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1 Introduction

In [KS01] Kierzenka and Shampine describe a software package, bvp4c, to solve a large
class of boundary value problems (BVPs) for ordinary differential equations (ODEs) in
MATLAB. Specifically, they consider first order ODE systems of the form;

y′ = f(x, y; p), a ≤ x ≤ b (1.1a)

subject to two-point boundary conditions (BCs)

g(y(a), y(b); p) = 0. (1.1b)

They, as shall we, assume that f(x, y; p) and g(x, y; p) are as smooth as necessary, and
in particular that f is continuous and satisfies a Lipschitz condition in y. The argument
p is a vector of unknown parameters and is usually suppressed for clarity of exposition.
The view of K&S is that in general, a user solving a BVP of the form (1.1) in MATLAB
is interested in only a graphical representation of a solution. As such, a modest order
solver such as the MIRK4 based Simpson method is appropriate for graphical accuracy.

It is our opinion that whilst a fourth-order solver is reasonable, recent developments
mean that a sixth-order solver will supply not only greater accuracy, but also perform
more efficiently. We thus develop a new piece of software, bvp6c, intended to solve the
same class of problems efficiently, whilst maintaining the accuracy and robustness of the
original software. Importantly we maintain other valuable attributes, such as treating
non-separated BCs and unknown parameters without requiring the user to reformulate
these as higher order problems in the canonical form (1.1).

Although MIRK (mono-implicit Runge-Kutta) formulae become more complex as
order increases [CS82,DC01] - needing more function evaluations, more interior points
and more arithmetic operations at each mesh point - we believe a higher order method
will give comparable accuracy on a sufficiently coarser mesh (or alternatively, greater
accuracy on a comparable mesh) and thus prove more efficient in the majority of cases.

2 Collocation Method

A number of existing methods for solving problems of the form (1.1) provide solutions
only at mesh points, whereas others provide data everywhere but without uniform ac-
curacy [CS82,CW91a, EM86, EM96]. Our method, like bvp4c, will provide a uniform
prescribed accuracy throughout the computational interval. To achieve this we fit the
MIRK6 data of [CS82] with the sixth-order interpolant described in [CM04], giving an
accurate representation of the solution throughout the computational interval at little
extra cost. If hi = xi+1 − xi, the MIRK6 formula given by [CS82] is

yi+1 = yi +
hi

90

[
7f(xi, yi) + 32f(xi+1/4, yi+1/4) + 12f(xi+1/2, yi+1/2) + ...

32 f(xi+3/4, yi+3/4) + 7f(xi+1, yi+1)
]
, (2.1)

= yi +
hi

90

[
7y′i + 32y′i+1/4 + 12y′i+1/2 + 32y′i+3/4 + 7y′i+1

]
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where

yi+1/4 =
1

64

(
54yi + 10yi+1 + hi

[
9y′i − 3y′i+1

])
, (2.2a)

yi+3/4 =
1

64

(
10yi + 54yi+1 + hi

[
3y′i − 9y′i+1

])
, (2.2b)

yi+1/2 =
1

2
(yi + yi+1)− hi

24

[
5y′i − 16y′i+1/4 + 16y′i+3/4 − 5y′i+1

]
. (2.2c)

The algorithm used in bvp4c can be viewed as a collocation with a piecewise cubic
polynomial function used to fit the data {yi, y′i, yi+1, y′i+1} from a three-point Lobatto
IIIA approximation. This polynomial collocates, satisfies the boundary conditions and is
continuous at the ends of each subinterval [xi, xi+1], making it C1 in the whole of [a, b].
In our algorithm we use the quintic interpolant of [CM04] to fit the MIRK6 {yi, y′i,
y′i+1/2, y′i+3/4− y′i+1/4, yi+1, y′i+1} in (2.1,2.2). If ω = (x− xi)/hi ∈ [0, 1], this interpolant

S(x) is defined locally for x ∈ [xi, xi+1] by

S(xi + ωhi) = A66(ω)yi+1 + A66(1− ω)yi + (2.3)

hi

[
B66(ω)y′i+1 −B66(1− ω)y′i+

C66(ω){y′i+3/4 − y′i+1/4}+ D66(ω)y′i+1/2

]
,

where

A66(ω) = ω2
(
15− 50ω + 60ω2 − 24ω3

)
, (2.4)

