Corollary 4.1. Suppose that {xk}k≥0 ⊂ B and that K is a subsequence of the
integers such that the following hold:

(i) there exists a number δ such that ∆L

max(xk, 1) ≥ δ > 0 for all k ∈ K;

(ii) there exists a positive constant bB such that ‖Bk‖ ≤ bB for all k ∈ K;

(iii) limk∈K ∆p

k = 0.

Then

‖sp

k‖∞ = ∆p

k for all k ∈ K sufficiently large. (4.4)

Proof. Equation (4.3), (i), and (ii) imply that ‖sp

k‖∞ is strictly bounded away from
zero for all k ∈ K. However, this contradicts assumption (iii) for k ∈ K sufficiently
large since ‖sp

k‖∞ ≤ ∆p

k . Therefore, Lemma 4.1 implies that ‖sp

k‖∞ = ∆p

k for all
k ∈ K sufficiently large.

We may now state our main result. The organization of the proof is based on
Theorem 14.5.1 by Fletcher [12] and the proof of case 1 is nearly identical to that
given by Fletcher.

Theorem 4.1. Let f and c be twice continuously differentiable functions, and let
{xk}, {Hk}, {Bk}, {∆

p

k}, and {∆s

k}, be sequences generated by Algorithm 3.1. As-
sume that the following conditions hold:

1. {xk}k≥0 ⊂ B ⊂ R
n, where B is a closed and bounded set;

2. There exists positive constants bB and bH such that ‖Bk‖2 ≤ bB and ‖Hk‖2 ≤
bH for all k ≥ 0;

Then, either xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0, or there
exists a subsequence of {xk} that converges to a first-order solution of problem (ℓ1-
σ).
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Proof. If xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0 then we are
done. Therefore, we assume that xk is not a first-order solution to problem (ℓ1-σ)
for all k. We consider two cases.
Case 1 : there exists a subsequence of {∆p

k} that converges to zero.
Examination of the algorithm shows that this implies the existence of a subsequence
S of the integers such that

lim
k∈S

xk = x∗, (4.5)

lim
k∈S

∆p

k = 0, (4.6)

lim
k∈S
‖sp

k‖∞ = 0, and (4.7)

rk < ηS for all k ∈ S. (4.8)

For a proof by contradiction, we suppose that x∗ is not a first-order critical point.
This implies that there exists a direction s and a scalar ρ > 0 such that ‖s‖∞ = 1
and

max
y∈∂ ‖c−∗‖1

sT (g∗ + σJT
∗ y) = −ρ, (4.9)

where ∂ ‖c−∗ ‖1 is the sub-differential of ‖(·)−‖1 at the point c∗ (see [12, Section 14.3]
for more details). A Taylor expansion of f at xk in a general direction v gives

f(xk + εv) = fk + εgT
k v + o(ε) = fk + εgT

k v +
ε2

2
vT Hkv + o(ε) (4.10)

since {Hk} is bounded by assumption, while a Taylor expansion of c at xk gives

c(xk + εv) = ck + εJkv + o(ε). (4.11)

Combining these two equations gives

φ(xk + εv) = fk + εgT
k v +

ε2

2
vT Hkv + o(ε) + σ‖

(

ck + εJkv + o(ε)
)−
‖1

= fk + εgT
k v +

ε2

2
vT Hkv + σ‖(ck + εJkv)−‖1 + o(ε)

= MH

k(εv) + o(ε),

(4.12)

where the first equality follows from the definition of φ and the Taylor expansions,
the second equality follows from the boundedness of ∂ ‖(·)−‖1, and the last equality
follows from the definition of MH

k(εv). The same argument using Bk in place of Hk

gives the estimate
φ(xk + εv) = MB

k(εv) + o(ε). (4.13)

Choosing v = sk/‖sk‖∞ and ε = ‖sk‖∞ in equation (4.12), and v = s and ε = εk

(we have not yet defined εk) in equation (4.13) gives

φ(xk + sk) = MH

k(sk) + o(‖sk‖∞) and (4.14)

φ(xk + εks) = MB

k(εks) + o(εk). (4.15)
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Equation (4.14) then implies the equation

rk =
φk − φ(xk + sk)

∆MH

k(sk)
=

∆MH

k(sk) + o(‖sk‖∞)

∆MH

k(sk)
= 1 +

o(‖sk‖∞)

∆MH

k(sk)
. (4.16)

