
PIECEWISE SMOOTH CHEBFUNS

RICARDO PACHÓN∗, RODRIGO PLATTE† , AND LLOYD N. TREFETHEN‡

Abstract. Algorithms are described that make it possible to manipulate piecewise-smooth
functions on real intervals numerically with close to machine precision. Breakpoints are introduced
in some such calculations at points determined by numerical rootfinding, and in others by recursive
subdivision or automatic edge detection. Functions are represented on each smooth subinterval by
Chebyshev series or interpolants. The algorithms are implemented in object-oriented Matlab in an
extension of the chebfun system, which was previously limited to smooth functions on [−1, 1].

Key words. edge detection, chebfun system, Chebyshev series, barycentric interpolation

AMS subject classifications. 33F05, 65D05

1. Chebyshev calculations on [−1, 1]. The mathematics of approximation of
smooth functions on [−1, 1] by Chebyshev series and interpolants goes back about a
century, and landmarks in the algorithmic side of this subject include Salzer’s barycen-
tric interpolation formula [17] and the determination of Chebyshev coefficients via
FFT [10]. Recently a software system in object-oriented Matlab was developed by
Zachary Battles and the third author, the chebfun system, that aims to exploit these
tools to compute with functions in a manner combining the speed of floating-point
numerics with the “feel” of symbolic computing [1, 2]. A chebfun is a Matlab repre-
sentation of a function of a continuous variable following Matlab syntax for vectors,
with Matlab’s vector operations overloaded by appropriate analogues. The vision of
the project is that if f is one chebfun defined on the interval [−1, 1], for example, and
g is another, then the Matlab command h = f.*g should compute a new chebfun h
with the property that for each x ∈ [−1, 1], h(x) is equal to f(x)g(x) up to a relative
error no greater than about machine precision (relative to the maximum of |fg| on
[−1, 1], not its value at the point x) [18]. To achieve this, f and g are represented
by polynomial interpolants through data at sufficiently many Chebyshev points, with
this number determined automatically; or equivalently, by polynomials in the form
of finite Chebyshev series. The number of data points can be anything from 1 for
a constant function to tens or hundreds of thousands; function evaluation is rapidly
and stably carried out by barycentric interpolation [3, 14, 17].

For example, the commands

>> x = chebfun(@(x) x);

>> f = sin(10*x);

>> g = 1./sqrt(2-x);

>> [length(x) length(f) length(g)]

ans = 2 36 27

construct chebfuns x, f, and g corresponding to x and two other simple functions on
[−1, 1], and the “lengths” reported incidate that 2, 36 and 27 points, respectively, are

∗Oxford Computing Laboratory, Wolfson Bldg., Parks Rd., Oxford OX1 3QD, UK
(ricp@comlab.ox.ac.uk, http://www.comlab.ox.ac.uk/ricardo.pachon/).

†Oxford Computing Laboratory, Wolfson Bldg., Parks Rd., Oxford OX1 3QD, UK
(rodp@comlab.ox.ac.uk, http://www.comlab.ox.ac.uk/rodrigo.platte/).

‡Oxford Computing Laboratory, Wolfson Bldg., Parks Rd., Oxford OX1 3QD, UK
(LNT@comlab.ox.ac.uk, http://www.comlab.ox.ac.uk/nick.trefethen/).

1

2 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

needed to represent these functions to machine precision. That is, f and g amount to
polynomials of degrees 35 and 26. Algebraically speaking, the product fg is of degree
61, but after truncating to machine precision the system finds only degree 34:

>> h = f.*g;

>> length(h)

ans = 35

The sequence

>> x = rand

x = 0.814723686393179

>> h(x)

ans = 0.879309706420458

>> sin(10*x)/sqrt(2-x)

ans = 0.879309706420459

confirms (at least for one value of x) that the accuracy is nevertheless close to the
level of machine precision. Similarly f/g is not a polynomial at all, mathematically
speaking, but in the chebfun system it is a polynomial of degree 35:

>> length(f./g)

ans = 36

Other calculations with similar precision can also be carried out with these functions.
For example, the following sequence involving overloads of Matlab’s sum and roots

commands determines the integral of fg from −1 to 1 and the roots of f +g in [−1, 1],
yielding results in each case correct except sometimes in the final digit.

>> sum(h)

ans = 0.031767660431063

>> roots(f+g)

ans =

-0.879457197419037

-0.693833354191293

-0.241007073210694

-0.076692881584451

0.405558247388804

0.531272924965239

All this works excellently so long as the functions of interest are smooth. In
applications, however, many functions that arise are not smooth, though they are
often piecewise smooth. In this article we propose numerical algorithms for calculating
with piecewise smooth functions, which have been implemented in an extension of the
chebfun system. For example, the command

>> h = max(f,g);

>> plot(h)

produces the result shown in Figure 1.1. In the original chebfun system, such a
computation was not possible, because max(f, g) cannot be represented to machine
precision by a single polynomial unless it is of degree on the order of 1015.