B66(ω) = ω2 (ω − 1)
(
12ω2 − 14ω + 5

)
/3,

C66(ω) = −8ω2 (1− ω)2 /3,

D66(ω) = 8ω2 (ω − 1)2 (2ω − 1)

and

yi+1/2 =
1

2
(yi+1 + yi)− hi

24

[
y′i+1 − y′i + 4(y′i+3/4 − y′i+1/4)

]
. (2.5)

Here (2.5) is a more accurate estimate of yi+1/2 such that y′i+1/2−y′(xi+1/2) = O(h6), and

an additional function evaluation is required to find the updated y′i+1/2 = f(x, yi+1/2).
As with the fourth-order interpolant of bvp4c, the continuity and collocation properties
imply S(x) is C1 in [a, b]. Furthermore, the accuracy of y′i+1/2 and the other MIRK6

data arising from (2.1,2.2) ensures that S(x) is sixth-order accurate across the mesh
interval [CM04]. Hence for x ∈ [xi, xi+1] and each i

S(x)− y(x) = O(h6
i ), (2.6)

and with the assumed Lipschitz condition on f , this implies

f(x, S(x)) = f(x, y(x)) + O(h6
i ). (2.7)
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3 Residual

As with bvp4c, the cornerstone of bvp6c is that both error estimation and mesh selection
are based on the residual of S(x), defined by

r(x) = S ′(x)− f(x, S(x)), (3.1)

rBCs(x) = g(S(a), S(b))

for the ODEs and for the BCs respectively. Applying (2.7) to the ODE residual gives

r(x) = (S ′(x)− f(x, S(x)))− (y′(x)− f(x, y(x))), (3.2)

= S ′(x)− y′(x) + O(h6
i ),

for x in each [xi, xi+1]. We now seek to establish the asymptotic behaviour of this
residual. Let q(x) be the interpolant (2.3,2.4), but of the true solution y(x). Subtracting
from S and differentiating leads to

S ′(x)− q′(x) = S ′(xi + ωhi)− q′(xi + ωhi), (3.3)

=
1

hi

[A′
66(w) (yi+1 − y(xi+1))− A′

66(1− w) (yi − y(xi))] +

B′
66(w)

(
y′i+1 − y′(xi+1)

)
+ B′

66(1− w) (y′i − y′(xi)) +

C ′
66(w)

({y′i+3/4 − y′i+1/4} − {y′(xi+3/4)− y′(xi+1/4)}
)

+

D′
66(w)

(
y′i+1/2 − y′(xi+1/2)

)
.

The errors in y′i − y′(xi), y′i+1/2 − y′(xi+1/2) and y′i+1 − y′(xi+1) are O(h6
i ) [CM04], and

B′
66 and D′

66 are O(1), hence

S ′(x)− q′(x) =
1

hi

[A′
66(w) (yi+1 − y(xi+1))− A′

66(1− w) (yi − y(xi))] (3.4)

C ′
66(w)

({y′i+3/4 − y′i+1/4} − {y′(xi+3/4)− y′(xi+1/4)}
)

+ O(h6
i ).

The sixth-order MIRK6 formula (2.1) is satisfied by y(x) with an local truncation error
O(h7

i ), i.e. yi+1 − y(xi+1) = yi − y(xi) + O(h7
i ) [CS82]. Moreover,

{y′
i+ 3

4
− y′

i+ 1
4
} − {y′(xi+ 3

4
)− y′(xi+ 1

4
)} =

3h5
i

1024

[
1

5

∂f

∂y
yv − 1

4

d

dx

(
∂f

∂y
yiv

)]
+ O(h6

i )

=: errC66h
5
i + O(h6

i ). (3.5)