We now proceed to bound ∆MH

k(sk). For all k ∈ S we have

∆MH

k(sk) ≥ η∆MH

k(sc

k) (4.17)

≥ η∆MH

k(sp

k) (4.18)

= η
(

MH

k(0) −MH

k(sp

k)
)

(4.19)

= η
(

MB

k(0)−MB

k(s
p

k)−
1

2
sp

k
T (Hk −Bk)s

p

k

)

(4.20)

= η∆MB

k(s
p

k)−
η

2
sp

k
T (Hk −Bk)s

p

k (4.21)

= η∆MB

k(s
p

k) + o(‖sp

k‖∞) (4.22)

Inequalities (4.17) and (4.18) follow from assumption (2.29) and since the Cauchy
step maximizes ∆MH

k(s) in the direction sp

k. Equations (4.19) - (4.21) follow from
the definitions of ∆MH

k and ∆MB

k, and by introducing Bk. Finally, equation (4.22)
follows since {Bk} and {Hk} are bounded by assumption.

We now define the scalar-valued sequence {εk}k≥0 such that εk = ‖sp

k‖∞. It
follows that ‖εks‖∞ = ‖sp

k‖∞ and, therefore, the vector εks is feasible for the kth
predictor subproblem. It now follows that for all k ∈ S sufficiently large we have

∆MH

k(sk) ≥ η∆MB

k(εks) + o(‖sp

k‖∞) (4.23)

= η(φk − φ(xk + εks) + o(‖sp

k‖∞) (4.24)

≥ ηεk

(

ρ + o(1)
)

+ o(‖sp

k‖∞) (4.25)

= ηρεk + o(εk) + o(‖sp

k‖∞) (4.26)

= ηρ‖sp

k‖∞ + o(‖sp

k‖∞), (4.27)

where we have used the convention ζ(εk) = o(1) to mean that ζ(εk)→ 0 as εk → 0.
Inequality (4.23) follows from equation (4.22) and since sp

k is a global minimizer for
the kth predictor subproblem. Equation (4.24) follows from equation (4.15), while
inequality (4.25) follows from [12, corollary to Lemma 14.5.1]. Finally, equations
(4.26) and (4.27) follow from algebra and definition of εk.
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Equation (4.27) implies the existence of a positive sequence {zk} such that for
k ∈ S sufficiently large

∣

∣

∣

∣

o(‖sk‖∞)

∆MH

k(sk)

∣

∣

∣

∣

≤

∣

∣

∣

∣

o(‖sk‖∞)

ηρ‖sp

k‖∞ + o(‖sp

k‖∞)

∣

∣

∣

∣

(4.28)

≤
zk‖sk‖∞
1
2
ηρ‖sp

k‖∞
(4.29)

≤
2zk(‖sc

k‖∞ + ‖ss
k‖∞)

ηρ‖sp

k‖∞
(4.30)

≤
2zk(‖sp

k‖∞ + ‖ss
k‖∞)

ηρ‖sp

k‖∞
(4.31)

=
2zk

ηρ

(

1 +
‖ss

k‖∞
‖sp

k‖∞

)

(4.32)

and where {zk}S is a subsequence that converges to zero as k → ∞. Inequality
(4.28) follows from inequality (4.27), while inequality (4.29) follows from definition
of “little-oh”. Inequality (4.30) follows from the triangle-inequality and inequalities
(4.31) and (4.32) follow from how the Cauchy point sc

k is computed and simplifica-
tion.

We now show that the assumptions in Corollary 4.1 are satisfied. Since x∗ is not
first-order optimal by assumption, it follows that ∆L

max(x∗, 1) 6= 0. By continuity
it follows that ∆L

max(xk, 1) is strictly bounded away from zero for k ∈ S sufficiently
large; this is assumption (i) of the Corollary. Assumptions (ii) and (iii) follow
directly from the assumptions in this theorem and the case we are considering.