PIECEWISE SMOOTH CHEBFUNS 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

Fig. 1.1. A piecewise smooth chebfun constructed by the max operator from breakpoints deter-

mined by zerofinding.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Fig. 1.2. An example in which the breakpoints have been located by automatic edge detection.

Figure 1.2 shows another example, in which six points of discontinuity of a func-
tion defined on the interval [0, 20] have been located adaptively by execution of the
command f = chebfun(@(x) sqrt(abs(besselj(0,x))),[0 20]).

Capabilities for dealing with piecewise functions defined symbolically have existed
for a number of years in the symbolic computing systems Maple and Mathematica,
which in fact both have commands with the name “piecewise” [15, 19]. As always,
the symbolic approach brings great power in certain cases but a great cost in others,
when the quantities of interest cannot be determined symbolically or when expressions
grow combinatorially in length [18]. Concerning numerical computation with piece-
wise functions, we do not know of any other projects closely related to the present one.
A more distant relative is the fascinating work of Curtis and Powell from forty years
ago, in which the aim was to determine spline fits to given functions automatically
to a specified accuracy [8, 16]. (Curtis and Powell insist on C2 continuity but point
out that this condition could be relaxed.) It is marvelous to see in this work how
fundamental mathematical ideas have lasted through the generations while the com-
putational environment has changed beyond recognition. The numerical example dis-
cussed at some length in [16], for example, is the function f(x) = 1/(0.01+(x−0.3)2),
which the chebfun system approximates to 15-digit accuracy in less than 0.1 secs. on
a desktop computer.

4 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

2. Piecewise smooth chebfuns. “Classic” smooth chebfuns still exist—they
have been renamed funs and are now a separate Matlab class used to represent each
of the pieces of a chebfun. A chebfun is now an object with six fields:

funs, nfuns, scl, trans, ends, imps.

funs is a vector containing n funs for some positive integer n, which is stored as nfuns.
scl is a scalar equal to the largest of the absolute values of all the data defining a
chebfun. trans is a flag set to 0 for a column chebfun, 1 for a row chebfun; this makes
it possible to compute an inner product, for example, with the syntax f’*g. ends is
a vector of n + 1 floating point numbers in monotonically increasing order indicating
subintervals:

a = ends(1) < ends(2) < · · · < ends(n + 1) = b.

The system scales funs(i) to the interval [ends(i), ends(i + 1)]. imps contains the
function values at the breakpoints themselves, which if the function is discontinuous
may match the fun on the left, the fun on the right, or neither. Thus in mathematical
terms we may think of a chebfun at a discontinuity as (to floating-point approxima-
tion) lower-semicontinuous, upper-semicontinuous, or neither. In general imps may
be a matrix rather than just a vector, including data associated with Dirac delta
functions at the breakpoints, which are introduced for example if one differentiates
a step function. In this article we do not mention delta functions further, for their
proper treatment is a substantial topic in its own right and still under investigation.

The chebfun constructor can make a chebfun in various ways, and we give a
partial list here. The simplest is based on an explicit list of functions and endpoints,
with the functions specified by any combination of constants, strings, anonymous
functions, or other chebfuns. For example, the following sequence constructs a chebfun
corresponding to the Bessel function J0(x) on the interval [0, 1000], computes its zeros,
and reports their number. This executes in a few hundredths of a second on a laptop,
and additional checks show that the chebfun differs from the exact Bessel function on
[0, 1000] by no more than 1.5 × 10−14.

>> f = chebfun(@(x) besselj(0,x),[0,1000]);

>> length(f)

ans = 579

>> length(roots(f))

ans = 318

For another example, consider the command

>> f = chebfun(’x.*cos(8*pi*x)’,1,’4-1.5*x’,’abs(0.15./(t-4+.1i))’,[0:3 5])

This generates a chebfun defined on the interval [0, 5] with four explicitly defined
pieces on the intervals [0, 1], [1, 2], [2, 3] and [3, 5], and plot(f) produces the image
shown in Figure 2.1. The default behavior is that at each breakpoint, the chebfun
takes the value of the piece on the right. The command sum(f) reveals that the
integral of f from 0 to 5 is 2.149466885089391, and length(f) shows that the total
number of data points on all four intervals is 192. To find the integral of f from 1
to 3, we can construct the indefinite integral with g = cumsum(f) and then evaluate
g(3)-g(1). The result is reported as 1.250000000000000.

PIECEWISE SMOOTH CHEBFUNS 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1

1.5

Fig. 2.1. A chebfun with four pieces.

This example introduces points of discontinuity explicitly. More interesting are
cases where chebfuns are constructed from other chebfuns in such a way that new
breakpoints appear implicitly. This may happen when one of the commands

abs, sign, floor, ceil, round, fix, mod, rem

is applied to a chebfun or one of the commands

min, max, conv

is applied to a pair of chebfuns. In the case of abs(f) or sign(f), for example, the
zeros of f on its interval of definition are first determined by the roots command,
which uses the method described in [2], in which the chebfun is recursively reduced to
problems of order O(100) that are solved by finding eigenvalues of suitable colleague
(or “Chebyshev companion”) matrices [2, 5, 6, 12]. At each such zero, a new break-
point in the chebfun is introduced, in addition to any breakpoints that may already
be there. Similarly for min(f,g) or max(f,g), where f and g are chebfuns defined
on the same interval, the system first finds the roots of f − g and introduces new
breakpoints accordingly. This is how the chebfun of Figure 1.1 was constructed.