This leads to

S ′(x)− q′(x) =
1

hi

(A′
66(w)− A′

66(1− w)) (yi − y(xi)) + C ′
66(w)errC66h

5
i + O(h6

i ), (3.6)

but noting A′
66(w)− A′

66(1− w) = 0 reduces this to

S ′(x)− q′(x) = C ′
66(w)errC66h

5
i + O(h6

i ). (3.7)
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Substituting (3.7) to the expression for the residual in (3.1), we have

r(x) = S ′(x)− f(x, S(x)), (3.8)

= S ′(x)− y′(x) + O(h6
i ),

= q′(x)− y′(x) + C ′
66(w)errC66h

5
i + O(h6

i ),

and [CM04] gives the interpolation error of q(x) to y(x) in [xi, xi+1] as

h6
i

720
w2(1− w)2

(
w2 − w +

9

32

)
yvi

∣∣
ξ∈[0,1]

. (3.9)

Thus, differentiating (3.9) with respect to x and substituting to (3.8) gives

r(x) =
h5

3840
w(4w − 1)(2w − 1)(4w − 3)(w − 1)yvi(ξ) + h5C ′

66(w)errC66 + O(h6)

= h5

[
1

3840
w(4w − 1)(2w − 1)(4w − 3)(w − 1)yvi(ξ) − ...

16

3
w(2w − 1)(w − 1)errC66

]
+ O(h6). (3.10)

The behaviour of the residual then is local to each subinterval and of order h6
i at the two

end-points and the midpoint. To leading order the residual is a polynomial of degree
5, with dependence on yiv, yv and yvi. This extra dependence not present in the bvp4c
residual is complex, and in particular leaves us unable to determine local extrema or an
asymptotically correct estimate of the L∞ norm. However, in [KS01] the use of the L∞
norm is argued against, and we instead focus on the L2 norm. On each subinterval we
compute

‖r(x)‖i =

(∫ xi+1

xi

r2(x)dx

)1/2

, (3.11)

and use a suitable quadrature method to integrate the now leading order degree ten
polynomial r2(x) accurately. An n-point Lobatto quadrature rule is exact for polynomi-
als of degree 2n−3, so for an asymptotically correct estimate of our residual we need at
least a 7-point procedure, requiring four extra function evaluations per subinterval, five
including the evaluation to compute the more accurate y′i+1/2.

4 Implementation

The new software bvp6c is intended to be a direct extension to bvp4c, and as such
implementation is almost identical, with support routines changed only where necessary
to maintain sixth-order accuracy. We also wish to retain other functionality of the
original package, such as solving problems with unknown parameters, generalised two-
point BCs, not requiring (although allowing) user entered partial derivatives and the
vectorisation of f(x, y). Fortunately the change from fourth- to sixth-order has only a
small impact on these areas, and little alteration is necessary. We discuss here some of
the larger impacts the higher order extension has on implementation of the method.
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4.1 Collocation Equations and Jacobians

The collocation method of bvp6c is applied to (1.1) on a mesh a = x0 ≤ x1 ≤ . . . ≤
xN = b by solving the algebraic equations

Φ(X, Y ) = 0, (4.1)

where

X = [x0, x1, . . . , xN ]T , (4.2)

Y = [y0, y1, . . . , yN , p]T ,

and

Φ0(X,Y ) = g(y0, yN ; p), (4.3a)

Φi+1(X,Y ) = yi+1 − yi − hi

90

[
7y′i + 32y′i+1/4 + 12y′i+1/2 + 32y′i+3/4 + 7y′i+1

]
,

i = 0, 1, . . . , N − 1. (4.3b)

The system (4.1) is solved using a simplified Newton (chord) method, which requires the
global Jacobian ∂Φ/∂Y . The form of the Jacobian here is more complex than for the
fourth-order Simpson method, and computationally more expensive. If one calculates
the Jacobians as set out below, three matrix multiplications per Jacobian are required.
In contrast, the fourth-order method of [KS01] required only one matrix multiplication
per Jacobian. The global Jacobians here are given by

∂Φi+1

∂yi

= I +
h

90

[
7Ji + 27Ji+1/4 + 6Ji+1/2 + 5Ji+3/4 (4.4a)