Equation (4.32), Corollary 4.1, and the SQP trust-region radius update used in
Algorithm 3.1 imply

∣

∣

∣

∣

o(‖sk‖∞)

∆MH

k(sk)

∣

∣

∣

∣

≤
2zk

ηρ

(

1 +
‖ss

k‖∞
∆p

k

)

≤
2(1 + τf )zk

ηρ
. (4.33)

Finally, inequalities (4.16) and (4.33) show that

rk = 1 + o(1) for k ∈ S. (4.34)

This is a contradiction since this implies that for k ∈ S sufficiently large the identity
rk > ηS holds, which violates equation (4.8). Thus, x∗ is a first-order critical point
if Case 1 occurs.
Case 2 : there does not exists a subsequence of {∆p

k} that converges to zero.
Examination of the algorithm shows that this implies the existence of a positive
number δ and of an infinite subsequence S of the integers such that

lim
k∈S

xk = x∗, (4.35)

∆p

k ≥ δ > 0, for all k (4.36)

rk ≥ ηS for all k ∈ S. (4.37)
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Equation (2.29) and the fact that each k ∈ S is a successful iterate imply

φk − φ(xk + sk) ≥ ηS∆MH

k(sk) ≥ ηηS∆MH

k(sc

k). (4.38)

Corollary 2.2, equation (4.36), the bounds bB and bH on Bk and Hk, and the bound
∆p

k ≤ ∆̄ imply

φk − φ(xk + sk) ≥
ηηS

4
∆L

max(xk, 1)min(S) (4.39)

where

S =
{

1, δ,
∆L

max(xk, 1, σ)

bB

,
∆L

max(xk, 1, σ)

bB∆̄2
,

∆L
max(xk, 1, σ)

2n(bB + bH)
,

∆L

max(xk, 1, σ)

2n(bB + bH)∆̄2
,

∆L

max(xk, 1, σ)3

2n(bB + bH)b2
B∆̄2

,
∆L

max(xk, 1, σ)3

2n(bB + bH)b2
B∆̄6

,
}

.

Summing over all k ∈ S yields

∑

k∈S

φk − φ(xk + sk) ≥
∑

k∈S

ηηS

4
∆L

max(xk, 1)min(S). (4.40)

Next, using the monotonicity of {φ(xk)}k≥0 it follows that

∑

k∈S

φk − φ(xk + sk) =
∑

k∈S

φk − φ(xk+1) ≤ φ(x0)− φ(x∗). (4.41)

Combining the two previous inequalities gives

φ(x0)− φ(x∗) ≥
∑

k∈S

ηηS

4
∆L

max(xk, 1)min(S), (4.42)

which implies

lim
k∈S

∆L

max(xk, 1) = 0 (4.43)

since the series on the right-hand-side is convergent. Parts (iv) and (v) of Lemma 1.1
then imply that ∆L

max(x∗, 1, σ) = 0 and that x∗ is a first-order critical point.

In both cases we have shown that x∗ is a first-order point. We are done since
one of these cases must occur.

As stated previously, the proof of case 1 is nearly identical to that given by
Fletcher. However, Fletcher’s proof for case 2 does not carry over to our setting.
Examination of his proof indicates that the break down occurs when Fletcher es-
sentially requires the global minimizer of MH

k over the trust-region defined by radius
∆p

k; we only compute the global minimizer of MH

k in the single direction sp

k.
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5. Conclusions and future work

Research on second-derivative SQP methods is very active. The optimization com-
munity continues to tangle with the difficulties associated with nonconvex subprob-
lems in an attempt to further our understanding of these methods. This paper has
provided further understanding of these methods by showing how a relatively simple
idea may be used to avoid the pitfalls typically associated with second-derivative
SQP algorithms.

We presented an ℓ1-SQP method that is based on the work by Fletcher [12]. In
Section 2, we described how to compute trial steps as a combination of a Cauchy step
and an SQP step. Two classes of SQP steps were considered. Section 2.3.1 discussed
the class of explicitly-constrained SQP steps that were designed to enhance efficiency,
while Section 2.3.2 considered the class of implicitly-constrained SQP steps that were
designed to avoid the Maratos effect. We feel that our method provides a natural
framework for avoiding the Maratos effect that is less ad-hoc than traditional means.
In Section 4, we proved that our method is globally convergent without having to
compute the global minimizer of a nonconvex quadratic program; this is arguably
the greatest contribution of this paper.

Yuan [24] shows that Fletcher’s method is globally convergent under weaker
assumptions on the matrices Hk. Similar conclusions are true for our method and
will be covered in a separate paper. In addition, we plan to discuss 1) mechanisms
for updating the penalty parameter; 2) local convergence issues; and 3) strategies for
defining convex approximations to the Hessian of the Lagrangian in the large-scale
case. We note that Byrd, Nocedal, and Waltz [6] and Byrd et al. [4] have already
published clever techniques for updating the penalty parameter, and this will likely
influence our developments. Finally, we aim to give details of numerical experiments
with our evolving GALAHAD package TRIMSQP.
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