Once a piecewise smooth chebfun has been constructed, about 100 overloaded
Matlab commands can be applied to it. In each case these commands are executed
by performing the appropriate operations on the component funs. For example, if a
function like sin, exp, or tanh is applied to a chebfun f, the system applies the indi-
cated operation to each component fun, adjusts the length adaptively to achieve the
usual precision, and concatenates the resulting funs into the desired chebfun output.
sum returns an integral computed by Clenshaw–Curtis quadrature on each piece, and
cumsum returns an indefinite integral chebfun constructed from the indefinite integral
funs of each piece. roots returns a vector of roots of each fun as well as roots at
breakpoints, e.g. if a real function discontinuously passes from negative to positive.
norm(f) depends only on integration, since it returns a 2-norm, whereas norm(f,inf)
and norm(f,1) utilize rootfinding to find local extrema and zeros of f , respectively.
diff performs differentiation piecewise, with delta functions introduced at points of
discontinuity as mentioned earlier. length(f) reports the total number of data points
defining the chebfun f , and one can extract its ends and funs with f.ends and f.funs.

3. Automatic subdivision. In addition to these processes, the chebfun con-
structor itself may automatically introduce breakpoints if it is presented with a diffi-
cult function. It does this by an algorithm combining two features:

6 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

• Edge detection for functions with discontinuous values or derivatives,
• Recursive subdivision for functions without clear discontinuities but none-

theless having complicated behavior.
The user has an option of enabling or disabling these processes via the commands

splitting on, splitting off

The former choice is necessary when dealing with functions that are far from smooth.
The latter, which was used in the examples given so far, is useful for exploratory work,
for example if one wants to examine the properties of Chebyshev interpolants of high
orders, and it also has advantages for applications in differential equations, where the
introduction of breakpoints may lead to difficulties.

Before presenting the algorithm, we give illustrative examples. First are three
examples of the edge detection kind.1 The command chebfun(@(x)abs(x-0.1))

produces a chebfun consisting of two funs, each linear, with a breakpoint at x = 0.1
(up to an error of 2−56 ≈ 1.4×10−17). Since the construction process only samples the
function at various points x (in contrast to the command abs(chebfun(@(x)x)-0.1),
which would take advantage of the rootfinder), the result of this computation illus-
trates the edge detector successfully at work. Similarly the command chebfun(@(t)

sign(sin(t)), [0 10*pi]), while again only sampling the function at various points
in [0, 10π], succeeds in producing a chebfun with 10 pieces, each constant. The break-
points are now at π, 2π, . . . , 9π, or more precisely, at their correctly rounded approx-
imations in the floating point number system. A third example is this:

>> nodes = 0:8;

>> vals = sin(nodes);

>> f = chebfun(@(x) spline(nodes,vals,x),[0 8]);

>> f.ends

ans = 0 1.999998 2.999933 4.000050 5.000075 5.999970 8.000000

In this sequence, the chebfun constructor is asked to produce a chebfun by sampling
the function spline(nodes,vals,x). Now Matlab’s spline command produces a
cubic spline interpolant through the given nodes and values, so the function being
sampled, while appearing smooth to the eye, is actually just C2, with jumps in the
third derivative at the integers. The chebfun constructor has duly located these dis-
continuities. It is interesting to note that the located breakpoints match the true ones
only to an accuracy on the order of the cube root of machine precision, a result that is
reasonable since this is all that is needed to capture the function to machine precision.
We were puzzled when we first saw this output—why were there no discontinuities at
1 and 7? A review of the documentation for spline informed us that by default it
imposes “not-a-knot” boundary conditions, in which the first and last interior points
in the list of nodes are not actually taken as discontinuities.

Next we give two examples of recursive subdivision in the absence of clear point
discontinuities. First, consider the result of chebfun(@(x)sin(x),[0 1e4]). With
splitting off, the output is a single global chebfun of length 5165. With splitting

on, the interval is broken into 128 equal pieces, on each of which the function is

1The subject of edge detection is a big one, with connections to many mathematical and engi-
neering problems, and we shall make no attempt to review the literature. One reference we have
found useful is [11]. Our situation is unlike the usual edge detection problem in engineering, as we
are aiming for machine precision and are able to sample the function as necessary to achieve this.

PIECEWISE SMOOTH CHEBFUNS 7

represented by between 71 and 77 points, for a total of 9321 data values. Second,
consider the function

f(x) =
√

x, x ∈ [0, 1].