+
h

8
Ji+1/2

{
54Ji+1/4 − 10Ji+3/4 + 3 h

(
3Ji+1/4 − Ji+3/4

)
Ji

}

+
h

2

{
9Ji+1/4 − 5Ji+1/2 + 3Ji+3/4

}
Ji

]
,

∂Φi+1

∂yi+1

= − I +
h

90

[
5Ji+1/4 + 6Ji+1/2 + 27Ji+3/4 + 7Ji+1 (4.4b)

+
h

8
Ji+1/2

{
10Ji+1/4 − 54Ji+3/4 − 3 h

(
Ji+1/4 − 3Ji+3/4

)
Ji+1

}

− h

2

{
3Ji+1/4 − 5Ji+1/2 + 9Ji+3/4

}
Ji+1

]
,

where Jl = ∂f(xl, yl)/∂y. The global Jacobian of Φ with respect to the parameters p
is sufficiently complicated to merit setting out explicitly as well:
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∂Φi+1

∂p
=

h

90

[
7 (Ki + Ki+1) + 32

(
Ki+1/4 + Ki+3/4

)
+ 12Ki+1/2 (4.4c)

+
h

2
Ji+1/2

{
5 (Ki+1 −Ki) + 16

(
Ki+1/4 −Ki+3/4

)
+ . . .

3h

4

(
Ji+1/4 (3Ki −Ki+1)− Ji+3/4 (Ki − 3Ki+1)

)}

+
3h

2

{
Ji+1/4 (3Ki −Ki+1) + Ji+3/4 (Ki − 3Ki+1)

}]
,

where here Kl = ∂f(xl, yl)/∂p.
In bvp4c the local internal Jacobian Ji+1/2 is approximated by an average when not

changing rapidly. Here we have two additional internal Jacobians to calculate (Ji+1/4

and Ji+3/4), making such an approximation even more attractive. In [CS82] further
simplifications for these Jacobians are set out that might be used to reduce overall
computation time, but we have not applied these in current implementation. Our trials
(see §5.3) suggest that although a user supplied Jacobian is not necessary, it can reduce
computation speed compared with calculating these Jacobian by numerical differences.
This result for the MATLAB package differs from Fortran implementations of the MIRK6
algorithm for two-point BVPs, where numerical difference calculation of the Jacobians
is substantially faster than calculating the analytic matrix multiplication forms for all
but the most complicated right hand sides [CGM02].

4.2 Residual Norm

Having found an approximation to the solution by solving the (4.1), we must now com-
pute the norm of the residual (3.11) on each subinterval. As discussed in the previous
chapter, we choose the 7-point Lobatto quadrature method, the abscissa and weights of
which can be found in [Mic63]. This method will integrate a polynomial of degree 10
exactly, and the quadrature points include the end and the midpoints of the interval.
Suppose we evaluate the interpolant S and its derivative at xi+1/2,

S(xi+1/2) =
1

2
(yi+1 + yi)− hi

24

[
y′i+1 − y′i + 4(y′i+3/4 − y′i+1/4)

]
(4.5)

= yi+1/2,

S ′(xi+1/2) = y′i+1/2. (4.6)

We see that this is exact for both y and y′ (the improved approximations) at the mid-
point, and as such

r(xi+1/2) = S ′(xi+1/2)−f(xi+1/2, S(xi+1/2)) (4.7)

= y′i+1/2−y′i+1/2 = 0

needs no calculation. Similarly the residual gives zero contributions at the two end
points, but the values of the residual at the four remaining quadrature points must be
computed, requiring four evaluations of the right hand side functional f .
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In [KS01] a similar analysis is used to show how the residual at the midpoint in bvp4c
gives an approximation to how well the collocation equations (2.1) are satisfied. Such a
result using values at the quarter-points xi+1/4, xi+3/4 is not available here because our
interpolant S(x) uses the altered value yi+1/2.

4.3 Mesh Selection

The norm of the residual computed as above is then used to update the mesh. We
maintain the style of mesh selection used in bvp4c, but note that since bvp6c is a higher
order method, introducing/removing points will have a greater effect on the size of the
residual. Points are removed if the residual on an subinterval (and an estimate of the
new residual on the coarser mesh) is deemed small enough, and added if the residual is
too large. The policy in bvp4c is to remove mesh points if the predicted residual is less
than half of reltol, the residual tolerance. We find with bvp6c this can cause trouble, with
the algorithm repeatedly removing and replacing the same point on alternate iterations.
This is solved by only removing mesh points when the predicted residual is less than one
tenth of reltol. We do however follow bvp4c in introducing no more than two new mesh
points at a time, and the experiments set out below suggest that this slight variation
of the mesh refinement strategy proposed by [KS01] is robust enough to ensure user
mandated accuracy for almost all test problems.

5 Results & Examples

We demonstrate the accuracy and efficiency of our new method, in particular comparing
the results with those computed using the existing software bvp4c. We reconsider some
of those problems discussed in [KS01] as well as applying a new set of problems from as
the BVP problem test suite [CW91a, CW91b].

For the first family of problems we consider explicit solutions are not available, and
we resort to comparing the computed solutions between the two methods. We also
compare other important factors, such as solution time, number of mesh points and
number of function evaluations. By defining ‘reltol’ and ‘abstol’ to some tolerance, we
expect the solution of both methods, and hence their difference, to be approximately of
this order.

5.1 Measles

The first example [AMR88, 1.10] models the spread of measles via the differential equa-
tions

y′1 = µ− β(t)y1y3 (5.1a)

y′2 = β(t)y1y3 − y2

λ
(5.1b)

y′3 =
y2

λ
− y3

ν
(5.1c)
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where β = 1575(1+cos(2πt)) and µ = 0.02, λ = 0.0279 and ν = 0.01 are given. The
solution must also satisfy the (non-separated) periodicity conditions

y(0)=y(1). (5.1d)

Since for the end user the use of bvp4c and 6c is identical, it is straightforward to
adapt the code given in [KS01] to test both methods, and doing so results in Table 5.1.

bvp4c bvp6c
tol time mesh maxres time mesh maxres discrepancy
1e-3 0.384 26 2.0e-4 0.387 20 1.1e-5 1.1e-2
1e-6 0.821 63 7.0e-7 0.597 69 1.0e-7 2.5e-4
1e-9 1.503 344 9.6e-10 0.759 120 1.6e-10 1.2e-7
1e-12 7.164 2397 9.9e-13 1.429 239 9.7e-13 7.9e-11

Table 1: Comparison of the time taken, the total number of mesh points used and
the maximum residual for bvp4c and bvp6c for a range of user specified tolerances for
equations (5.1), the measles epidemic model of [AMR88].

What we see here shall become a consistent pattern: both methods perform similarly
when only a small degree of accuracy is required, but as the tolerance is made stricter,
bvp6c will find a solution using far fewer mesh points. This reduces the overall time to
find a solution substantially. Quantitatively, bvp6c uses factor ten fewer mesh points
for this problem, and finds a solution in less than one fifth of the time for the strictest
tolerance setting.

We cannot draw any explicit conclusions as to the accuracy of the solutions here
as the analytic solution is not available. Having said this, we expect the ‘discrepancy’
(the difference between interpolated solutions at a uniform set of points) given above
to be no more than a factor of ten larger than the tolerance. By comparing with solu-
tions obtained using a stricter tolerance, we believe bvp4c is returning the less accurate
solution.

5.2 Injection

Our second example is also taken from [AMR88, 1.4] and describes flow in a long vertical
channel with fluid injection:

f ′′′ −R
[
(f ′)2 − ff ′′ − A

]
= 0, (5.2a)

h′′ + Rfh′ + 1 = , 0 (5.2b)

θ′′ + Pfθ = 0, (5.2c)

where R is a Reynolds number and P = 0.7R. The parameter A is unknown, and it
implemented in the call to the software as such. The eight boundary conditions are:

f(0) = f ′(0) = 0, f(1) = 1, f ′(1) = 1, (5.2d)

h(0) = h(1) = 0, θ(0) = 0, θ(1) = 1.
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We take R = 100 and obtain the results seen in Figure 1. In Table 5.2 we see that the
discrepancy between the two methods behaves as expected, and for the most stringent
tolerances the efficiency in the new method is even more pronounced.

bvp4c bvp6c
tol time mesh maxres time mesh maxres discrepancy
1e-3 0.401 25 5.8e-4 0.448 24 2.6e-5 3.0e-5
1e-6 1.284 152 9.9e-7 0.623 37 8.9e-7 3.0e-8
1e-9 7.756 910 9.9e-10 1.449 113 8.2e-10 8.0e-12
1e-12 99.37 6878 1.0e-13 3.876 358 9.9e-13 5.2e-15

Table 2: As for Table 5.1, for (5.2), the fluid injection problem of [AMR88].