Though mathematically f has “just one piece,” being analytic throughout (0, 1], it has
a singularity at x = 0 and cannot be represented to machine precision by a polynomial
of reasonable order. In this case the constructor returns a chebfun consisting of seven
funs on exponentially graded subintervals, as revealed by the following sequence:

>> f = chebfun(@(x) sqrt(x),[0 1]);

>> f.ends

ans =

0

0.000000000100000

0.000000010000000

0.000001000000000

0.000100000000000

0.010000000000000

0.505000000000000

1.000000000000000

>> length(f)

ans = 584

Each subinterval is 100 times smaller than the last, and the lengths of the corre-
sponding funs are between 18 and 126. With 584 data points all together, one could
regard this as an absurdly complicated representation of

√
x, but on the other hand

the process is a general one that will be equally effective for much more complicated
functions. For example if we change sqrt(x) to sqrt(x).*cos(100*x), the length
of the chebfun actually shrinks to 573; even with sqrt(x).*cos(1000*x) it increases
only to 1298. And though the underlying representation is complicated, the command
sum(f) applied to this chebfun for

√
x gives an answer that differs from the correctly

rounded value of 2/3 by just 2−53 ≈ 1.1 × 10−16.
We now describe the algorithm that achieves these effects. For this we introduce

the term naf, which stands for “not-a-fun”. In this algorithm, a fun is a subinterval
with a successful representation of the given function by a polynomial of degree <128.
By a naf we mean a subinterval on which this polynomial degree has been found
insufficient for the required accuracy. During the construction process the chebfun F
consists of a sequence of funs and nafs, and the process is finished when these are all
funs.

ALGORITHM TO CONSTRUCT A CHEBFUN F FROM A FUNCTION f

Try to construct F as a single fun. The result may be a fun or a naf.
while F has some nafs in it

for i = 1 to the number of nafs
Let [a, b] be the interval associated with the ith naf.
Call detectedge(a, b, f) (see below) to find an edge c ∈ [a, b], if any.
if an edge c is found at distance ≥ 10−14(b − a) from endpoints a and b

Mark c as a genuine edge.
elseif an edge c is found at distance < 10−14(b − a) from endpoint a or b

8 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

Set c equal to the number at distance 0.01(b − a) from that endpoint
and mark c as a removable edge.

else (i.e. if no edge is found)
Set c = (a + b)/2 and mark it as a removable edge.

end if

Split this naf at c, and try to construct a fun on each side.
The result may be fun+fun, naf+fun, fun+naf, or naf+naf.

end for

end while

for i = 1 to the number of removable edges introduced above
Merge the funs adjacent to edge(i) into a single fun if possible.

end for

It remains to describe detectedge. The purpose of this procedure is to speed
up the calculation by looking quickly for discontinuities in f , f ′, f ′′, or f ′′′ in the
interval of interest, using a simple finite difference scheme rather than the more general
Chebyshev interpolation. If detectedge finds no discontinuity, little harm is done,
since the algorithm then falls back upon the general procedure without having wasted
too much effort. If it does find a discontinuity, the improvement in function evaluations
per edge may be as great as (very roughly)

from 129 log2(2
−52) ≈ 7000 to 15 log7(2

−52) ≈ 300.

The first number corresponds to sampling on 129-point Chebyshev grids at each of
52 levels of binary recursion down to machine precision, and the second to sampling
on 15-point equispaced grids at each of 19 levels of recursion.

Specifically, detectedge works by calculating estimates of |f ′|, |f ′′|, |f ′′′|, |f ′′′′|
from finite differences of sampled values of f of orders 1, 2, 3, 4 on 15-point equally-
spaced grids. If any of these estimates grows as the grid is refined, then a singularity
appears to be present, and the grid keeps being shortened by a factor of 7, all the
way down to machine precision. If it is the estimate of |f ′| that blows up, this
case is treated specially by a program findjump which uses bisection to locate the
discontinuity, normally down to the very last bit in floating-point arithmetic.

function edge = detectedge(f,a,c) % Find singularity of f in [a, c]
edge = NaN

On a 50-point equispaced grid in [a, c], compute estimates of |f ′|, |f ′′|, |f ′′′|, |f ′′′′|.
Set b = the gridpoint associated with the maximum estimate of |f ′′′′|.
Set dmax = 4.
while the current interval [a, c] is larger than machine precision

Set a and c to the gridpoints left and right of b, respectively.
Refine 7-fold to a 15-point grid in [a, c], and find the gridpoints

associated there with the maximum estimates of |f ′|, . . . , |f (dmax)|.
if refinement has increased none of the estimates by a factor of 1.2 or more

return (i.e., no edge has been detected)
end if

Set dmax = order of lowest derivative that has increased by such a factor.
Set b = gridpoint associated with maximum value of |f (dmax)|.
if dmax = 1

b = findjump(f,a,c)

PIECEWISE SMOOTH CHEBFUNS 9

return

end if

end while

edge = b

The above descriptions are slightly simplified accounts of what goes on in our
actual program. In particular, our treatment of vertical and horizontal scales is more
complicated than is suggested above by the term “machine precision.” In fact, all
convergence criteria are relative, making chebfun construction scale-invariant in the
usual manner associated with IEEE floating-point arithmetic. Thus for example if
f is the chebfun constructed from f(x) on [0, 1] and f2 is the chebfun constructed
from sf(tx) on [0, t−1], then so long as underflow and overflow limits are not reached,
f2(x) will match sf(tx) closely, and the two will be identical if s and t are powers
of 2.