Figure 1: Solutions for (5.2), the fluid injection problem [AMR88, 1.4] solved for a
tolerance of 10−6. The bvp6c solutions for f ′ and h have been shifted upwards to aid
comparison of the final solution meshes for the two algorithms.

We include the graphs of f ′ and h (note that one set of solutions has been shifted
upwards) in Figure 1 to show that the bvp6c solution is, at least graphically, the same
as that computed in [KS01], and to demonstrate the distribution of the mesh points for
both methods. In this example too we see that bvp6c requires a far sparser mesh to
compute the solution to the mandated accuracy. For six digits of accuracy bvp6c uses
only 37 points, while bvp4c needs a mesh of 152 points. For nine digits this becomes
113 and 910 respectively, and for twelve digits of accuracy the new algorithm is a little
over 25 times faster.

5.3 Shockbvp

The final BVP in this section [AMR88, 9.2] solves the singular problem (as ε → 0),

εy′′ + xy′ = −επ2cos(πx)− (πx)sin(πx) (5.3a)

with boundary conditions
y(−1) = −2, y(1) = 0. (5.3b)

We use this example to demonstrate a number of key points, particularly the effects of



SIXTH-ORDER EXTENSION TO BVP4C 11

tol=1e-3 tol=1e-6 tol=1e-9
Final ε 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5
bvp4c 0.46 0.98 2.79 2.50 4.40 7.45 13.33 24.42 41.34
bvp6c 0.93 1.57 4.75 0.98 1.73 3.67 2.36 5.41 22.57
vbvp4c 0.58 1.16 3.21 2.63 4.72 8.05 14.47 26.19 42.83
vbvp6c 0.49 1.17 3.98 0.96 1.69 3.34 2.13 4.73 19.04
ajbvp4c 0.23 0.47 1.27 1.14 2.00 3.39 5.84 10.69 17.60
ajbvp6c 0.24 0.56 1.38 0.54 0.96 2.83 1.44 3.09 13.86
vjbvp4c 0.18 0.33 0.81 0.76 1.29 2.11 3.59 6.57 10.84
vjbvp6c 0.16 0.37 0.87 0.32 0.54 1.51 0.77 1.67 7.28

Table 3: Time (secs) to solve (5.3), the shock BVP [AMR88, 9.2] using continuation for
various MATLAB implementations of the bvpc algorithms.

analytic Jacobians and vectorisation of the problem. Following the steps of the bvp4c
analysis in [KS01], the shock problem is solved using continuation and the times shown
are not the intermediate results, but the total time taken to reach a solution for the
given value of ε. vbvp represents the results from a vectorised version of the problem,
ajbvp from using an analytic Jacobian and vjbvp from combining the two. As a general
observation on both solvers, it can be seen that vectorisation has a smaller effect on the
computational time than that of analytic Jacobians, although it is when the two options
are used in tandem that the time is most significantly reduced. For the weakest tolerance
setting the new algorithms are the slightly slower of the two, but as the tolerance is made
stricter, the improvement in bvp6c is significant. For the smallest value of ε and the
strictest tolerance the gain in speed is perhaps not as large as we might expect, and
we believe this to be caused by a cycle of adding and removing points unnecessarily on
successive iterations as discussed in §4.3. This could perhaps be improved by tweaking
the mesh adaption procedure further, but we make no attempt to do so here.

This problem demonstrates that if analytic Jacobians are available then both bvp4c
and bvp6c significantly improve their performance, which we again note is in contrast
to Fortran implementations of MIRK algorithms.