Here is one more example of automatic edge detection in action. The follow-
ing code sequence constructs chebfuns for ex + cos(7x) + 0.1sign(x − x0), where x0

takes ten random values in [0, 1], and compares x0 with the automatically determined
breakpoint.

for j = 1:10

x0 = rand;

f = chebfun(@(x) exp(x)+cos(7*x)+0.1*sign(x-x0));

fends = f.ends;

disp([x0 fends(2) x0-fends(2)])

end

The results, delivered in about 0.2 secs. on a workstation, are as follows:

0.594896074008614 0.594896074008614 0

0.262211747780845 0.262211747780845 0

0.602843089382083 0.602843089382083 0

0.711215780433683 0.711215780433683 0

0.221746734017240 0.221746734017240 0

0.117417650855806 0.117417650855806 0

0.296675873218327 0.296675873218327 0

0.318778301925882 0.318778301925882 0

0.424166759713807 0.424166759713807 0

0.507858284661118 0.507858284661118 0

The final column shows that the differences are exactly zero: in every case the dis-
continuity has been located to the very last bit.

4. Applications. The algorithms and software we have presented may be useful
in education, for example in courses on calculus, statistics, numerical analysis or
approximation theory, and also in practical computing. We shall not attempt to
distinguish between educational and practical applications, but just present eight
examples that may be of some interest.

Example 1. Riemann approximation to an integral. In calculus we learn to ap-
proximate a continuous function by a Riemann sum. In the chebfun system, the
Riemann sum can be realized as a function. For example, here is a sequence that
plots a smooth function f on [0, 1] and a piecewise-constant approximation fh. The

10 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 4.1. On the left, a smooth function and its Riemann approximation realized as a chebfun.

On the right, the chebfun obtained by taking the difference between the two.

corresponding plot appears in Figure 4.1. Here and in our other examples, most de-
tails associated with labels, line widths, and other formatting matters are omitted
from the Matlab listing.

f = chebfun(@(x) cos(exp(2*x)),[0 1]);

h = 0.1; ends = 0:h:1; midpts = h/2:h:1;

fh = chebfun(num2cell(f(midpts)),ends);

plot(f), hold on, plot(fh)

Once f and fh have been constructed, we can compute with them. The right
side of Figure 4.1 plots their difference, and the accuracy of the approximation can
be explored numerically with commands like these:

>> sum(f)

ans = -0.113851287074054

>> sum(fh)

ans = -0.108779592055534

>> norm(f-fh,inf)

ans = 0.471646386553549

One could extend the experiment in a number of ways, for example, to investigate
convergence as h → 0.

Example 2. Convolution, B-splines, and the Central Limit Theorem. Matlab’s
conv command has been overloaded for chebfuns, performing convolution of continu-
ous or piecewise continuous functions. By repeatedly convolving a step function with
itself, we can use this command to illustrate the mathematics of B-splines. For our
purposes the nth B-spline Bn is a piecewise polynomial of degree n with support
[−n− 1, n+1], breakpoints at −n+1,−n+3, . . . , n− 1, and n− 1 continuous deriva-
tives [7]. The following command sequence constructs such functions by convolution,
using B.ends to track the breakpoints. The resulting plot is shown in Figure 4.2.

step = chebfun(0.5); B = step;

for n = 1:4

B = conv(B,step);

subplot(2,2,n)

plot(B), hold on, plot(B.ends,B(B.ends),’.’)

end

PIECEWISE SMOOTH CHEBFUNS 11

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

n = 1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

n = 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

n = 3

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

n = 4

Fig. 4.2. The first four B-splines, constructed by convolution.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

n = 0

var = 0.33333

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

n = 1var = 0.66667

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

n = 2var = 1

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

n = 3var = 1.3333

Fig. 4.3. The same construction but starting from a different initial function. According to the

Central Limit Theorem, the limit is still Gaussian.

As n increases, these curves converge to Gaussians. This follows from the Central
Limit Theorem, for the nth B-spline is the probability distribution for the sum of
n + 1 random numbers uniformly distributed in [−1, 1]. The Central Limit Theorem
also implies that the limit will be Gaussian if we start with some other initial curve.
Figure 4.3 shows the example in which step has been replaced by the initial function
0.5 + 0.6x − x3, these coefficients having been chosen so that the function again has
integral 1 and first moment 0. The figure also displays the second moment or variance,
computed from sum(chebfun(@(x) B(x).*x.^2,[-n-1 n+1])).

The Gaussian of integral 1 and variance σ2 is (2πσ2)−1/2 exp(−(x/σ)2/2). Setting
σ2 = 4/3 at the end of the computation above, we find the following deviation from
a Gaussian:

>> x = chebfun(@(x) x,[-n-1 n+1]);

>> sigma = sqrt(4/3);

>> gaussian = exp(-(x/sigma).^2/2)/(sigma*sqrt(2*pi));

12 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 4.4. The Gibbs phenomenon for polynomial interpolation in Chebyshev points.

>> norm(B-gaussian,inf)

ans = 0.018338990457137

One can readily modify these commands to investigate the (slow) convergence to
Gaussian form as n increases further.

Example 3. The Gibbs phenomenon. The Gibbs phenomenon refers to the fact
that Fourier or Chebyshev interpolants or truncated series oscillate near (and also
not so near!) points of discontinuity. With piecewise smooth chebfuns, we can con-
veniently examine this effect not only for the usual step function but also for more
general functions with discontinuities. Here is an example, with the resulting plot
shown in Figure 4.4. The second line explicitly constructs an interpolant of degree 39
rather than attempting to determine the degree adaptively.

f = chebfun(’-exp(x)’,’2*abs(x-0.5)’,-1:1);

fn = chebfun(@(x) f(x),40);

plot(f), hold on, plot(fn,’.-’)

How big is the overshoot? We can measure it by using max. The following code
computes the overshoot and compares it to the limiting value as n → ∞ reported
in [13].

exact = 0.282283455775;

for n = 2.^(1:9)

fn = chebfun(@(x) f(x),n);

overshoot = max(abs(fn)-abs(f));

err = overshoot - exact;

fprintf(’%5d %14.8f %12.6f\n’, n, overshoot, err)

end

1 0.65803014 0.375747

3 0.05097072 -0.227424

7 0.40693660 0.124653

15 0.31523215 0.032949

31 0.28221031 -0.000073

63 0.28468454 0.002401

127 0.28271534 0.000432

255 0.28265007 0.000367

PIECEWISE SMOOTH CHEBFUNS 13

Fig. 4.5. A grid corresponding to the unit square [−1, 1] × [−1, 1] in the complex plane repre-

sented as a piecewise linear chebfun S, and its images exp(S) and tan(S).

511 0.28242243 0.000139

Example 4. Analytic functions. Piecewise smooth chebfuns offer a convenient
means to visualize analytic functions in the complex plane. (Another approach, which
we shall not discuss, would be to use quasimatrices, i.e., chebfuns containing multiple
columns.) For example, the following sequence constructs a chebfun S with 22 pieces
consisting of various horizontal and vertical lines in the unit square [−1, 1]× [−1, 1]. It
then plots S and its images exp(S) and tan(S) (Figure 4.5). The manner in which this
chebfun is constructed, by successively appending new intervals to an initial interval
[−1, 1], leads to it being defined on the interval [−1, 43], but for this application, we
care only about its range, not its domain. The data plotted in these curves will be
accurate to the usual 14 or 15 decimal places.

x = chebfun(@(x) x);

S = chebfun; % make an empty chebfun

for d = -1:.2:1

S = [S; d+1i*x; 1i*d+x]; % add 2 more lines to the collection

end

plot(S), plot(exp(S)), plot(tan(S))

Example 5. Complex contour integrals. Complex analysis is full of contour inte-
grals of analytic functions, as in the Cauchy integral formula. Sometimes the contours
are circles, and by using the chain rule, we can reduce a circular contour to an inter-
val by a change of variables. Other times, more complicated contours are useful, but
almost always, these are piecewise smooth. These can be reduced to intervals too,
and now the integrands are continuous and piecewise analytic.

For example, this code constructs a chebfun on [0, 4] corresponding to a contour
Γ of a familiar “keyhole” form (Figure 4.6).

s = chebfun(@(s) s,[0 1]);

c = [-2+.05i -.2+.05i -.2-.05i -2-.05i];

z = [c(1)+s*(c(2)-c(1))

c(2)*c(3).^s./c(2).^s

14 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

Fig. 4.6. A keyhole contour for a complex integral.

c(3)+s*(c(4)-c(3))

c(4)*c(1).^s./c(4).^s]

plot(z)

Integrals over such contours usually appear in theoretical arguments, not computer
programs, but in the chebfun system we can work with them numerically. The chain
rule gives

∫

Γ

f(z)dz =

∫ b

a

f(z(s))z′(s)ds,(4.1)

and the integral becomes sum in the chebfun system. Notice that z ′(s) will be a
piecewise smooth function with jumps corresponding to corners in the contour, but
this poses no difficulties for the integral. For example, the following code segment
integrates f(z) = log(z) tanh(z) around the contour:

>> f = log(z).*tanh(z);

>> I = sum(f.*diff(z))

I = 0.000000000000007 + 5.674755637702221i

The exact solution, which is 2πi times sum of the residues at the poles of f at ±πi/2,
is 4πi log(π/2) ≈ 5.674755637702224i.

Example 6. Green functions. Green functions are solutions to linear differential
equations with homogeneous boundary conditions and inhomogeneous forcing data
consisting of a Dirac function. For a one-dimensional problem, they typically take the
form of a continuous function that is smooth except for a jump in the derivative at a
point. In the chebfun system, such a function can be realized numerically.