5.4 BVP ODE Suite

The bvp6c package has been tested extensively using the test suite [CW91a, CW91b]; a
collection of linear and nonlinear BVPs designed to test the performance and robustness
of a numerical BVP solver. Since a number of the problems posed do not have explicit
analytic solutions, numerical solutions for these are computed using a recently developed
twelfth-order MIRK method [CM06a,CM06b] to a high degree of precision and assumed
sufficiently accurate for error analysis. Solutions for each of the 32 problems are then
computed using both bvp4c and bvp6c with a range of specified tolerances. For simplicity
we choose an initial guess of zero (where possible) on a grid of 33 equally spaced points.
We do not make any attempt to vectorise the right hand side, nor do we supply an
analytic Jacobian.
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Figure 2: L2 errors on the 32 BVP test problems [CW91b] for bvp4c (white & dashed
line) and bvp6c (black & solid line) for user tolerances 10−3, 10−6, 10−9 & 10−12. White
triangles in Figure 2d represent bvp4c solutions with the maximum mesh size doubled.

While the 32 problems are largely unrelated, we connect the data in Figure 2 for the
same method by a line to facilitate the reader’s eye in seeing a consistent trend between
the two sets of results, and to emphasise those few results that go against this trend.
The error, defined in (5.4), is an averaged L2 norm over each of the mesh points returned
by the solver, rather than an interpolation at fixed set values.

error :=

(
1

N

N∑
i=1

[yi − y(xi)]
2

)1/2

. (5.4)

For all but one of the problems (and this exception being forgivably close), we see that
bvp6c obtains a solution to the specified accuracy in this averaged norm. In contrast,
bvp4c struggles with a number of the problems at the strictest tolerance level in Figure
2d. The triangles in this figure also represent bvp4c solutions, but where the maximum
allowable mesh size has been doubled to 10,000. It is interesting to note that some
problems are clearly more challenging to solve than others, and in particular two of the
linear, two dimensional problems #15 and #16 appear the most troublesome.

Having demonstrated the new solver is at least comparable in terms of accuracy,
we must investigate its performance in computational time. It is clear that for the
lower tolerance (Figure 3a) the times for each method are similar, but for the midrange
tolerances (Figures 3b & 3c) the new software is consistently around twice as fast. For
the highest tested tolerance (Figure 3d) bvp6c is often faster by at least a factor of five.
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Figure 3: Times on the 32 BVP test problems [CW91b] for bvp4c (white & dashed line)
and bvp6c (black & solid line) for user tolerances 10−3, 10−6, 10−9 & 10−12. Squares
indicate the accuracy is less than the prescribed tolerance for this problem, and triangles
show bvp4c repeated with the maximum allowable mesh size doubled.

In those few problems in which bvp6c appears the the slower solver, returning to Figure
2d (and indicated by squares) one sees that these are problems for which bvp4c fails to
obtain a solution of sufficient accuracy within the default maximum mesh size (squares).
Further tests (triangles in Figure 3d) show that allowing a mesh large enough to reach
a solution of the required accuracy with bvp4c takes significantly longer. To achieve the
specified tolerance on problems #15 and #16, bvp4c requires 14,648 and 15,919 mesh
points respectively, and a computational time of around two minutes.

Further experiments have shown that at strict tolerances there are few examples
where the solvers supply a result of the required accuracy, but the residual is not re-
duced enough to terminate the algorithm. This suggests the residual is sometimes too
overestimated, and a significantly example of this is solving problem #32 with bvp6c.
Using default settings, the residual is not reduced below the tolerance before the max-
imum number of mesh points (500) is exceeded, which takes around 30 seconds. By
reducing this maximum to only 200 points, a solution accurate to 13 digits is obtained
in less than one second. This is the result given in Figures 2 and 3.
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6 Conclusions

Extensive testing, particularly in §5.4, has shown that whilst not always providing the
more accurate of the solutions, bvp6c consistently obtained the accuracy specified by the
user. A meaningful comparison of accuracy between the two bvpc packages is difficult to
quantify, since the design of the framework means that both solvers continue to improve
their solutions until the residual is sufficiently reduced.

We have shown that locally the bvp6c residual is asymptotically sixth- and the bvp4c
fourth-order accurate, but this type of analysis is relevant only when considering solu-
tions obtained on the same mesh. However, since the residual determines the adaptive
mesh strategy, we expect and demonstrate that the higher order finite difference for-
mula of [CS82] and interpolation formula of [CM04] obtain a comparable reduction in
the global residual with fewer internal mesh points, and correspondingly takes less time
to compute. We conclude that whilst both methods generally give solutions satisfying
the required tolerance, the new method does so more efficiently.

This can be further seen in a comparison of solution times for the bvp4c solver with
a tolerance of 10−6 with those from bvp6c at 10−9. Figure 4 show these are almost
identical; meaning that in the same time it takes bvp4c to solve to an accuracy of 10−6,
bvp6c can solve the same problem to an accuracy of 10−9. Such a result holds to an
even greater extent for tolerances of 10−9 and 10−12.
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Figure 4: Solution times and L2 errors for bvp4c with a tolerance of 10−6 (white &
dashed line) and bvp6c with a tolerance of 10−9 (black & solid line).

In view of the apparent success of the bvp6c extension to the existing MATLAB
software, it is tempting to consider a further development using eighth [CS82], tenth
and even twelfth-order [CM06b] difference methods. However, the eighth-order scheme
requires a total of seven interior points per interval, and the form of the Jacobians in
§4.1 becomes increasingly complex. It seems likely the improvement in local accuracy
of an even higher order scheme may come at the expense of an unjustifiable increase in
the time needed to find a global solution of the required accuracy.

An area where we do see potential for the enhancement of the bvpc framework is in
solving more efficiently problems of the form y′′(x) = f(x, y) and y′′ = f(x, y, y′). Again
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in [CM04] there is a sixth-order Hermite-Birkhoff interpolant to fit data produced by
a finite difference scheme corresponding to these forms of problems, and in [CCM06]
eighth-order accurate algorithms for problems of this form are set out. It remains only
to determine a suitable representation of the residual computable on each interval for
this important class of boundary value problems.

7 Additional Comments

Since the development of bvp6c, the BVP solving capabilities of MATLAB have been
augmented with a new package bvp5c, also written by Kierzenka and Shampine [KS08].
Whereas the error control in bvp4c and bvp6c is based on the residual r(x) = S ′(x) −
f(x, S(x)), bvp5c uses a fifth-order, four-point Lobatto IIIA formula with an error esti-
mate combining both r(x) and the true error e(x) = S(x) − y(x). K&S report that in
numerical experiments the speed of bvp5c is comparable to the speed of bvp4c for low-
to-medium tolerance, and for stringent tolerances the advantage of bvp5c is significant.
We forgo a detailed comparison of bvp6c with bvp5c, but offer in Figure 5 a variant of
Figures 2c, 2d, 3c & 3d, replacing bvp4c with bvp5c.
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Figure 5: Solution times (left) and L2 errors (right) from solving the 32 problems of §5.4
with bvp5c (white & dashed line) and bvp6c (black & solid line) using tolerances of 10−9

(top) and 10−12 (bottom).
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All results in this paper were computed using MATLAB 7.5 on a dual core 1.7Ghz
laptop. The parameters used for the 32 problems in §5.4 are 0.001, 0.01, 0.05, 0.025,
0.01, 0.022, 0.025, 0.01, 0.055, 0.022, 0.001, 0.0025, 0.0025, 0.0025, 0.005, 1/19, 0.0005,
0.013, 0.03, 0.05, 0.0008, 0.025, 5, 0.03, 0.0025, 0.02, 0.02, 0.03, 0.015, 0.042, 0.025 and
100 respectively.

The bvp6c package and the examples of §5 are freely available online on both the
MATLAB Central file exchange at http://www.mathworks.com, and on NH’s website
http://www.comlab.ox.ac.uk/nick.hale/bvp6c.

Finally, we wish to thank Steven Capper for pointing out the more economical form
for the Jacobians in the [CS82] MIRK6 scheme, and NH wishes to thank the Nuffield
Foundation for an Undergraduate Research Bursary for 2005.
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