For example, the operator Lu = u′′ + u on [0, π/2] has the Green function

g(x, y) =

{− sin(x) cos(y) if x ≤ y,

− cos(x) sin(y) if x ≥ y.
(4.2)

In Matlab, the following anonymous function takes as input a value of y and produces
as output the chebfun function of x corresponding to g(x, y):

green = @(y) chebfun(@(x)-sin(x)*cos(y), @(x)-cos(x)*sin(y), [0 y pi/2]);

The left side of Figure 4.7 shows some of these functions as plotted by the sequence
for y = .2:.2:1, plot(green(y)), hold on, end.

PIECEWISE SMOOTH CHEBFUNS 15

0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0 0.5 1 1.5
−0.08

−0.06

−0.04

−0.02

0

Fig. 4.7. On the left, Green functions g(x, y) for y = 0, 0.2, . . . , 1 for the operator Lu = u′′ + u
with homogeneous Dirichlet boundary conditions on [0, π/2]. On the right, the solution to a problem

Ly = f computed via these Green functions.

Now suppose we want to solve Lu = f using these Green functions for some
function f defined on [0, π/2]. The solution is given by the formula

u(y) =

∫ π/2

0

f(x)g(x, y)dx,(4.3)

which we can realize in the chebfun system. For example, the following sequence
produces the plot shown on the right side of Figure 4.7.

f = chebfun(@(x) exp(x).*sin(10*x.^2),[0 pi/2]);

u = chebfun(@(y) sum(f.*green(y)),[0 pi/2]);

plot(u)

Here is a verification that the required equation has been solved:

>> err = diff(u,2) + u - f;

>> norm(err)

ans = 1.228647822329242e-12

Notice the extraordinary compactness of this solution: one line to define the Green
function, one to define the right-hand side, and one to compute the integral of the
product of the two.

Although the use of Green functions to solve boundary value problems is a fun-
damental mathematical idea, it is not usually the best approach numerically. Within
the chebfun system, there are better ways to solve an equation like u′′ + u = f , to be
discussed in forthcoming work with Bornemann and Driscoll [9].

Example 7. Global optimization in two dimensions. In the chebfun system the
global minimization of a function of one variable, whether globally smooth or just
piecewise smooth, is routine. Now suppose we have a function of two variables defined
on a rectangle, like this one:

f(x, y) = sin(6x) + sin(5y) + sin(8x + 3y), −1 ≤ x, y ≤ 1.(4.4)

The left side of Figure 4.8 plots contours of the function, and it is clear that there
are several local minima. One way to find the global minimum is to minimize in
one direction at a time. The following code segment defines an anonymous function
fx(x) whose value for each x is a chebfun in y corresponding to that value of x. The

16 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

−1 −0.5 0 0.5 1

−2.75

−2.5

−2.25

−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

x

m
in

y f(
x,

y)

Fig. 4.8. On the left, contours of the function f of (4.4) at levels −2.75,−2.5, . . . , 0. On the

right, the piecewise smooth chebfun g(x) whose value for each x is miny f(x, y). The global minimum

is marked on the left.

function g is then constructed as the chebfun in x of the minima of these functions
fx(x) (right side of Figure 4.8). It is continuous but only piecewise differentiable,
and the breakpoints apparent in the right-hand plot of Figure 4.8 have been found by
automatic edge detection. By minimizing this piecewise smooth univariate function g,
one obtains the global minimum of the original bivariate function, all with just three
lines of Matlab code. The position (xmin,ymin) of the minimum is also calculated
and is marked by a dot in the figure.

>> fx = @(x) chebfun(@(y) sin(6*x)+sin(5*y)+sin(8*x+3*y));

>> g = chebfun(@(x) min(fx(x)));

>> [minval,xmin] = min(g)

minval = -2.937379284008478

xmin = 0.740775338910084

>> [minval2,ymin] = min(fx(xmin))

minval2 = -2.937379284008477

ymin = 0.338025338316668

The computation is successful, but this is not the best example of an application
of piecewise smooth chebfuns. The difficulty is that a good deal of time is spent
locating breakpoints so that g can be represented globally to machine precision; but
all that care with breakpoints is not so relevant to the problem of interest, for the
minimum of g lies away from the breakpoints in the middle of one of its smooth pieces.
For this relatively simple function the computation takes a few seconds, but for the
more complicated function given as Problem 4 of the SIAM 100-Dollar, 100-Digit
Challenge [4], getting the answer takes about ten minutes on our workstations. (That
answer is correct to 14 digits, more than the 10 digits needed to win full points in the
Challenge.)

Example 8. Approximation of the Runge function. Our final example can be
regarded as a use of the piecewise smooth chebfun system to illustrate principles of
approximation theory; or alternatively, as an exploration of some of the mathematical
principles relevant to the numerical representation of complicated functions. Let f be

PIECEWISE SMOOTH CHEBFUNS 17

0 20 40 60 80 100 120 140 160 180 200

10
−15

10
−10

10
−5

10
0

n

er
ro

r

Fig. 4.9. The upper curve shows convergence of n-point global Chebyshev interpolants to the

Runge function (4.5), and the lower curve shows convergence for piecewise approximations involving

n/2 points each on [−1, 0] and [0, 1]. Both approximations converge geometrically, but the splitting

into subintervals improves the efficiency by a constant factor.

the familiar Runge function,

f(x) =
1

1 + 25x2
, x ∈ [−1, 1],(4.5)

with poles at ±i/5. Since f is analytic on [−1, 1], its polynomial interpolants in
Chebyshev points will converge geometrically (at the rate O(ρ−n) with ρ = 1/5 +
√

26/25 ≈ 1.22). On the other hand, what if we approximate f separately on the
two intervals [−1, 0] and [0, 1] with the same total number of points? The following
code sequence explores this idea, producing the plot of Figure 4.9 that shows that the
convergence rate improves by a constant factor. One could pursue the mathematics of
such effects to attempt to derive more nearly optimal splitting strategies for piecewise
smooth chebfuns, but we have not done this.

runge = @(x) 1./(1+25*x.^2);

exact = chebfun(runge);

errp = []; errq = []; nn = 2:2:200;

for n = nn

p = chebfun(runge,n);

errp = [errp; norm(p-exact,inf)];

q = chebfun(runge,runge,[-1 0 1],[n/2 n/2]);

errq = [errq; norm(q-exact,inf)];

end

semilogy(nn,errp,’.-’), hold on, semilogy(nn,errq,’.-’)

hold on, grid on

semilogy(nn,errq,’.-r’,’linewidth’,.9,’markersize’,8)

5. Discussion. The computations presented in this paper were carried out with
chebfun Version 2, released in June 2008. The code is freely available under a BSD-
type software license, and can be found together with a user’s guide and other in-
formation at http://www.comlab.ox.ac.uk/chebfun. This is an evolving software
system, not yet stable enough for backward compatibility of successive versions to be

18 R. PACHÓN, R. PLATTE AND L. N. TREFETHEN

fully achievable. We have attempted in this paper to discuss a number of algorith-
mic issues of long-term importance for any system like this, while at the same time
illustrating the power of these methods numerically.

Acknowledgments. All of the chebfun project builds on the original version of
the system developed by the third author with Zachary Battles during 2002–2005.
In addition we have benefitted from discussions with Folkmar Bornemann, Anne
Gelb, Michael Overton, Simon Scheuring, and Jared Tanner. Most importantly, Toby
Driscoll is also one of the authors of the chebfun system and the principal author of
the related “chebop” system for chebfun solution of differential equations [9].

REFERENCES

[1] Z. Battles, Numerical Linear Algebra for Continuous Functions, DPhil thesis, Oxford University
Computing Laboratory, 2006.

[2] Z. Battles and L. N. Trefethen, An extension of Matlab to continuous functions and operators,
SIAM J. Sci. Comp. 25 (2004), 1743–1770.

[3] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Review 46 (2004)
501–517.

[4] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM 100-Digit Challenge: A Study

in High-Accuracy Numerical Computing, SIAM, 2005.
[5] J. Boyd, Computing zeros on a real interval through Chebyshev expansion and polynomial

rootfinding, SIAM J. Numer. Anal. 40 (2002), 1666–1682.
[6] D. Day and L. Romero, Roots of polynomials expressed in terms of orthogonal polynomials,

SIAM J. Numer. Anal. 43 (2005), 1969–1987.
[7] C. de Boor, A Practical Guide to Splines, Springer, 1978.
[8] A. R. Curtis and M. J. D. Powell, Using cubic splines to approximate functions of one variable

to prescribed accuracy, AERE Report No. 5602, Harwell Laboratory, England, 1967.
[9] T. A. Driscoll, F. Bornemann, and L. N. Trefethen, Automatic spectral computations and the

chebop system, manuscript in preparation.
[10] K. O. Geddes, Near-minimax polynomial approximation in an elliptical region, SIAM Journal

on Numerical Analysis 15 (1978), 1225–1233.
[11] A. Gelb and E. Tadmor, Adaptive edge detectors for piecewise smooth data based on the minmod

limiter, J. Sci. Comput. 28 (2006), 279–306.
[12] I. J. Good, The colleague matrix, a Chebyshev analogue of the companion matrix, Quart. J.

Math. 12 (1961), 61–68.
[13] G. Helmberg and P. Wagner, Manipulating Gibbs’ phenomenon for Fourier interpolation, J.

Approx. Th. 89 (1997), 308–320.
[14] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer.

Anal. 24 (2004), 547–556.
[15] Maplesoft, a division of Waterloo Maple Inc., Maple user Manual, Toronto, 2005–2008.
[16] M. J. D. Powell, Curve fitting by splines in one variable, in J. G. Hayes, ed., Numerical Ap-

proximation of Functions and Data, The Athlone Press, U. of London, 1970, pp. 65–83.
[17] H. E. Salzer, Lagrangian interpolation at the Chebyshev points xn,ν = cos(νπ/n), ν = 0(1)n;

some unnoted advantages, Computer J. 15 (1972), 156–159.
[18] L. N. Trefethen, Computing numerically with functions instead of numbers, Math. in Comp.

Sci. 1 (2007), 9–19.
[19] S. Wolfram, The Mathematica Book, 5th ed., Wolfram Media, 2003.

